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Abstract. This study presents a new hybrid intelligent system with ensemble learning
for stock selection using the fundamental information of companies. The system uses the
selected �nancial ratios of each company as input variables and ranks the candidate stocks.
Due to the di�erent characteristics of the companies from di�erent activity sectors, modular
system for stock selection may show a better performance than an individual system.
Here, a hybrid soft clustering algorithm was proposed to eliminate the noise and partition
the input dataset into more homogeneous overlapped subsets. The proposed clustering
algorithm bene�ts from the strengths of the fuzzy, possibilistic and rough clustering to
develop a modular system. An individual Takagi-Sugeno-Kang (TSK) system was extracted
from each subset using an arti�cial neural network and genetic algorithm. To integrate the
outputs of the individual TSK systems, a new weighted ensemble strategy was proposed.
The performance of the proposed system was evaluated among 150 companies listed on
Tehran Stock Exchange (TSE) regarding information coe�cient, classi�cation accuracy,
and appreciation in stock price. The experimental results show that the proposed modular
TSK system signi�cantly outperforms the single TSK system as well as other ensemble
models using di�erent decomposition and combination strategies.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

The problem of fund allocation involves two stages:
asset selection and asset allocation. In the �rst
stage, the objective is to select some attractive and
valuable assets as the potential candidates for portfolio
composition. In the second stage, the objective is
to determine portfolio weights of the selected assets
to achieve a series of risk-return considerations [1].
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Similarly, in stock portfolio management, one should
select a universe of stocks before running a stock port-
folio optimization model to determine optimal portfolio
weights [2]. Those selected stocks have the best chances
of capital appreciation in a long- or intermediate-term
horizon.

There are two approaches widely used by aca-
demicians and market professionals for decision-making
in stock exchange: technical analysis and fundamen-
tal analysis. The fundamental analysis involves a
detailed study of a company's �nancial status using
the �nancial ratios and other fundamentals of the
company to predict the future stock price movements.
In the fundamental analysis, the main concern is
the company's �nancial health. Traders often use
this approach to predict the stock price over a long-
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term investment horizon. On the other hand, the
technical analysis uses the data related to the past
behavior of a stock price and volume data series to
forecast the future. Traders use this approach in short-
term investment horizons. They deal with the stock
timing rather than the company's �nancial health [3{
7]. Since the fundamentals have a stronger relationship
with the price movement in the longer horizons, the
stock selection stage should be designed based on the
fundamental analysis.

This study tries to develop a stock selection
system based on fundamental analysis. The system
uses the selected �nancial ratios and fundamental data
of each company as the input variables and ranks
the candidate stocks based on the fundamental data.
However, the future performance of the companies may
follow di�erent patterns due to di�erent fundamental
characteristics as well as activity sectors of the com-
panies [8,9]. For example, the companies with high
inventory turnover usually have a lower current ratio
than the companies in other activity sectors. A low
current ratio is not always an indicator of poor liquidity
performance and should be compared with the current
ratios of the other companies with similar inventory
turnover. Therefore, it seems that a modular system
for stock selection may exhibit better performance than
an individual system [10]. Furthermore, based on the
principle of divide and conquer, the complexity of the
whole data space is reduced by modularity, which leads
to more homogeneous data spaces [11].

In general, three main steps should be done to
develop a modular system with ensembles. In the
�rst step, the training dataset is partitioned into some
smaller data regions. In the second step, an individual
learner is developed for each data region, separately.
In the third step, the outputs of the individual learners
are combined to determine the �nal output of the
modular system using an ensemble strategy. In this
study, a hybrid Rough-Fuzzy Noise Rejection Clus-
tering (RFNRC) algorithm is proposed to determine
the overlapping data regions of the modular system
and remove the noise data, simultaneously. Then,
an individual Takagi-Sugeno-Kang (TSK) fuzzy rule-
based system is developed for stock selection in each
data region separately. Finally, the outputs of the
individual systems are combined to derive the ultimate
result using our proposed ensemble strategy.

The main purpose of this paper is to construct an
accurate and interpretable stock selection system for
portfolio managers. The system ranks the universe of
stocks and selects a set of stocks that are likely to have
the best chances of capital appreciation in the subse-
quent period. For this purpose, we propose an ensemble
learning model to develop a modular stock selection
system based on our proposed clustering. Here, we de-
scribe the novelties of this study from two perspectives.

The �rst one regards the applied method to modularize
the system and the ensemble strategy. This study
proposes a hybrid RFNRC algorithm to partition a
noisy data set into some overlapping partitions without
noise and outliers. The proposed model also develops
a new weighted ensemble strategy to aggregate the
outputs of the modules. The second one relates to
the development of a modular system for the stock
selection problem through the ranking of the stocks.
To the best of the authors' knowledge, this is the �rst
study that develops a TSK system for stock selection
problem which applies an ensemble learning model.

The rest of the paper is organized as follows.
Section 2 provides a brief review of the previous works
related to our study. Section 3 explains the proposed
algorithm for hybrid rough-fuzzy noise-rejection clus-
tering. Section 4 presents a comprehensive description
of the proposed ensemble learning model. Section 5
describes the implementation of the proposed model to
develop a modular system for stock selection on Tehran
Stock Exchange (TSE) as well as the computational
results. Finally, Section 6 reports some concluding
remarks.

