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Abstract. Classical methods such as limit equilibrium or limit analysis, dealing with
the stability analysis of open cuts and trenches and calculation of critical excavation
depth for them, do not fully satisfy the theoretical requirements for stability problems
leading to di�erent solutions depending on the adopted method. It is now appreciated that
geomaterials exhibit considerable heterogeneity, caused by the lithological and inherent
variation, which cannot be fully covered by simple methods. This paper highlights
the uncertainty embedded in critical excavation depth calculation, arising from spatial
variability of shear strength parameters, using Random Finite Di�erence Method (RFDM)
and Random Limit Equilibrium Method (RLEM). In the present study, the lognormally
distributed undrained shear strength is considered spatially correlated throughout the
domain. Surface cohesion value and the shear strength density were introduced as the
deterministic parameters along with the coe�cient of variation of undrained shear strength
and its scale of 
uctuation as stochastic parameters; these parameters were studied
to see their e�ect on uncertainty in critical excavation depth estimation. The results
clearly demonstrated the uncertainty in critical excavation depth arising from the inherent
variability of shear strength parameters using the RFDM results; however, RLEM did not
prove to re
ect such uncertainty e�ciently due to local averaging in prescribed failure
surfaces.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Slope and trench stability analysis is a branch of
geotechnical engineering that is highly adaptable to
probabilistic treatment and has received considerable
attention in the literature. Almost all practical prob-
abilistic methods have, at some points, been applied
to slope stability problems as a general earth struc-
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ture analysis. A deterministic slope stability anal-
ysis method such as the Limit Equilibrium Method
(LEM), Limit Analysis Method (LAM), or Finite El-
ement/Di�erence Method (FEM/FDM) is needed as
the basis of a probabilistic slope stability analysis. The
choice of a deterministic slope stability analysis method
also determines how spatial variability can be applied.

Since four decades ago, many probabilistic meth-
ods have been contrived for analysis of the stability
of earth structures. These methods can be grouped
into four categories: analytical methods, approximate
methods, Monte-Carlo simulation, and �nite element
method. In analytical methods, the probability density
functions of input variables are expressed mathemati-
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cally. They are then integrated analytically into the
adopted slope stability analysis model to derive a
mathematical expression for the density function of the
factor of safety. Limited attempts have been made to
utilize analytical methods [1-3]. The jointly distributed
random variables method belongs to this category.

Most approximate methods are modi�ed versions
of two methods, i.e. First Order Second Moment
(FOSM) Method [4] and Point Estimate Method [5].
Both methods require knowing the mean and variance
of all input variables as well as the performance
function de�ning safety factor (e.g., Bishop's equation).
Some research on slope stability by the FOSM method
is reported (e.g., [6]). Gri�ths et al. [7] used random
�eld theory in probabilistic analysis of in�nite slopes
and concluded that the �rst order methods may not
properly account for spatial variability which can lead
to unconservative estimates of the probability of slope
failure. Some attempts have also been made to apply
the Point Estimate Method [8-9].

A Monte-Carlo simulation is a procedure which
seeks to simulate stochastic processes by random selec-
tion of input values to an analysis model in proportion
to their joint probability density function. It is a
powerful technique that is applicable to both linear and
non-linear problems, but requires a large number of
simulations to provide a reliable distribution of the re-
sponses. Many attempts have been made to analyze the
stability of slopes using Monte-Carlo simulation [10-
15].

The random �nite element method combines
elasto-plastic �nite element analysis with random �elds
generated using the local average subdivision method.
Several new slope stability analyses have been done
using this method and the stochastic �nite element
method [16-21].

The current study investigates the statistical and
probability issues involved in stability of vertical un-
supported cut slopes in undrained condition employing
two distinctively di�erent reliability analysis methods,
namely, Random Limit Equilibrium Method (RLEM)
and random �nite di�erence method (RFDM). Al-
though necessity of support system for vertical cuts
cannot be neglected, it should be clari�ed that this
study does not consider any retaining system for
vertical cuts. The aim of the study is only to show
the e�ect of variability in shear strength parameters on
the critical excavation depth estimation of unsupported
vertical cuts.

