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Abstract. This paper deals with numerical modeling of water 
ow, which is generated by
the break of a dam. The problem is solved by applying Eulerian equations with mapping
technique over a horizontal bottom considering unsteady incompressible 
ow with free
surface. The proposed model has been used to simulate a two-dimensional problem of
the collapse of a water column inside a rectangular tank. A new mapping is developed to
transform the governing equations from the physical domain to a computational domain. It
is shown that the model predicts the changes of wave pro�le and the free surface elevation
of water. In addition, the results are compared with experimental data.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

When a dam is breached, catastrophic 
ooding occurs
in the downstream channel. Dam break analyses are
used to estimate the potential hazards associated with
a structure failure. Zienkiewicz et al. [1] studied 
ows
due to dam breaking by using the Lagrangian descrip-
tion. Pohle [2] and Stoker [3] presented a systematic
procedure for the determination of the successive terms
in these expansions. However, only the leading-
order terms were constructed and analyzed. In both
Lagrangian and Eulerian descriptions, the expansions
of the solution were in time power. However, such a
solution was successfully derived in a relevant problem
concerning a uniformly accelerating wave-maker by
King and Needham [4]. There are numerous numerical
and experimental studies on dam break 
ows. Relevant
to this study is the paper by Stansby et al. [5] in
which the initial stage of dam break 
ow, for dry and
wet bed cases, is studied, experimentally, and it is
observed that for the dry bed case, a horizontal jet
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forms at small times. They also performed a numerical
analysis on the dam break problem. However, in
order to avoid the singularity of the numerical solution
at the intersection point, they had to pre-wet the
bed in front of the dam by an arti�cial thin 
uid
layer. Several numerical studies, performed during the
past few years, were based on the solution of Nonlin-
ear Shallow Water Equations (NSWE) using di�erent
methods such as the �nite-volume method, the �nite-
di�erence method [6-10]. Hunt [11] used a kinematic
wave approximation to obtain a closed-form solution
for a sloping channel and mentioned that his solution
was valid for large times. The dam break problem was
interpreted in the context of a liquid column collapsing
under gravity. Penney and Thornhill [12] studied
the collapse of a 
uid column, which was surrounded
by a lighter 
uid. The analysis was performed in
Eulerian variables for both small and moderate times.
They derived the initial asymptotics of the solution
for 
uid columns of semi-cylindrical and hemispherical
shapes, and showed that these asymptotics are not
correctly close to the base, where the 
uid velocity
is much higher than that in the rest of the column.
Korobkin and Yilmaz [13] studied the initial stages of
the dam break 
ow in the framework of potential free
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surface 
ows. Dutykh and Mitsotakis [14] solved the
classical dam break problem of validating the nonlinear
shallow water equations solvers and tried to examine
the validity of the mathematical model under Navier-
Stokes simulations. Lohrasbi et al. [15] presented
an approach to solve Naiver-Stokes equations based
on mapping technique about dam break. They used
Arbitrary Lagrangian Eulerian (ALE) for transforming
physical domain to computational domain. However,
their solution had some limitations on ratio of upstream
water height to downstream water height and had some
errors, such as shock waves, on free surface. In this
article, new mapping is presented that shows accurate
results.

In this paper, in addition to the extraction of
approximation functions, correction of their coe�cient
is also carried out. This modi�cation improves the
accuracy of the model and gives appropriate results to
the previous works.

2. Formulation of the problem

The unsteady plane problem of free surface 
ow is
considered, which is generated when a vertical dam in
front of a liquid region is suddenly removed. Then,
the liquid 
ow and the shape of its free surface during
the early stages of the process will be determined.
Initial condition of the liquid is shown in Figure 1.
The physical domain �V surrounded by a piecewise
smooth boundary �S is shown in Figure 2. This
two-dimensional domain is occupied by a non-viscous
incompressible 
uid with the speci�c mass of �. The
problem under consideration is the unsteady motion of
a surface wave under gravity. The governing equations
are expressed by the unsteady Eulerian equation and
the equation of continuity. The rectangular coordi-
nates are denoted by x and y and the corresponding
velocity components are denoted by u and v. As a
result, the equations of conservation of momentum and

Figure 1. Initial condition of the liquid at time t = 0 sec.