2. Related works

According to the principle of divide and conquer,
complex computational learning can be simpli�ed by
dividing the learning task among some experts and
then, combining the solutions of the experts, which is
said to constitute a committee machine [10]. Modular
systems are one of the architectural types of committee
machines from the local accuracy perspective [12]. In
the modular systems, separate learners are developed
and applied to di�erent regions of the problem domain.
The regions of interest are determined �rst, and an
individual learner is then developed for each region.
With this architecture, an important issue is the
identi�cation of the best regions to be considered. The
regions can be de�ned based on expert opinion [13] or
using purely mechanical means like clustering [14].

2.1. Related works on clustering algorithms
Many researchers have used hard clustering to de-
termine the data regions of a modular system [15{
17]. However, the boundaries between the adjacent
data regions may be unclear, and a data instance may
not completely belong to only one cluster. Therefore,
hard clustering is too restrictive in partitioning. The
soft clustering algorithms using fuzzy and rough set
theories are less restrictive than the hard clustering by
permitting an instance to belong to multiple clusters.
While the fuzzy clustering can e�ciently handle the
overlapping clusters [18], it can be too descriptive
with potentially a list of possible memberships for an
individual object [19]. In this way, the data set may not
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be partitioned into some homogenous data spaces with
less complexity. Therefore, most of the previous studies
related to the development of the modular system
with fuzzy clustering have applied traditional fuzzy
clustering in which each sample is assigned to only one
cluster based on maximum membership [20]. Rough
clustering, as another soft clustering approach, allows
an object to belong to multiple clusters. In rough
clustering, representation of the clusters is based on
the lower and upper bounds using rough set theoretic
properties. Lingras and West [21] believed that the
lower and upper bound representation of a cluster
was more concise than the detailed and descriptive
list of membership values. They suggested Rough C-
Means (RCM) clustering as the �rst rough clustering
algorithm. In this algorithm, the clusters are repre-
sented by the crisp lower and upper approximations.
The lower approximation contains objects that are
members of the cluster with certainty (probability = 1),
while the upper approximation contains objects that
are members of the cluster with non-zero probability
(probability > 0). However, the rough clusters do not
determine the similarity and closeness of the instances
to the cluster prototypes [22].

In the last decade, intensive works have been
done for hybridization of rough and fuzzy clustering
to integrate the advantages of both fuzzy sets and
rough sets [18,22{25]. Hybrid Rough-Fuzzy C-Means
(RFCM) clustering was proposed by Mitra et al. in
2006 for the �rst time [22]. In their proposed clustering,
each cluster consisted of a fuzzy lower approximation
and a fuzzy boundary. A hybrid clustering with the
crisp lower approximation and the fuzzy boundaries
was proposed by Maji and Pal [24]. Furthermore,
a rough-fuzzy Possibilistic C-Means (PCM) clustering
was extended to make the previous hybrid cluster-
ing [24] robust in the presence of noise and outliers [18].
Many research �elds bene�t from the applications of
hybrid rough-fuzzy clustering such as bioinformatics
and medical imaging [26,27] and text-graphics seg-
mentation [28]. Recently, ensemble-based rough-fuzzy
clustering has been extended for categorical data with
di�erent dissimilarity measures [29,30]. However, the
mentioned hybrid clustering algorithms su�er from
some weak points that are explained in Section 3. This
study proposes a new hybrid clustering algorithm that
tries to overcome the weakness of these algorithms for
developing a modular system. The proposed algorithm
bene�ts the strengths of the fuzzy, possibilistic and
rough clustering approaches while it is subject to their
weak points for developing a modular system.

2.2. Related works on ensemble strategies
The literature on ensemble learning has shown that
the ensemble can outperform single predictors in
many cases [31{33]. Additionally, ensembles of ex-

pert systems have already been successfully applied
in �nancial forecasting [34{43]. There are di�erent
ensemble strategies in the literature including simple
majority vote, simple averaging, weighted averaging,
reliability-based strategies, Bayesian methods, and
stacking [44,45]. Among the mentioned ensemble
strategies, the simple majority vote and the simple
averaging of the baseline classi�ers have had rel-
atively poor performance in di�erent �elds includ-
ing �nancial time series prediction [12,40]. On the
other hand, weighted averaging and stacking strategies
have been applied with great success over the last
few years [13,41,46{49]. In stacking, a high-level
base learner is developed to combine the lower level
base learners, while the base learners are combined
with di�erent weights in the weighted averaging. In
these ensemble approaches, the integration of the
base learners is done using a weighted least squares
algorithm [46,48,49], generalized regression neural net-
works [47], particle swarm optimization [41], and ge-
netic fuzzy systems [13]. Lv et al. [48] found that
using the fuzzy memberships for di�erent data parti-
tions improved the accuracy of the ensemble model.
Considering the results of the mentioned studies and
our proposed clustering method, a new weighted en-
semble was introduced that would use the rough fuzzy
memberships of the data partitions.

2.3. Stock selection based on the fundamental
analysis

Fundamental analysis has been widely used for stock
selection in stock portfolio management. The stock se-
lection models based on Fundamental analysis include
PROMETHEE decision-making model [50], general-
ized data envelopment analysis model [1], Multiple At-
tribute Decision Making (MADM) model [51], Probit
and Tobit based models [52], and also a continuous time
model for active portfolio management [53]. However,
soft computing models seem to be more appropriate for
modeling the noisy, nonlinear and complex behavior
of the stock markets [54{58]. In the literature, there
are some studies on soft computing methods such as
Arti�cial Neural Networks (ANN) [3,59], evolutionary
algorithms [60{63], support vector machines [64], and
fuzzy logic [65{68] for stock selection problem. This
study proposes a hybrid genetic fuzzy system to select
the best stocks in the portfolio composition. The
TSK fuzzy rule-based systems have exhibited a good
capability for modeling the nonlinear dynamic systems
in many �elds including the short-term stock trend
prediction [69{71]. This paper intends to evaluate the
performance of TSK systems in the stock ranking and
selection problem over the longer investment horizons.
The structure and parameter identi�cation phases of
the TSK systems are done using ANN and Genetic
Algorithms (GA), respectively. Table 1 compares this
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Table 1. Position of this study among the related studies in the literature.