2. Spatial variability and reliability

The spatial variability of geotechnical pro�les can be
quanti�ed by using several statistical parameters, such
as the central trend (or the mean), the coe�cient of
variation, the correlation length, and the anisotropy

Figure 1. Inherent soil variability along with di�erent
components [22].

among others (e.g., [22-23]). For example, the spatial
variation in geotechnical property, �, with depth z can
be decomposed into a trend function t and a 
uctuating
component w:

�(z) = t(z) + w(z): (1)

Figure 1 schematically represents di�erent components
of inherent variability. Deterministic trend can be
estimated by a reasonable amount of in situ soil data
(using for example least-square �t method), where
the 
uctuating component can be characterized as
a random variable having zero mean and non-zero
variance.

The standard deviation, �(z), normalized by the
local mean geotechnical property, �(z), obtained from
the trend function provides a useful dimensionless ratio
known as the Coe�cient of Variation (CoV):

CoV(z) =
�(z)
�(z)

: (2)

The generic range of CoVs for soil properties is sum-
marized in Table 1. More comprehensive discussion
on the CoV ranges and other statistical parameters
for geotechnical properties are provided in Phoon and
Kulhawy [24].

The scale of geotechnical property 
uctuation is
another important spatial characteristic of the ground.
It indicates the distance scales within the material
properties that show strong spatial correlations. The
scale of 
uctuations in geotechnical random �elds can
be simulated by using correlation lengths in covariance
functions. The correlation length, or autocorrelation
length, is the distance at which spatial autocorrelations

Table 1. Representative Coe�cients of Variation (CoV)
for geotechnical parameters [27].

Property CoV (%)

Dry unit weight (
d) 2-13
Undrained shear strength (Cu) 6-80
E�ective friction angle ('0) 7-20
Elastic modulus (Es) 15-70
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decay by 1=e, which is about 37% (e.g., [25]). The scale
of 
uctuations is usually between 1.4 and 2.0 times the
correlation length for exponential, squared exponential,
and spherical autocorrelation functions (e.g., [26]). The
Markovian spatial correlation function is commonly
used in geotechnical engineering to simulate the soil
heterogeneity (e.g., [27]).

3. Random Limit Equilibrium Method
(RLEM)

Although most traditional limit equilibrium methods
do not consider spatial variability, some investigators
have combined LEM with random �eld theory (e.g.,
[28-37]). However, the inherent nature of LEM is
that it leads to a critical failure surface which in 2-D
analysis appears as a straight line or curvilinear shape
that could be noncircular. The in
uence of random
�eld is only taken into account along a prescribed line
or curvilinear path. Table 2 provides a list of 2-D
slope stability reliability studies found in the literature
utilizing LEM and random �eld theory in some cases.

The objective of this study is to show the e�ect
of uncertainty embedded in geotechnical parameters
(undrained cohesion in this study) on critical excava-
tion depth estimation. It is quite impossible to �nd an
analytical solution for critical excavation depth (Hcr)
while considering the log-spiral slip surface, and it
demands fully-numerical methods to render a solution;
therefore, a planar slip surface is de�ned in order
to obtain critical excavation depth in a speci�c soil
condition.

Denoting the speci�c weight of the soil body by 
,
cohesion value at the ground surface by Cu0, and the
shear strength rate or density value by �, according
to the Limit Analysis Method (LAM), the equilibrium

satisfaction leads to a general solution for the factor of
safety of unsupported vertical cuts adopting a planar
slip surface in undrained condition as:

F:S: =
�

�Cu
H(
 � ��)

�
: (3)

� and � values in Eq. (3) vary between 2 to 4 and 1
to 2, respectively, depending on the adoption of lower
or upper bound schemes. As will be discussed later, �
and � values can be precisely approximated by the fact
that the value obtained by Eq. (3) should converge to
that obtained by strength reduction method.

