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Abstract. In the past twenty-�ve years, Structural Health Monitoring (SHM) has become
an increasingly signi�cant topic of investigation in the civil and structural engineering
research community. An SHM schema involves three main steps: (a) measurement and
acquisition of signals related to the structural response; (b) signal processing consisting
of pre-processing and feature extraction employing nonlinear measurements; and (c)
interpretation using machine learning. This article presents a review of recent journal
articles on nonlinear measurements used for feature extraction in SHM of building and
bridge structures. It also reviews three recently-developed nonlinear indexes with potential
applications in SHM.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Civil structures are pillars of the society and economy
as they provide protection for the people and com-
munication among di�erent cities, communities, and
countries [1-3]. They are exposed to diverse types
of potential damages during their service life due to,
for example, corrosion [4], loosened bolts, cracks [5,6],
among others, produced by natural phenomena and
dynamic excitations such as earthquakes, high winds,
tornadoes, humidity, wind, and tra�c, a�ecting their
performance negatively [7,8]. As such, it is crucial to
assess their health conditions and structural integrity
continuously because any damage identi�ed in its early
stage can be repaired before the occurrence of any
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catastrophic failure, thus avoiding and/or minimizing
potential economic and human losses [9].

In the past twenty-�ve years, Structural Health
Monitoring (SHM) has become an increasingly sig-
ni�cant topic of investigation in the civil and struc-
tural engineering research community, the industry,
and government because SHM provides a process for
identifying or evaluating the health condition of a civil
structure continuously or in real-time [10-12]. An SHM
schema involves three main steps:

(a) Measurement and acquisition of signals related to
the structural response such as accelerations;

(b) Signal processing consisting of pre-processing
(measured signal conditioning or transformation
using time, frequency or time-frequency methods)
and feature extraction employing nonlinear mea-
surements;

(c) Interpretation using Machine Learning (ML) and
classi�cation algorithms (Figure 1).
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Figure 1. Schematic diagram of steps employed in an SHM system.

A review of signal processing techniques for vibration-
based health monitoring of civil structures was
presented by Amezquita-Sanchez and Adeli [13].
Amezquita-Sanchez and Adeli [14] presented a review
of feature extraction and classi�cation techniques for
SHM. In the last step of the SHM schema, an ML or
classi�cation algorithm such as deep neural network
learning [15-18] or Bayesian learning model [19] is
employed to determine the health condition or damage
state of the structure.

Feature extraction is key to the development and
successful application of a classi�cation algorithm [20-
23]. Then, a fundamental research question is the
choice of the most appropriate measurement for feature
extraction. This article presents a review of recent jour-
nal articles on nonlinear measurements used for feature
extraction in SHM of building and bridge structures.

2. Nonlinear measurements used for SHM

Large civil structures are characterized by complicated
nonlinear behaviors during dynamic events manifested
in their measured responses [24,25]. Hence, it is
of paramount importance to have nonlinear measure-
ments or indexes capable of identifying hidden features
or patterns in the damaged structure for evaluating
its health condition. In this section, nonlinear mea-
surements used for feature extraction in SHM are
presented.

2.1. Fractal dimension
Fractal Dimension (FD) is a nonlinear index employed
for measuring the similarity encountered in a time
signal. It quanti�es how many times a pattern is
repeated in a time series signal [26,27]. Its value ranges
between 1 for low similarity and 2 for high similarity.
It has been used for evaluating the health condition
of civil structures, because the measured signals can
include fractal properties. An and Ou [28] applied the
Box Dimension (BD), an FD algorithm, for detecting
and locating cracks in a beam. The changes in the
FD values produced by the beam curved mode shapes
are used for locating the damage zone. The authors

reported that the e�ectiveness of the BD method was
dependent on the quantity of noise in the time series
signal analyzed. Li et al. [29] combined the Gabor
wavelet with the BD method to detect and locate
damage in numerical simulation of a 10-story shear-
frame. The damage consisted of the yielded zone in
the simulated structure. The results showed that the
FD method could estimate the changes produced in
measured or generated signals. The authors, however,
noted that further investigation was needed in order to
corroborate these results for real-life civil structures.

Amezquita-Sanchez and Adeli [30] presented a
novel Synchrosqueezed Wavelet Transform (SWT)-
fractality model for detecting, locating, and quan-
tifying the damage severity in a high-rise building
structure. Three di�erent FD algorithms, Katz Fractal
Dimension (KFD), Higuchi Fractal Dimension (HFD),
and BD, were evaluated for identifying patterns capa-
ble of assessing the health condition of the building.
The e�ectiveness of the model was evaluated using data
obtained experimentally for the 1:20 scaled model of a
38-storey concrete building structure shown in Figure 2
on a shake table in Hong Kong by Ni et al. [31]. The
authors concluded that the SWT integrated with BD
provided an e�ective tool for detecting, locating, and
quantifying damage severity in a high-rise building,
even in an early light-level damage state. Huang
et al. [32] integrated KFD and HFD with a multi-
task sparse Bayesian learning [33,34] for detecting and
locating damage in the Tianjin Yonghe Bridge, one
of the earliest cable-stayed bridges in the mainland of
China (see Figure 3). The authors concluded that the
FD method could be potentially an e�ective SHM tool,
but additional investigations are required to verify that.