Reference Learning tool
No. of

fundamental
variables

Handle
nonlinearity

Fitness measure
Type
of the
system

Considering
fundamental

characteristics
of sectors

Becker
et al. [60]

Genetic programming 65 X Information coe�cient
and spread

Crisp �

Quah [3] Arti�cial neural networks 11 X Classi�cation accuracy
Crisp
and

fuzzy
�

Huang
et al. [65]

Genetic algorithm-fuzzy 12 � Return of top ranked
stocks

Fuzzy �

Huang [95] Support vector regression-
genetic algorithms

14 X Cumulative return of
the selected stocks

Crisp �

Vanstone
et al. [59]

Arti�cial neural networks 4 X
Max. percentage
change in price over
next 200 days

Crisp �

Parque
et al. [61]

Genetic network
programming

10 X Risk-adjusted return
of selected stocks

Crisp �

Ince [62] Genetic algorithm-case-
based reasoning

7 X Classi�cation accuracy Crisp �

Yu et al.
[64]

Support vector machines 20 X
Classi�cation accuracy
& the portfolio
accumulated return

Crisp �

Silva et al.
[63]

Genetic algorithm 10 � Return and risk of
proposed portfolio

Crisp �

Shen and
Tzeng [66]

VIKOR, DANP, DEMATEL
(decision-making trial and
evaluation laboratory)

17 X Classi�cation accuracy Fuzzy �

This
study

Genetic algorithm-
arti�cial neural networks

36 X Information coe�cient

TSK type
fuzzy

rule-based
system

X

study with the previous researches for stock selection
based on the fundamental analysis using soft comput-
ing methods.

3. The developed hybrid rough-fuzzy
noise-rejection clustering algorithm

The hybrid rough-fuzzy clustering incorporates fuzzy
membership values in the rough clustering framework.
RFCM algorithm was proposed by Mitra et al. [22]
for the �rst time. This algorithm partitions a set
of N objects X = fx1; � � � ; xj ; � � � ; xNg into c rough
clusters (Ui) with a fuzzy lower approximation and a
fuzzy boundary by minimizing the objective function
JRFCM as Eq. (1) subject to

Pc
i=1 uij = 1 for all

j = 1; 2; � � � ; N .

JRFCM =
cX
i=1

JCi;

JCi=

8><>:wlow�Ai+wbound�Bi; if AUi 6= �; BUi 6= �
Ai; if AUi 6= �; BUi = �
Bi; if AUi = �; BUi 6= �

Ai =
X

xj2AUi
umijkxj � vik2;

Bi =
X

xj2BUi
umijkxj � vik2; (1)

where vi is the center of cluster Ui, k � k is the distance
norm, uij is the membership of xj to cluster Ui, and
1 � m <1 is the fuzzi�er in the fuzzy set theory. AUi
and AUi are the lower and the upper approximations
of Ui and BUi = AUi � AUi denotes the boundary
region of the rough cluster Ui. The terms Ai and Bi
represent the weighted within-groups sum of squared
errors for the lower approximation and boundary of
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rough clusters, respectively. The parameters wlow
and wbound are the relative importance of the lower
approximation and the boundary regions.

According to the de�nitions of lower approxima-
tion and boundary of rough sets by Pawlak, if an object
is the member of a cluster's lower approximation, it
de�nitely belongs to that cluster and it cannot be a
member of its boundary or the other clusters [72].

If xj 2 AUi Then xj =2 BUk;
8 k and xj =2 AUk; 8 k 6= i:

Maji and Pal [24] claimed that based on these de�ni-
tions, the objects in the lower approximation should
have a similar in
uence on only their corresponding
cluster regardless of their similarity with their cor-
responding clusters and the other clusters. They
proposed a hybrid rough-fuzzy clustering with the crisp
lower approximation and the fuzzy boundaries. In this
case, they reduced Ai to Eq. (2):

Ai =
X

xj2AUi
kxj � vik2: (2)

They incorporated PCM into their previous model
to develop a more robust clustering algorithm in the
presence of noise and outliers [18]. In their proposed
rough-fuzzy PCM algorithm, they calculated Ai similar
to their previous work and changed Bi as Eq. (3):

Bi =
X

xj2BUi
fa(�ij)m1 + b(�ij)m2gkxj � vik2

+ �i
X

xj2BUi
(1� �ij)m2 ; (3)

where �ij is the probabilistic membership of xj to
Ui as that in Fuzzy C-Means (FCM) and �ij is the
possibilistic membership as in the PCM. The constants
a and b determine the relative importance of the prob-
abilistic and possibilistic memberships, respectively.
The objective function of their proposed clustering
algorithm is minimized when:

�ij =

 
cX

k=1

� kxj � vik2
kxj � vkk2

� 2
m1�1

!�1

; (4)

�ij =
1

1 +
�
bkxj�vik

�i

� 1
m2�1

: (5)

Also, a Rough Possibilistic Type-2 Fuzzy C-Means
(RPT2FCM) clustering algorithm was proposed by
Sarkar et al. [73]. The RPT2FCM algorithm is quite
similar to the rough-fuzzy PCM algorithm proposed
by Maji and Pal [18]. The only di�erence between

them lies in probabilistic memberships. In [73], the
probabilistic memberships of Eq. (3) were type-2 fuzzy
membership values to handle some other various subtle
uncertainties in the overlapping areas.