Figure 2. The computational grid is shown mapped back
to the physical space.

mass for incompressible Newtonian 
uids are given as
follows:
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where wu and wv are the mesh velocities in x and y
directions. The boundary �S consists of two types of
boundaries: one is �S1, on which velocity is given; the
other is the free surface boundary �S2, on which the
surface force is speci�ed. The boundary conditions are
expressed as the followings:

�u = �̂u on �S1 �p:n�x = �̂cx on �S2;

�v = �̂v on �S1 �p:n�y = �̂cy on �S2; (2)

where the superscript caret denotes a function which
is given on the boundary and n�x and n�y symbolize
the direction cosines of the outward normal to the
boundary with respect to coordinates x and y. Also,
�̂cx and �̂cy are the constants of integration. The
above equations can be rendered dimensionless by
introducing the following variables:

�x = x �d; �y = y �d; �p = p�g �d;

�u = u(�g �d)1=2; �v = v(�g �d)1=2;

�t = t
� �d

�g

�1=2

: (3)

Using these transformations, Eq. (1) can be modi�ed
as follows:
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3. Free surface formulation

The 
uid surface equation is written as:

�F = �h(x; t) + �d� �y = 0 on �S2; (5)

where h is the position of the free surface. The kine-
matic condition associated with the 
uid free surface is
de�ned as:

D �F
D�t

= 0; (6)

then:
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With substituting into Eq. (5), the following is ob-
tained:�
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Utilizing the dimensionless form of the free surface
kinematic equation written as:�

@h
@t
� @y
@t

�
+ (u� wu)

@h
@x

+ (v � wv)(�1) = 0: (9)

Also, Eq. (9) is simpli�ed as:
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� v = 0: (10)

4. Transformation of equations

For the �nite element method, such problem requires
a complicated interpolation function on the local grid
lines, which results in the local loss of accuracy in
the computational solution. Such di�culties require
a mapping or transformation from physical space to a
generalized space. This transformation simpli�es the
problem. Lohrasbi et al. [15] presented this mapping
that transforms the wave propagation model from the
physical domain:

x =
3X
i=1

(� + h�i)Fi(�);

y = �(1 + h): (11)

This transformation has limitation on the ratio of
upstream to downstream water levels. So, in this

research and for showing more and better results, the
Lagrange interpolation formulations is used such as:

x =
nX
i=1

(� + h�i)�n
i=0

� � �i
�k � �i (k = 0; 1; 2; :::; n)

y = �(1 + h): (12)

The �i values are considered the �fth-order polynomial
function of � as follows:

�i =
b

"3l5(1� ")3
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�
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De�nitions of b, ", l, and �0 are illustrated in Figure 3.

5. Numerical example

For dam break modelling with Navier-Stokes equations
in this approach, the physical domain has been dis-
creted to �x = �y = 0:25 m and 200 elements in
horizontal and 4 elements in vertical directions in space
and �t = 0:01 sec in time as shown in Figure 4.
Free surfaces of dam at t = 0:0 to t = 1:1 sec are
shown in Figure 5 and Figure 6 and surface pro�le
in several times is shown in Figure 7. For better

Figure 3. De�nition of parameters in function �i.

Figure 4. Physical domain meshing.



A. Lohrasbi and M.D. Pirooz/Scientia Iranica, Transactions A: Civil Engineering 23 (2016) 876{881 879

Figure 5. Free surface in dam break at time = 0.0, 0.1,
0.2, 0.3, 0.4, 0.5 sec.

Figure 6. Free surface in dam break at time = 0.6, 0.7,
0.8, 0.9, 1.0, 1.1 sec.

Figure 7. Free surface pro�le in several times.

demonstration of the results, variation of horizontal
and vertical velocities is shown in Figures 8-10. The
results of present numerical model have been compared
with the results of Zienkiewicz [1] at t = 0:0 (H1=H2 =
2:0) in Figure 11. Comparison between the current
model and the numerical results of Zienkiewicz [1]
shows acceptable results. This model has the capability
of dam break model, such as H1=H2 = 4:5 that is
illustrated in Figure 12. This ratio is the limitation
of solution and has some errors, such as shock waves,
on free surface.

6. Conclusion

The propagation and deformation of free surface in dam
break over 
at bathymetry is investigated. Here, a
dam separating two stationary water levels is suddenly
removed and the almost vertical waves progress into the
two domains. This numerical approach is very suitable
for solving Eulerian equation while maintaining the
accuracy of calculations. The new mapping technique
transforms the physical domain with the vertical wall
to a simple rectangle computational domain. This
transformation has no limitation on the ratio of up-
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Figure 8. Free surface, horizontal and vertical velocities
in domain in t = 0:1 sec.

Figure 9. Free surface, horizontal and vertical velocities
in domain in t = 0:6 sec.

Figure 10. Free surface, horizontal and vertical velocities
in domain in t = 1:1 sec.

Figure 11. Comparison of the present model with
Zienkiewicz numerical model with H1=H2 = 2:0 (full line
for the current model and dashed line for Zienkiewicz
results).
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Figure 12. Dam break with the present numerical model
(H1=H2 = 4:5).

stream to downstream water levels unlike the previous
research [15]. The model is validated by comparing
numerical results with results obtained numerically.
Overall, the conformity of the available data with the
computations is well and in most cases, the numer-
ical model gives excellent results. The method can
be applied to other unsteady waves and it provides
appropriate agreement with independent calculations
of other research.
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