Practically, the geotechnical engineers use the
planar or more advanced log-spiral slip surface to
investigate the factor of safety of a vertical trench and
consequently its critical excavation depth. In LEM
analyses, it is not required to consider realizations in
the whole body of the problem and thus the very time-
consuming factor of safety calculation process for each
realization is averted; also, it seems very simple to take
account of just the slip surface over which realization
can be done. To do this, it is �rst needed to identify the
slip surface and then the slip surface can be discretized
and divided into elements having correlated cohesion
values. Two approaches are available here: the planar
slip surface and the log-spiral one. In the undrained
condition for the planar slip surface, slip angle would
be �=4 with respect to the vertical plane. As stated
in literature [43], the slip surface is not planar; hence,
for the undrained condition, the log-spiral slip surface
formula is also employed, which would be transformed
to the circular one for undrained condition.

Before conducting any stochastic analysis, model
geometry was adopted corresponding to unit safety
factor for each set of geotechnical parameters. Al-
though the retaining structures are mandatory to

Table 2. Slope stability reliability studies combining LEM with random �eld theory in some cases.

Deterministic method Probabilistic method Reference

Level-crossing method First Order Second Moment (FOSM) Catalan and Cornell [38]
Bishop First Order Second Moment (FOSM) Alonso [39]
Morgenstern-Price First Order Reliability Method (FORM) Li and Lumb [28]
Morgenstern-Price First Order Reliability Method (FORM) Mostyn and Soo [29]
Bishop Monte-Carlo Simulation (MCS) El-Ramly et al. [32]
Spence First Order Reliability Method (FORM) Low [33]
Bishop First Order Second Moment (FOSM) Sivakumar et al. [34]
LEM Monte-Carlo Simulation (MCS) Cho [36]
Spencer First Order Reliability Method (FORM) Low et al. [35]
Chen and Morgenstern Monte-Carlo Simulation (MCS) Hong and Roh [6]
LEM Importance sampling technique Ching et al. [40]
LEM Monte-Carlo Simulation (MCS) Ching et al. [41]
LEM Kriging-based response surface method Zhang J. et al. [42]
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be utilized in such cases, the aim of this study is
only to show the e�ect of spatial variability of shear
strength parameters on stability of vertical cuts when
a small variability probably leads to more probability
of failure in comparison with the classic deterministic
cases. Uncertainty was applied to the undrained shear
strength so as to assess the reliability of calculations by
rendering a safety factor for each stochastic realization.
For this reason, two approaches were adopted. The
�rst approach considers planar slip surface and divides
it into 1000 elements. The second approach considers
circular slip surface and seeks the most critical circular
slip surface as traditionally adopted in slope stability
analysis literature. In the �rst approach, for the planar
slip surface, the plane of slip is divided into 1000
elements and an auto-correlated cohesion �eld using
random �eld theory is generated to assign the related
cohesion to each element. In the second approach, a
mesh grid has been generated while each grid point
represents the center of a circular slip surface with
a speci�ed radius, as shown in Figure 2. Several
slip surfaces can be found; however, the best of them
corresponds to the minimum deterministic safety factor
sought based on a simple optimization scheme found in
conventional slope stability analyses. After selection of
the critical slip surface, as schematically illustrated in
Figure 2, 1000 elements can be created along it and
realizations can be performed to set a combination of
auto-correlated cohesion values afterwards.

Using Bishop's formula to calculate the factor of
safety of a circular slip surface and assuming that each
slice has its own cohesion value obtained by random
�eld theory, the safety factor can be calculated by:

Safety factor =
Pn
i=1 CRealized:bi= cos �iPn

i=1 wi: sin �i
; (4)

in which bi is the horizontal width of each slice (project
length of each element on the horizon), �i is the
inclination angle for each slice, and wi is the weight
of the respective slice. CRealized can be obtained by

Figure 2. Finding the best estimated circular slip surface
based on Bishop's formulation.

Figure 3. Best �tted curve on the result of RLEM with
Cu0 = 50 kPa, � = 1:0 kPa/m, CoVCu = 50%, and
� = 24 m: (a) Planar slip surface; and (b) circular slip
surface.

the result of Monte-Carlo realizations as discussed
earlier. For both planar and circular slip surface, 1000
realizations have been performed. It is observed from
Figure 3 that the results of safety factor calculation
for both failure slip assumptions follow a lognormal
Probability Distribution Function (PDF).