Although the lower approximation members of
rough clusters de�nitely belong to their corresponding
clusters, it is unreasonable to impose the same weight
for all objects of a lower approximation [74]. We believe
that di�erent objects of a lower approximation should
have di�erent weights based on the proximity to their
corresponding cluster prototypes regardless of other
prototypes. This is consistent with the above de�nition
of lower approximation by Pawlak [72]. In this paper,
we propose a hybrid RFNRC algorithm to resolve
some of the drawbacks of the previous hybrid c-means
algorithms. It incorporates the Fuzzy Noise Rejection
Clustering (FNRC) [75] into the RCM framework. The
FNRC utilizes FCM and PCM to introduce a more
robust clustering algorithm in the presence of noise and
outliers.

In our proposed algorithm, di�erent objects have
di�erent weights in determining their prototypes sim-
ilar to [22]. However, unlike their work, the weights
only depend on the distance of the objects from their
corresponding prototypes which is more consistent with
the rough set theory. The main steps of the proposed
RFNRC algorithm are as follows. Steps 1{3 are
designed to de�ne the suitable weighting exponent, the
number of clusters, and the initial cluster centers as
the preprocessing steps of RFNRC. The fourth step
determines the fuzzy clusters. Steps 5{7 are related to
noise rejection from the dataset. In the 8th step, the
PCM membership values are calculated and Steps 9
and 10 determine the rough clusters.

Step 1. De�ne the suitable weighting exponent (m).
The weighting exponent should be selected far from
its both extreme ends to guarantee that the cluster
validity index in the next step indicates the optimum
number of clusters. According to [76], the suitable
weight exponent is a value that makes the tracing of
the fuzzy total scatter matrix (ST ) equal to z=2.

ST =
NX
j=1

 
cX
i=1

(uij)m
!

(xj � v) (xj � v)T ; (6)

z = trace

0@ NX
j=1

240@xj � 1
N

NX
j=1

xj

1A
0@xj � 1

N

NX
j=1

xj

1AT
3751CA ; (7)

where v is the fuzzy total mean vector of the dataset
considering the FCM-based membership values.
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Step 2. Determine the optimum number of clusters
(C) through the original FCM so that the cluster
validity index Eq. (8) can be minimized. This index
determines the optimum number of clusters that
maximizes within clusters compactness and between
clusters separation.

Scs =
NX
j=1

cX
i=1

(uij)m
�kxj � vik2 � kvi � vk2� : (8)

Step 3. Assign the initial cluster centers by the
agglomerative hierarchical clustering algorithm. This
clustering algorithm puts each of the n data instances
in an individual cluster. Then, two or more clusters
are merged using a matrix of dissimilarities until the
required number of clusters (C) is reached. This step
prevents our proposed algorithm from converging to
a local extreme.
Step 4. Identify the initial fuzzy cluster prototypes
using the original FCM.
(a) Compute the matrix of membership degrees:

uij =

 
CX
k=1

� kxj � vik2
kxj � vkk2

� 2
m�1

!�1

; (9)

(b) Update the cluster centers:

vi =
PN
j=1(uij)mxjPN
j=1(uij)m

; (10)

(c) Repeat (a) and (b) until reaching convergence in
cluster centers, i.e., v(t)

i � v(t�1)
i < ", where t is

the iteration number of the FCM algorithm.
Step 5. Calculate the resolution parameter of PCM
(�i). The value of �i determines the distance that the
membership value of a point in the cluster i becomes
0.5 and it is chosen based on the desired \bandwidth"
of the possibilistic membership distribution for each
cluster [77]. It is assumed that the data in each
cluster follows a Gaussian distribution and kxj �
vik=�i has a chi-square distribution, with degrees of
freedom equivalent to the number of features in each
data instance. Therefore, the resolution parameter
can be calculated as follows [75]:

�i =

median (kxj � vik)
xj 2 Ui
�2

0:5
; (11)

where �2 is the chi-square value.
Step 6. Calculate the cuto� distance (uFC cut2) to
detect the noise and outliers [75].

uFC cut2 = �i�2
ẑ; (12)

where ẑ is the percentage of inliers in the data. The
number of outliers is estimated based on W index.

Wj =
CX
i=1

kxj � vik: (13)

This index sums the distance of the data instance
to all cluster centers. The data instances with large
values of Wj are considered as outliers. The threshold
for outliers depends on the upper and lower bounds of
the data and is selected according to the trace of W
index. This step is designed to �nd the outliers, i.e.,
the data instances which are too far from all cluster
centers.
Step 7. Remove the noise data and outliers. If kxj�
vik > uFC cut2, then the data instance is recognized
as noise and it takes a zero membership to the cluster.
Step 8. Compute the membership matrix of the
remaining data using PCM membership value [77]:

uij =
1

1 +
�kxj�vik

�i

� 1
m�1

: (14)

Step 9. Assign each data instance to the lower
approximation of a cluster or the boundaries of
multiple clusters through the following procedure:
(a) Assign the instance (xj) to the upper bound

of the cluster k(AUk) based on the maximum
membership:

xj 2 AUk; k = argi maxi=1;2;��� ;C(uij):
(15)

The instance should be assigned to the upper
bound and boundary of two or more clusters in
the case of ties in the maximum membership;

(b) For each cluster i, i = 1; 2; � � � ; C, i 6= k, if ukj �
uij < �, then xj 2 AUi and xj 2 BUi, where
� is a small threshold value that determines the
overlapping degree of the adjacent clusters;

(c) If xj =2 AUi, i = 1; 2; � � � ; C, i 6= k, then xj 2
AUk, else xj 2 BUk.