2.2. Entropy
Entropy is a nonlinear index capable of measuring the
randomness found in a time series signal [35]. The
entropy index has provided good results in di�erent
�elds such as medicine and physiology [36] and mechan-
ical engineering [37]. Li et al. [38] presented numerical
results combining arti�cial neural networks, Dempster-
Shafer theory, and Shannon entropy for detecting dam-
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Figure 2. High-rise building model (adapted from Ni et
al. [31]).

Figure 3. The layout of the accelerators for Yonghe
Bridge (adapted from Huang et al. [32]).

age in the Binzhou Yellow River highway bridge, where
damage in the elements was simulated by a reduction
in element sti�nesses. The authors pointed to Shannon
entropy as a useful tool for measuring the uncertainty
level of the damage decision. Gonz�alez et al. [39]
used the Cross-Sample Entropy (CSE) for detecting
damage in a beam subjected to dynamic loads. They
noted that the CSE was susceptible to noise contained

Figure 4. 3D 9-bay truss-type bridge with corrosion
damage (adapted from Moreno-Gomez et al. [41]).

in the time series signal, which could produce errors
to correctly diagnose the health condition of a civil
structure. Lin and Liang [40] compared the Multi-
Scale Entropy (MSE) with Multi-Scale Cross-sample
Entropy (MSCE) for detecting and locating damage in
a seven-story frame subjected to ambient vibrations.
The authors reported that combining both methods
could lead to more accurate results.

Incipient or light damage represents a challenge
to its identi�cation in SHM. Moreno-Gomez et al. [41]
proposed the fusion of the Empirical Mode Decompo-
sition (EMD) [42] and Shannon entropy for detecting
damage due to corrosion in a 3D 9-bay and 169-member
truss-type bridge subjected to dynamic excitations,
as shown in Figure 4. The authors noted that the
integration of both methods allowed identifying light
damage produced by external corrosion starting from
1 mm reduction in the bar element diameter. Wang
et al. [43] presented an entropy-based active sensing
method for monitoring early looseness of multi-bolt
connections. Other applications of entropy in SHM
were presented by Ren and Sun [44], Amiri et al. [45],
and Meruane and Ortiz-Bernardin [46].

2.3. Energy index
The energy index is de�ned as the area under the
squared magnitude of a time series signal and is de�ned
mathematically as follows [47]:

E =
NX
i=1

jxij2 ; (1)

where x is the amplitude of a time series signal with N
points.

Because of its easy implementation, the energy
index has been employed in di�erent �elds such as
biomedical, electrical engineering, among others [48].

In the past decade, the energy index was applied
to SHM. Razi et al. [49] employed the Empirical Mode
Decomposition (EMD) for detecting and quantifying
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cracks in a steel beam. The energy of the �rst frequency
band estimated by EMD method is used to assess the
health condition of the beam. Garcia-Perez et al. [50]
fused the wavelet transform [51,52] and EMD methods
for detecting and locating loosened bolts and internal
and external corrosion, as well as their combinations
in a 3D �ve-bay 70-member cantilever truss structure.
The authors noted that the combination of the energy
rate from both methods could be used as an indicator
for locating the damage zone. Facchini et al. [53] em-
ployed the wavelet transform and energy for detecting
damage in a beam subjected to dynamic excitations
produced by a shaker.

Recently, the e�cacy of the wavelet packet trans-
form [54] with energy index was evaluated by Pan et
al. [55]. They used the accelerations of the Wangzong
tunnel in the Wuhan Metro Line 3 in China subjected
to dynamic excitations for evaluating its health condi-
tion. The authors reported an e�ciency rate of 98%,
but their approach required that a sensor or sensors be
placed next to the damage zone, which is usually not
realistic and practical. Other applications of energy in
SHM were presented by An and Ou [56] and Suarez et
al. [57].