4. Random Finite Di�erence Method (RFDM)

In recent years, a more rigorous method of probabilis-
tic geotechnical analysis has been pursued in which
nonlinear �nite element/di�erence methods are com-
bined with random �eld generation techniques (e.g.,
[16-17]). This method, called the \Random Finite
Element/Di�erence Method" (RFEM/RFDM), fully
accounts for spatial correlation and averaging and is
also a powerful slope stability analysis tool that does
not require a priori assumptions related to the shape
or location of the failure mechanism. To calculate
the factor of safety, the C-Phi reduction approach
was employed in which the strength characteristics of
soil are reduced to where a failure occurs. The non-
linear �nite di�erence program FLAC [44], which takes
the mechanical behavior of excavations into account
and is able to calculate the factor of safety of slopes,
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Figure 4. Con�guration of the model utilized in the
analysis.

was utilized to analyze the stability of unsupported
trenches. Typical geometry of the model analyzed in
this study is shown in Figure 4.

The �nite di�erence mesh has been examined to
eliminate the in
uence of size and boundary e�ect on
the accuracy of results. Analyses with deterministic
values of undrained shear strength increasing with
depth were �rst performed to see the accuracy of
the proposed method and compare it with the exist-
ing approximate solutions. The undrained Young's
modulus is de�ned as 500 Cu increasing with depth,
accordingly. In the C-Phi reduction-based approach,
the step by step excavation proceeds until a safety
factor of 1.0 is approached. Based on this method,
the deterministic critical excavation depth for di�erent
surface cohesion values is seen to be higher than
the lower bound solution values and lower than the
upper bound solution values as shown in Figure 5.
The calculated deterministic critical excavation depth
corresponding to zero coe�cient of variation is then
employed in subsequent stochastic analyses so as to
apply uncertainty by introducing stochastic variation
to the deterministic trend. The objective of this
study is to show the e�ect of uncertainty embedded
in geotechnical parameters (undrained cohesion in
this study) on critical excavation depth estimation.

Figure 5. The critical excavation depth calculated from
deterministic strength reduction analysis for di�erent
surface cohesion values with � = 1:0 kPa/m.

Obviously, the starting point was chosen based on a
deterministic C-Phi reduction analysis assuming \zero"
coe�cient of variation corresponding to a \unit" safety
factor. Spatial variability of shear strength parameters
was then applied to the domain under study to see
its e�ect on the reliability of deterministic analysis
schemes. Even a small variation in shear strength
(CoV = 10%) might lead to a great probability of
failure, which is expected while the deterministic factor
of safety is taken as \unity". The aim of the study is
only to compare the probabilities of failure (Pf ) corre-
sponding to di�erent Coe�cients of Variation (CoVs).
Therefore, the absolute values of Pf are not of value.
Although retaining structures like cantilver retaining
walls are mandatory to utilize in such cases, the study
emphasizes the necessity of such provisions more than
the deterministic cases when a small variability will
lead to more probability of failure in comparison with
the classic deterministic cases.

In the probabilistic studies, the stochastic vari-
ation of undrained shear strength is modeled by
adopting a lognormal distribution with the aid of the
most recognized representative statistical parameters
including the mean value, the standard deviation, and
the scale of 
uctuation. There are several distributions
like normal, lognormal, beta, etc. used in practice.
However, the use of lognormal distribution lies in the
fact that shear strength is strictly non-negative and in
lognormal distribution, there is no possibility of the
existence of negative values. For a detailed description
of proper distributions in geomaterials, Lee et al. [45]
and Harr [46] can be conferred. In practice, it is
more common to use the dimensionless coe�cient of
variation instead of standard deviation, which can be
de�ned as the standard deviation divided by the mean.
Typical values for the CoV of the undrained shear
strength have been suggested by several investigators
based on in situ or laboratory tests as pointed out
earlier. The third important feature of a random
�eld is its correlation structure. It is obvious that if
two samples are close together, they will usually be
more correlated than the case where they are widely
separated. It is common in literature to use a single
exponential form of correlation function, known as
Markovain spatial-correlation function:

� = e(�
2j�j
� ); (5)

in which � is the scale of 
uctuation, which is twice the
correlation length for Markovian correlation function
de�nition, and � is the separation or lag distance. The
correlation length is the parameter which describes the
degree of correlation of a soil property and is de�ned
as the distance beyond which the random values will
be no more correlated at all. It should be noted that
in the case of a small correlation length, random �eld
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tends to be rough, and, oppositely, when it is large,
random �eld tends to be smooth [47].