Step 10. Compute the new cluster centers in
Eq. (16):

vi=

8><>:wlow�C1+wbound�D1; if AUi 6= ;; BUi 6= ;
C1; if AUi 6= ;; BUi = ;
D1; if AUi = ;; BUi 6= ;

C1 =

P
xj2(AUi) u

m
ijxjP

xj2(AUi) u
m
ij

;

D1 =

P
xj2(BUi) u

m
ijxjP

xj2(BUi) u
m
ij

: (16)

According to the rough set theory, the objects of
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the lower approximation should have much more
in
uence on their cluster prototypes. Therefore, wlow
should be much more than wbound, i.e.:

0 < wbound < wlow < 1; wlow + wbound = 1:

Step 11. Repeat Steps 8{10 until convergence is
reached, i.e., there are no more new assignments.

The strengths of our proposed RFNRC algorithm
are given in the form of six aspects. First, based
on the compatibility with the centroid point of view,
possibilistic memberships of PCM correspond more
closely to the notion of typicality [77]. Unlike FCM,
there is no constraint on the memberships of PCM (i.e.,PC
i=1 �ij = 1, 8 j). Therefore, the prototypes of PCM

are attracted toward dense regions in the feature space
regardless of the locations of the other prototypes.
Second, using FCM and agglomerative hierarchical
clustering at the �rst steps avoids the problem of
the coincident clusters of PCM. The FCM and PCM
algorithms have been previously integrated to avoid
the problems of noise sensitivity of the FCM and the
coincident clusters of PCM [18]. Third, Steps 5{7 of the
proposed algorithm make the algorithm more robust
in the presence of noise and outliers. The powerful
ability of these steps in noise rejection was con�rmed
by Melek et al. [75]. Our proposed algorithm removes
the noise and outliers from the cluster members and,
therefore the outliers do not a�ect the learning process
of the modules in the modular system. Fourth, the c-
means algorithms with random initial centers always
converge to a local extreme [78]. Our proposed
RFNRC algorithm has overcome this problem using
agglomerative hierarchical clustering algorithm. Fifth,
it uses two preliminary steps to identify the suitable
weight exponent and the optimum number of clusters
which make our algorithm more e�cient. Above all, the
previous hybrid clustering algorithms allow only two
overlapping clusters [18,22,24]. However, three or more
overlapping clusters are possible in clustering of real
data sets. Step 9 (parts (a) and (b)) of our proposed
RFNRC handles multiple overlapping clusters as well
as two overlaps.

4. The proposed ensemble learning model for
stock selection

This section describes the general architecture of our
proposed model to develop a modular TSK system
with a weighted ensemble strategy for stock selection
based on fundamental analysis. In this approach, the
system uses fundamental data of companies to predict
the future behavior of its stock in the following year and
assigns a score to the stocks. Then, the system ranks
the universe of stocks based on the assigned scores.
Figure 1 shows the overall framework of the proposed
ensemble learning model.

This framework starts by collecting fundamental
information of companies along with the data prepro-
cessing stage to treat the missing variables. We also
consider data normalization as one of the necessary
data transformations in forecasting problems [16]. This
study applies the min-max normalization method to
obtain a database with all features' values falling in the
range of 0 and 1. Due to a large number of fundamental
variables as the input variables, the most in
uential
subset of variables is selected through stepwise regres-
sion analysis. Stepwise regression analysis has been
used successfully for variable selection in stock market
forecasting [69{71,79]. This technique either adds the
variables onward or removes the variables backward
to �nd the best combination of independent variables
for forecasting the dependent variable. The following
sections describe the other steps of the proposed model
in more detail.

4.1. Data partitioning using the developed
hybrid rough-fuzzy noise-rejection
clustering

Due to the variability of fundamental properties of the
companies within di�erent activity sectors, we believe
that data partitioning is a necessary task to have the
more homogenous subsets to develop a modular system
for stock selection. On the other hand, the fundamental
information of the companies generally has some out-
liers. Therefore, the training data set is partitioned into
multiple overlapping clusters using the proposed rough-
fuzzy noise-rejection clustering algorithm, as described
in Section 3. The proposed algorithm has some advan-

Figure 1. The overall framework of the proposed ensemble learning model for stock selection.
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tages for our application. First, because of its noise-
rejection property, it can handle the outliers within
the fundamental data set. Second, it bene�ts from
the fuzzy, possibilistic and rough clustering to resolve
the ambiguity in assigning the objects to the modules.
The training patterns of the modules are unique in
their lower approximation, and they are similar to the
patterns of one or more modules in their overlapping or
boundary regions. Third, this algorithm represents the
cluster members using their rough-fuzzy memberships.
The third property is useful for designing an e�cient
ensemble strategy, as described in Section 4.3.

4.2. Generating TSK fuzzy rule-based systems
for stock selection

In TSK fuzzy rule-based systems, the knowledge base
includes multiple fuzzy rules with crisp functions as the
consequent. For the �rst-order TSK system with two
input variables, the rules are in the form of:

If L1 is FSi1 and L2 is FSi2;

Then yi = ai0 + ai1L1 + ai2L2;

where L1 and L2 are the linguistic variables, FSi1 and
FSi2 are their corresponding fuzzy sets, and ai0, ai1,
ai2 are the parameters of the system. The system
inferences using crisp reasoning.