2.4. Mutual information
Mutual Information (MI) is known as a nonlinear index
capable of capturing and measuring the dependence
between two random variables or signals that are being
monitored simultaneously. In other words, it measures
how much information is related to one variable about
another [58]. In this sense, MI allows analyzing
linear and nonlinear signals in many �elds such as
systems identi�cation, condition monitoring of rotating
machinery, atmospheric changes, among others [59,60]
because the monitored signals exhibit nonstationary
behaviors. Because of this advantage, MI has been
employed for health monitoring of civil structures since
they present nonlinear behaviors. Trenda�lova et
al. [61] compared the MI and Cross Correlation (CC)
methods for the damage detection of a simple 2 degree-
of-freedom mechanical system, where nonlinear sti�-
ness was suggested as damage. The authors concluded
that the MI method could detect linear and nonlinear

signal dependence, but the CC method failed to detect
the nonlinear behaviors encountered in the signals.
Sudu-Ambegedara et al. [62] used the MI method for
detecting loosened bolts in the Waddington bridge
located in New York State Route 345 over Big Sucker
Brook in the town of Waddington, New York, subjected
to dynamic vibrations produced by a truck (Figure 5).
The results showed that the proposed method required
comparison with a baseline case, a healthy structure;
however, in certain cases, it is not possible to have a
baseline case to determinate if the structure is healthy,
especially in old structures.

Recently, Perez-Ramirez et al. [25] presented a
recurrent neural network model [63] with Bayesian
training [64,65] and MI for response prediction of large
building structures. Babajanian-Bisheh et al. [66] in-
troduced the MI method for selecting the most discrim-
inate features estimated in time, frequency, and time-
frequency domains for evaluating the health condition
of the Tianjin Yonghe Bridge, a cable-stayed bridge,
located in China subjected to ambient vibrations. The
results demonstrated that the MI method was a good
tool for selecting adequate features in order to evaluate
the health condition of the bridge as it reduced the false
alarm.

2.5. Mahalanobis distance
Mahalanobis Distance (MD) method is a statistical
index capable of measuring how similar a set of features
or signals are to a known set of conditions by calcu-
lating the covariance among them [67]. MD method
can measure the similarity/dissimilarity between two
signals. It has been applied for analyzing data obtained
in rotating machines [68], �nancial problems [69],
classi�cation [70], fault detection [71], and saliency
prediction [72], among other applications.

A few applications of MD method have been
reported for damage detection in recent years. Mosavi
et al. [73] combined vector autoregressive models with
MD method for identifying and locating damage in
an idealized steel bridge girder subjected to ambient
vibrations. The MD index of the coe�cients of the
vector autoregressive is employed for assessing the
health condition of the simulated bridge. Zhou et

Figure 5. (a) the Waddington Bridge and (b) sensors location (adapted from Sudu-Ambegedara et al. [62]).
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al. [74] examined the MD method for detecting crack
in a beam subjected to dynamic excitation produced
by a shaker. The authors reported the method could
detect and quantify the severity of damage, but cannot
estimate the damage location. George et al. [75] tested
the MD index for detecting damage in a numerical
simulation of a ten-story shear frame subjected to
dynamic vibrations.

3. New nonlinear measurements

In this section, recently-developed nonlinear measure-
ments with potential application in SHM are reviewed.

3.1. Sevcik fractal dimension
Proposed by Sevcik [76], Sevcik's fractal dimension is
the latest in the string of FD approaches for measuring
the complexity and randomness of time series signals.
It provides good robustness to noise in noisy signals
and is easy to implement. It has provided good
results in the analysis of communication signals [77]
and vibration signals [78]. It has not been used in any
structural engineering applications.

3.2. Visibility graph
Visibility Graph (VG) algorithm was introduced by
Lacasa et al. [79] for mapping a time series signal
to a graph to study its complexity and fractality.
VG has been used as a diagnostic EEG marker
for the Alzheimer's disease [80], for classi�cation of
epileptiform in EEG signals obtained from epileptic
patients [81], and most recently for analysis of speech
evoked auditory brainstem response in persistent devel-
opmental stuttering [82]; however, its robustness and
performance for estimating the complexity of a time
series signal under noisy signals can be compromised.
Ahmadlou et al. [83] introduced the Power of Scale-
freeness of VG (PSVG) to improve the accuracy and
robustness of VG to noise for measuring the fractality
of a time series signal. Ahmadlou and Adeli [84]
presented Visibility Graph Similarity (VGS) as a new
measure of generalized synchronization in coupled dy-
namic systems. Applications of the improved PSVG
and VGS algorithms for health monitoring of large
structures are worth exploring.

3.3. Dispersion entropy
Entropy methods such as sample entropy and permu-
tation entropy are susceptible to error in noisy signals,
and they consider only the order of the magnitude
values. As a result, some information regarding the
magnitudes may be inadvertently discarded. For
lessening these problems, Rostaghi and Azami [85]
introduced a new entropy method, named dispersion
entropy, a nonlinear index capable of measuring the
complexity and uncertainties encountered in a time
signal, which considers simultaneously the changes in

frequency and amplitude of the time series signal.
It has been used in mechanical [86] and biomedical
engineering [87] applications. Its application in SHM
is worth exploring.

4. Conclusions

This paper presented a review of the main nonlinear
measurements used in SHM. It also reviewed three
recently-developed nonlinear indexes as potential ap-
plications in SHM. Additional research is required to
select measurements or features for SHM schema to be
realized for large real-life structures such as bridge and
high-rise building structures.
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