If the undrained shear strength, cu, is considered
a random variable and assumed to be lognormally
distributed throughout the domain of study, the point
statistics parameters, i.e. mean, �; standard deviation,
�; and the most representative spatial statistics pa-
rameter, i.e. scale of 
uctuation �, are used to realize a
log-normally distributed random �eld given by:

cu(~x) = exp
�
L:"ln cu(~x) + �ln cu(~x)

�
+ �z; (6)

where cu(~x) is the undrained shear strength assigned
to the zones, ~x is the spatial position at which cu is
desired, "ln cu(~x) is an independent normally distributed
random �eld with zero mean and unit variance, �ln cu is
the mean of the logarithm of cu, � is the shear strength
rate or density value as de�ned earlier, and L is a lower-
triangular matrix computed from decomposition of the
covariance matrix.

A = LLT ; (7)

where A is the covariance between the logarithms of the
undrained shear strength values at any two points. In
this study, lnCu values are assumed to be characterized
by an exponential Markovian covariance function given
by [48]:

A = �2
ln cu � e(�

2j�j
� ); (8)

where �lnCu is the standard deviation of the logarithm
of cu, and � is the lag distance, as mentioned before,
considered to be the center to center distance of the
consecutive zones.

The parameters �lnCu and �lnCu are obtained
from the speci�ed mean and variance of undrained co-
hesion, using log-normal distribution transformations
given by:

�ln cu = ln (�cu)� 1
2
�2

ln cu ; (9)

�2
ln cu = ln

�
1 + (�cu=�cu)2

�
= ln

�
1 + CoV2

cu

�
: (10)

Once the covariance matrix is established, it is de-
composed into lower and upper triangular matrices
(Eq. (7)) using Cholesky decomposition technique.
Then, realizations of lognormally distributed soil prop-
erties at each zone center are obtained by the trans-
formation presented in Eq. (6) for a speci�ed mean,
standard deviation, and scale of 
uctuation of the given
soil property (cu).

Figure 6 demonstrates a 
owchart on how the
calculation proceeds and the step by step procedure
for safety factor prediction is demonstrated. Similar
procedure was adopted for approximate methods (LEM
or LAM) with the sole di�erence on the method of
safety factor calculation which is conceptually di�erent
from FDM. Figure 7 illustrates a sample realization

Figure 6. Flowchart for the process of safety factor analysis using RFDM.
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Figure 7. A typical realization of undrained shear
strength with Cu0 = 50 kPa, � = 1:0 kPa/m,
CoVCu = 10%, and � = 200 m.

Figure 8. Calculated and �tted log-normal cumulative
probability of the factor of safety for Cu0 = 50 kPa,
� = 1:0 kPa/m, � = 24 m, and CoVCu = 70%.

of the undrained shear strength with the assumed
stochastic properties.

A typical cumulative probability of the factor of
safety, as estimated from 1000 realizations, is shown
in Figure 8 for Cu0 = 50 kPa and � = 1 kPa/m.
A lognormal distribution was adopted in this study
with the requirement that safety factor is non-negative.
Superimposed on the cumulative probability is a �tted
lognormal function with parameters given by mFS =
0:817, �FS = 0:0844. At least visually, the lognormal
cumulative graph appears perfectly �tted.

5. Results and discussion

In RFDM analyses, the Poisson's ratio (v) is assumed
to be constant while the undrained shear strength
(Cu) and the Young's modulus (Eu) are randomized
throughout the domain. Forty sets of Monte-Carlo
simulations were performed to investigate the e�ects
of the surface cohesion, Cu0, and undrained shear
strength density, �, as deterministic parameters and
coe�cient of variation of undrained shear strength,
CoVCu, and its scale of 
uctuation, �, representing
stochastic parameters on reliability of an open cut exca-

Table 3. Di�erent parameter sets adopted in this study.