The crisp inference of the system is determined as
the weighted average of the individual rule inferences
using Eq. (17):

ŷ =
Pr
i=1 DOFiyiPr
i=1 DOFi

; (17)

where r is the number of the rules and DOFi is the
degree of �ring of the ith rule, i.e., the rule's condi-
tion memberships aggregated by a t-norm operator as
Eq. (18):

DOFi = �FSi1(L1) ^ �FSi2(L2); (18)

where ^ is a t-norm operator and �A(x) is the mem-
bership degree of x in the fuzzy set A.

In our proposed framework, a unique TSK system
is independently developed for each data partition as
an individual learner. Each data partition includes the
lower approximation and the boundary of the rough
cluster determined by our proposed RFNRC algorithm.
The structure and parameter identi�cation of the TSK
systems are described in the following.

We design the TSK rules in a canonical form,
where the combination of all the input variables takes
place using the conjunction operator. The structure of
the TSK rules in the premises is determined by the grid
partitioning. The quality of the TSK system heavily
depends on the partitioning of the input space [80]. We

determine the fuzzy sets for the input variables using
the modi�ed Adeli-Hung Algorithm (AHA) [71]. This
algorithm includes two stages. The �rst stage involves
clustering of the data instances with a topology and
weight change neural network, known as Adeli-Hung
clustering. The second stage comprises assigning the
membership functions to the input space [81]. These
stages are clearly explained in [82]. In the modi�ed

version of AHA, the input variables are partitioned
individually and the membership functions are deter-
mined for individual variables [71]. The modi�ed AHA
assigns symmetric triangular fuzzy sets to the input
variables, where the fuzzy sets of the adjacent labels
overlap to some extent and their vertex points do
not cross. These properties make the system more
transparent [83].

The parameters of the linear conclusion of the
TSK rules are determined using the genetic algorithm.
Here, GA is used to learn the TSK system because of its

exible and powerful search capability [84], especially
in the case of fuzzy systems learning [85,86]. This
evolutionary algorithm has been successfully applied
for both phases of fuzzy modeling, namely structure
and parameter identi�cation [80,87]. Among the two
common approaches for genetic learning of the rule-
based systems, i.e., Pittsburgh and Michigan, we
apply the Pittsburgh approach to learn the TSK fuzzy
systems. In the Pittsburgh approach, one individual
encodes the whole rule base of the system. Figure 2
shows the encoding scheme of the TSK consequent
parameters as a GA chromosome.

The GA chromosomes are evaluated by Informa-
tion Coe�cient (IC) as the �tness function. IC is a per-
formance measure used for evaluating the forecasting
skill of �nancial analysts. It is an appropriate �tness
measure for ranking and classifying the stocks in the
investment universe [60,88]. IC measures the Spearman
correlation of the ranking that the model assigns to the
stocks and their actual rankings in the period shown in
Box I, where MRankj;t is the rank of stock j which
is predicted by the model at time t, RRankj;t is the
ranking of the realized return of stock j at time t, and
T is the number of periods in the training set. Our
model evaluates the GA chromosomes by the average
IC of the proposed system as Eq. (20):

�tness function: max

(
TX
t=1

ICt=T

)
: (20)

Figure 2. Encoding the Takagi-Sugeno-Kang (TSK)
consequent parameters as a Genetic Algorithm (GA)
chromosome.
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Box I

4.3. Aggregating the TSK systems based on
the proposed weighted ensemble strategy

Our proposed ensemble learning model develops an in-
dividual TSK system for each partition of the training
instances. Similar to the training instances, a new in-
stance may belong to multiple partitions with di�erent
membership values. Therefore, our model combines
the outputs of the corresponding TSK systems using
an ensemble strategy to reach the �nal score of the
new instance. In our proposed modular system, we
design a new weighted ensemble strategy to combine
the outputs of the TSK systems. In this design, the
weight of each module is di�erent for each instance and
depends on the proximity of the instance concerning
the prototype of the module. It uses both rough
and possibilistic-fuzzy memberships to calculate the
relative importance of the modules as their weights.
The ensemble weight of the module i for the instance
xj(EWij) is determined by Eq. (21):

EWij =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

w(uij)
w(uij)+

P
kjxj =2AUk

w(ukj)

if xj 2 AUi;
w(uij)P

kjxj2BUk
w(ukj)+

P
kjxj =2AUk

w(ukj)

if xj 2 BUi;
w(uij)P

kjxj2AUk
w(ukj)+

P
kjxj2BUk

w(ukj)+
P

kjxj =2AUk
w(ukj)

if xj =2 AUi

(21)

where w, w, and w correspond to the relative
importance of the modules regarding the rough
partitions. w is the weight of the module if xj belongs
to its lower approximation. w is the weight of the
module if xj belongs to its boundary. In addition,
w is the weight of the module if xj does not belong
to its partition. Since the instances out of the upper
approximation do not contribute to the module
training, w is too small relative to w and w(0 < w �
w < w < 1). The relative importance of the modules
depends on the possibilistic-fuzzy membership of the
instance to its partition (uij), as well.