Parameter Considered values

Cu0 (kPa) 50
� (kPa/m) 1, 2
COVCu (%) 10, 30, 50, 70, 90

� (m) 0.2, 8, 24, 200

vation. The above-mentioned parameters are variable
through di�erent sets of analyses according to Table 3.

Spatial correlation lengths in both the horizontal
and vertical directions were held the same implying
isotropic correlation structure. For the given problem
con�guration and element size, � = 0:2 m gives no
appreciable correlation for the parameter under study
and results in ragged property �eld. On the contrary,
the length of 200 m represents the strict correlation
between zones. For each set of adopted Cu0, �, COVCu,
and �, Monte-Carlo simulations have been conducted
involving 1000 realizations of the undrained shear
strength random �eld and the subsequent numerical
progress of calculating the factor of safety.

It is reasonable to estimate the probability of
failure based on lognormal probability distribution
according to the goodness-of-�t test. For example, in
Figure 8, the probability of factor of safety falling less
than unity gives:

Pf =P [FS < 1]='Longnormal

�
1� �FS

�FS

�
�= 0:7758:

(11)

Another approach to conclude about the probability of
failure of the system is to estimate the number of cases
corresponding to the factor of safety less than unity and
then to estimate the probability of failure from Eq. (14)
which renders similar results with good precision:

Pf =
Nf
N

= 0:7620; (12)

where Nf is the number of failed cases and N is
the total number of cases. This again con�rms the
suitability of lognormal distribution function for the
factor of safety data. The results show that the
di�erence between two methods is less than 2%.

The probability of failure shall mathematically
increase with the coe�cient of variation of cohesion
values, as con�rmed by Figure 9. This can be explained
by the essence of strength reduction method in which
some weak points may cause instability to occur.
The number of weak points soars with the increase
in the coe�cient of variation of cohesion. Figure 9
shows the probability of failure (probability of the
factor of safety falling below the unity) for di�erent
strength densities computed by RFDM analyses. The
rate of increase in the probability of failure with
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Figure 9. The probability of failure computed by RFDM
analyses versus the coe�cient of variation of undrained
shear strength for Cu0 = 50 kPa: (a) � = 1:0 kPa/m; and
(b) � = 2:0 kPa/m.

CoVcu variation however decreases when increasing the
strength density (�). This is clear from the comparison
of di�erent parts in Figure 9 and it is mainly due
to the fact that when the undrained shear strength
density (�) increases, the deterministic portion of the
cohesion �eld gets more highlighted than the stochastic
component and so the e�ect of stochastic variation
becomes less important. This is endorsed by the
fact that the coe�cient of variation is de�ned based
on the surface cohesion value, Cu0, not the whole
deterministic trend, and indeed increasing the strength
density translates into decreased coe�cient of variation
with depth.

To investigate the e�ect of the scale of 
uctuation,
�lnCu , on the safety factor statistics, �lnCu is varied
from 0.2 (i.e., very much smaller than the soil model
size) to 200 (i.e., very much bigger than the soil
model size). In the limit, smaller values of �lnCu
than the element size result in a set of elements which
are largely independent (increasingly independent as
�lnCu decreases) and the undrained shear strength �eld
becomes a white noise, with independent Cu values at
any two distinct points. In such cases, the undrained
shear strength �eld becomes in�nitely \rough" and any

point at which the soil is weak will be surrounded
by points where the soil is strong. A path through
the weakest points in the soil might have very low
average strength, but at the same time, it will become
in�nitely tortuous and thus in�nitely long. If the failure
criterion was to seek a Critical Slip Line (CSL) bearing
the minimum shear strength or contouring plastic
points, the above-mentioned e�ects, combined with
shear interlocking dictated by stress �eld, would imply
that the weakest path should return to the traditional
log-spiral (circular in undrained state) as explained by
Fenton and Gri�ths [49]. However, the routine safety
factor calculation scheme adopted in FLAC is the so-
called strength reduction method which seeks to �nd
nonconvergent point(s) being an indicator of collapse.
When the algorithm cannot converge within a user-
speci�ed maximum number of iterations, together with
a dramatic increase in nodal displacements within the
mesh, the implication is that no stress distribution can
be found that is able to simultaneously satisfy both the
failure criterion and global equilibrium, and failure is
said to have occurred. The aforesaid failure criterion
implies that weak point(s) formation may lead to the
early nonconvergence and the failure state in other
words. Therefore, the scale of 
uctuation has a serious
e�ect on the factor of safety as any decrease in the
scale of 
uctuation leads to a reduction in safety factor
or an increase in probability of failure, as appears from
Figure 9.