Figure 3 shows typical partitioning of the data
set in a two-dimensional space. The thickness of

Figure 3. The module's ensemble weights in a typical
rough-fuzzy partitioning.

the arrows corresponds to the ensemble weight of the
arrowhead's module. In this �gure, x1 2 AU3 and
the ensemble weight of the third module is very high
(EW31 = w(u31)=(w(u31) + w(u11 + u21))). This
instance does not belong to the other partitions (x1 =2
AU1; x1 =2 AU2); therefore, the weights which are
assigned to their corresponding modules are very low
(EW11 = w(u11)=(w(u31) + w(u11 + u21));EW21 =
w(u21)=(w(u31) + w(u11 + u21))). Another instance,
x2, belongs to the boundaries of U1 and U2. Therefore,
the ensemble weights of the �rst and second modules
are relatively high based on their possibilistic-fuzzy
membership values (EW11 = w(u11)=(w(u11 + u21) +
w(u31)), EW21 = (w(u21)=w(u11 + u21) + w(u31))).
However, the weight of the third module is too low
(EW31 = (w(u31)=w(u11 + u21) + w(u31))).

Consequently, the �nal score of the stock with
fundamental properties represented by xj is determined
by Eq. (22):

Scorexj =
CX
i=1

(EWij � ŷij); (22)

where ŷij is the output of module i for the instance
xj . Finally, the system selects the stocks according to
their ranked scores at time t.
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Table 2. Financial ratios as the possible input variables.

Category Financial ratio

Pro�tability ratios

Percentage of net pro�t to sale, percentage of operating pro�t to sale, percentage of gross
pro�t to sale, percentage of gross margin to sale, percentage of net pro�t togross margin,
return on assets (after tax), return on equity (after tax), return on working capital, working
capital return percentage, and �xed assets return percentage

Liquidity ratios Current ratio, quick ratio, liquidity ratio, current assets ratio, and networking capital

Activity ratios
Inventory turnover, average payment period, inventory to working capital, current assets
turn over, �xed asset turnover, and total asset turnover

Leverage ratios
Debt coverage ratio, debt to total assets ratio, debt to equity ratio, �xed assets to equity
ratio, long-term debt to equity ratio, current debt to equity ratio, equity ratio, and
interest coverage ratio

Valuation ratios
Actual Earning Per Share (EPS), net dividend per share, price to EPS ratio (P=E), book
value per share, dividend yield, price to book ratio (P=B), and capitalization

5. Experimental results

We implemented our proposed ensemble learning model
to develop a modular TSK system for stock selection
among 150 companies with di�erent activity sectors
listed on TSE. This section describes the collected data
at �rst. Then, it reports the implementation results of
our proposed model step by step. Finally, it analyzes
the performance of the developed modular system and
its comparison results.

5.1. Data
In this work, our data comprise the fundamental data
of 150 Iranian companies listed on TSE during 24 �scal
years to develop a stock selection system for investing
in this market. These companies are the most liquid
companies according to six liquidity measures including
the number of traded shares, the value of traded shares,
the number of trading days, the number of trades, the
average number of shares issued, and the company's
value in a �scal year. The liquidity measures are
aggregated by harmonic mean (Eq. (23)) to �nd the
most liquid companies on TSE.

Mj =
NPN
i=1 Iij

; (23)

where Mj is the jth company's score, N is the number
of indices, and Iij is the value of the ith index for
the jth company. The companies are selected from
the most liquid companies that were active before
2008 from di�erent activity sectors [89]. We selected
thirty-six �nancial ratios as the potential fundamental

variables in �ve categories of pro�tability, activity, liq-
uidity, leverage, and valuation ratios [1,3,59,62,65,90].
Table 2 reports a list of the selected �nancial ratios. We
calculated the �nancial ratios of the Iranian companies
listed on TSE using the �nancial statement information
of the companies.

The historical data includes the above-mentioned
�nancial ratios and the dividend and split-adjusted
close price for the start and end of the companies'
�scal year from March 20, 1991 to March 19, 2014.
We used the extending window approach to de�ne the
training and testing periods. This approach uses all
the available historical data to train the system and
then, applies the trained system in the next period
immediately after the last training period [91]. In
this work, we designed �ve series of experiments to
evaluate the evolved system for stock selection in �ve
�scal years, from March 20, 2009 to March 19, 2014.
Table 3 shows the training and the testing periods of
the �ve series of experiments.

5.2. Implementation of our proposed ensemble
learning model for stock selection

This section reports the implementation results of our
proposed ensemble learning model step by step:

Step 1. This step involves data preprocessing and
variable selection. First, the fundamental data were
studied to handle the missing data and some out-
liers. Then, the data were normalized. Finally, the
most e�ective �nancial ratios were selected using the
stepwise regression analysis. We used the statistical
software, IBM SPSS statistics 20, for setting up
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Table 3. The training and testing periods of the �ve experiments.

Experiment series Training period Testing period

Exp 1 Mar. 20, 1991{Mar. 19, 2009 Mar. 20, 2009{Mar. 19, 2010
Exp 2 Mar. 20, 1991{Mar. 19, 2010 Mar. 20, 2010{Mar. 19, 2011
Exp 3 Mar. 20, 1991{Mar. 19, 2011 Mar. 20, 2011{Mar. 19, 2012
Exp 4 Mar. 20, 1991{Mar. 19, 2012 Mar. 20, 2012{Mar. 19, 2013
Exp 5 Mar. 20, 1991{Mar. 19, 2013 Mar. 20, 2013{Mar. 19, 2014

the regression forecasting model. We considered the
thirty-six mentioned �nancial ratios as the indepen-
dent variables and the rate of return as the dependent
variable. We set the probabilities of F statistics
to enter and remove a variable at 0.05 and 0.1,
respectively. Due to our experiments, �ve �nancial
ratios were chosen as the input variables of the TSK
systems. The selected ratios are the Return On Asset
(ROA), total asset turnover, equity ratio, dividend
yield, and book value per share.