As �lnCu ! 1, the stochastic component of
undrained shear strength �eld becomes the same ev-
erywhere. In this case, the factors of safety statistics
are expected to approach those obtained by using a
linearly varying lognormally distributed variable, Cu,
to model the soil, Cu(x) = C+�z. That is because the
safety factor, FS, of a vertical trench in a soil layer with
linear (but random) undrained shear strength, Cu, is
given by:

FS =
FSdet
�cu

cu; (13)

where FSdet is the \deterministic" safety factor when
Cu = Cu0 + �z, and which is obtained from a single
�nite di�erence analysis (or any other appropriate
approximate calculation); then, as �lnCu ! 1, the
safety factor assumes a lognormal distribution with
parameters:

�ln FS =ln FSdet+ln�cu��ln�cu =�1
2
�2

ln cu ; (14)

�ln FS = �ln cu ; (15)

where FSdet is taken as unity in Eq. (15), as discussed
earlier, and the relationships for the parameters of
transformed lnCu Gaussian random �eld are employed.
The probability of failure can be calculated assuming
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a lognormal distribution for the safety factor.

Pf = '
�
��ln FS

�ln FS

�
= '

�
1
2
�ln cu

�
; (16)

Figure 9 suggests that the probability of failure of the
vertical cut with largely correlated undrained shear
strength �eld can be approximately estimated by a
straight line of the form suggested by Eq. (16). It can
be seen that the agreement is fairly acceptable. The
small deviation arises from the fact that the predicted
probability of failure computed from Eq. (18) is based
on a LEM assumption (Eq. (15)) which takes a planar
slip surface into account for a model bearing linearly
depth-varying undrained shear strength property, and
the FDM solution which adopts the strength reduction
scheme to seek a failure point is conceptually di�erent
and thus a deviation might be expected.

Another important stochastic property of interest
for the factor of safety is the coe�cient of variation of
the safety factor. Figure 10 illustrates the variation of
the safety factor against the CoV of undrained shear
strength. It is noted that introducing variation in
cohesion �eld causes variability of the results and the
CoVFS increases with increase in the COVCu. However,
this behavior becomes less eminent when increasing the
strength density from � = 1 kPa/m to � = 2 kPa/m.

Figure 10. Variability of the factor of safety versus the
coe�cient of variation of undrained shear strength
computed by RFDM analyses for Cu0 = 50 kPa: (a)
� = 1:0 kPa/m; and (b) � = 2:0 kPa/m.

This is clearly seen from comparing di�erent parts
of Figure 10. It is again explained by resorting to
the fact that the increase in strength density leads
the deterministic component of cohesion to have more
important role than the stochastic component, as
discussed earlier.

The RFDM is more time-intensive than the
RLEM analyses which seek failure only along a pre-
scribed and plausible failure surface. As RLEM anal-
yses take place along a prescribed surface, one may
look into the e�ects in a di�erent view. The a�ecting
parameters, namely the coe�cient of variation and
the scale of 
uctuation of undrained shear strength,
are studied while assuming a planar or circular slip
surface. Figure 11 demonstrates the variation of the
probability of failure of slope as de�ned earlier with
the variability of undrained shear strength for two
di�erent strength densities. All scales of 
uctuation
are drawn in the plot and individually labeled. It is
implied in these plots that the probability of failure of
the vertical cut is not largely dependent on the scale
of 
uctuation, �lnCu . This is as expected since the
scale of 
uctuation does not a�ect the global average
of a normally distributed process along a prede�ned
slip surface. The shear resistance along a plausible

Figure 11. The probability of failure computed by RLEM
analyses versus the coe�cient of variation of undrained
shear strength assuming a circular slip surface for
Cu0 = 50 kPa: (a) � = 1:0 kPa/m; and (b) � = 2:0 kPa/m.
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and prede�ned slip surface is computed by global
integration of the undrained shear strength along a
circular surface and it is expected not to be a�ected
by the correlation structure of the random process.
Figure 11 suggests that the probability of failure of
vertical cut in an undrained condition computed by
RLEM analyses can be approximately estimated by a
straight line de�ned by Eq. (16).

6. Conclusion

The main purpose of the study was to evaluate the
reliability of the calculated critical excavation depth
considering spatially variable random shear strength
�eld. The factor of safety of excavation in a spatially
variable layer of �nite depth overlying bedrock is well
represented by a lognormal distribution with param-
eters �ln FS and �ln FS, while the a�ecting strength
parameter (`Cu' in this study) is also assumed to be
lognormally distributed.

Random Finite Di�erence Methods (RFDM)
coupled with strength reduction method have been
adopted to calculate the factor of safety in a spatially
correlated random �eld. Two deterministic param-
eters, i.e. surface cohesion (Cu0) and the undrained
shear strength rate (�), along with two stochastic
parameters, i.e. the coe�cient of variation of shear
strength (COV ) and its scale of 
uctuation (�), have
been considered to evaluate the e�ect of the spatial
variation of the input parameter on the uncertainty em-
bedded in calculation of the critical excavation depth.

Results show that increasing the coe�cient of
variation of undrained cohesion leads to more probabil-
ity of failure or uncertainty in other words. It is seen
that even 10% variation in undrained shear strength
may lead to unsatisfactory performance. Furthermore,
it is observed that the more the undrained shear
strength varies, the more scattering in safety factor
estimation is expected. Scale of 
uctuation of the
undrained shear strength, on the other hand, shows
a di�erent e�ect as it causes the probability of failure
to rise when decreasing the correlation between shear
strength data. The explanation of this observation is
inspired by the fact that in low values of the scale of

uctuation, zones become highly independent and a so-
called \Ragged" �eld forms. This causes an increase in
the number of weak points in the whole body, which
in e�ect induces a reduction in the factor of safety due
to the essence of strength reduction method. Strength
density of the cohesion value, �, on the other side of the
spectrum, has a decreasing e�ect on the uncertainty of
results owing to the fact that the coe�cient of variation
(COV ) has been de�ned only based on the surface
cohesion value (Cu0), and the increase in shear strength
rate implies a reduction in coe�cient of variation of
undrained shear strength.

Random Limit Equilibrium Method (RLEM) was
also adopted by choosing a planar and circular criti-
cal slip surface using Bishop's formula to investigate
the e�ect of stochastic variation of undrained shear
strength properties. The slip surface was then dis-
cretized into 1000 elements and an auto-correlated
cohesion �eld was generated afterwards. The factor
of safety for each realization was calculated using
Bishop's formula. The results consistently demon-
strated that the RLEM might not properly re
ect
the uncertainty in critical excavation depth estimation
if the failure surface remained unchanged through
realizations. The calculation of the safety factor in such
simple and approximate methods was based mainly
on the assumption of a plausible and predetermined
slip surface. The shear resistance along the assumed
failure surface was calculated by integration of the
shear strength increments along the planar or circular
surface and it was assumed not to be a�ected by
the correlation structure of the random �eld and has
vanishing variance for �nite �lnCu . An important point
is that in this study, RLEM �rst assumed the most
probable slip surface corresponding to the deterministic
condition and then applied uncertainty and variability
of parameters across the same surface and did not
change the surface location. However, it was possible
to seek surface variation through realizations; but, if
we are to investigate the heterogeneity e�ect by RLEM
when considering critical failure mechanism variation,
which is time-intensive, it is better to resort to RFDM
or RFEM which render the most probable failure
surface that passes through the weakest points and do
not need any a priori assumptions regarding the shape
and mechanism of the failure. Also, the potential pitfall
of the LEM, which is the inability to account for the
stress-strain behavior of the soil, is overcome.
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