Step 2. We implemented the proposed hybrid rough-
fuzzy noise-rejection clustering algorithm to decom-
pose the training data set into several overlapping
subsets (i.e., clusters). At �rst, the suitable weighting
exponent was selected as m = 2:5, which gave a
value for the trace of the total scatter matrix equal
to z=2 (Figure 4). Then, the optimum number
of clusters was identi�ed using the cluster validity
index. According to Figure 5, the rate of reduction
in the cluster validity index is very high up to 4
clusters, and the index gradually decreases up until 7
clusters. We set the number of clusters at C = 4
which ensures an almost minimum cluster validity
index as well as su�cient training instances to learn
the individual TSK systems. The noise data are
those with large values of the noise-rejection index
(W ), as shown in Figure 6. In our experiments, the
threshold was selected as 2 for calculating the cuto�
distance and removing the noise. Then, the FNRC

Figure 4. Selection of the suitable weighting exponent.

Figure 5. Identi�cation of the optimum number of
clusters.

Figure 6. Application of the noise-rejection criterion.

membership degrees were calculated, and the rough-
fuzzy data partitions were determined through the
iterative procedure of the proposed algorithm. In
this algorithm, the threshold � represents the size
of granules of rough-fuzzy clusters. The threshold
could be determined as the median or the mean of the
di�erence between the highest and the second highest
memberships of all the instances to the speci�ed
clusters [19,73]. However, when the distribution of
the membership di�erences is skewed, the median
would work better than the mean. Therefore, we have
used the following de�nition for � assignment:

� = Medianj=1;2;��� ;N (uij � ukj); (24)
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where uij and ukj are the two highest memberships
of instance xj . Based on this de�nition, the threshold
was set to � = 0:22. Consequently, the modular
system included four modules with about 600 samples
to train the individual TSK systems.

Step 3. This step resulted in generating the in-
dividual TSK systems for each data region, sepa-
rately. The structure of the TSK rules' antecedents
was speci�ed through AHA. In our design, three
fuzzy sets were allocated to each input variable,
interpreted by linguistic labels of low, medium, and
high. The parameters of the TSK rules' consequents
were learned using GA with Pittsburgh approach.
We set the parameters of GA as shown in Table 4.
Crossover and mutation rates and reproduction size
are selected based on some primary experiments. The
population size was selected as 100, showing a better
performance in multiple runs. Since no signi�cant
improvements were observed after the generation
number 150, the number of generations was set to
200. Four TSK systems were learned for the four
data partitions on �ve time frames. Table 5 reports
the performance of the TSK systems in terms of IC
on training data subsets. According to this table, the
individual TSK systems could learn a stock selection
system with the average IC value of 33.03% in the
case of their corresponding training subsets.

Step 4. This step involved aggregation of the outputs
of all of the evolved individual TSK systems to reach
an overall stock ranking. The modules' outputs were
aggregated using the proposed weighted ensemble
strategy, and then the stocks were ranked accord-
ing to their scores. According to the preliminary
experiments, we set the w, w, and w to 0.8, 0.6,

Table 4. Parameter settings of genetic algorithm.

Population size 100
Number of generations 200
Crossover rate 0.7
Mutation rate 0.3
Reproduction size 20

and 0.2, respectively. The next section reports the
performance of our proposed ensemble learning model
in the �ve testing periods and the comparison results.

5.3. Performance evaluation of our proposed
ensemble learning model

The performance evaluation of our proposed RFNRC-
TSK-MBE (Rough-Fuzzy Noise Rejection Clustering
based modular TSK system with a Membership-Based
Ensemble) is based on the IC for stock selection on
TSE. For comparison purposes, we established three
alternative models: single TSK, FNRC-TSK-AveE
(FNRC based TSK system with Averaging Ensemble)
and RFNRC-TSK-AveE (RFNRC based TSK system
with Averaging Ensemble). We designed the single
TSK model based on the �rst and third steps of our
proposed RFNRC-TSK-MBE. However, the third step
in the single TSK system uses the whole training
dataset instead of the training subsets. FNRC-TSK-
AveE partitions the dataset using FNRC and, then,
assigns the instances to clusters based on the maximum
membership. This model develops an individual TSK
for each disjoint subset and applies simple averaging
as the ensemble strategy. The RFNRC-TSK-AveE
uses the same decomposition and sub-modeling method
with RFNRC-TSK-MBE, but aggregates the modules
using the simple averaging ensemble strategy.

Table 6 reports the experimental results of the
four models for stock selection along the �ve testing
periods. The reported numbers are the average results
of 30 independent runs. According to this table, the
RFNRC-TSK-MBE shows a remarkable performance
in stock selection. The single TSK system can rank
the TSE stocks with IC of 8.5% on average, which is
a good performance. However, our proposed modular
systems could outperform the single system. The �rst
modular system extended by FNRC-TSK-AveE model
could improve the ranking ability of the TSK system
to IC of 12.74% on average. The ability of the modular
system is further improved by our proposed clustering
method. It reaches 15.24% IC. Above all, our proposed
ensemble method could boost the predictability of the
modular system from IC of 15.24% to 18.15%, on
average. Similar results are found in all experiments

Table 5. Performance of the individual Takagi-Sugeno-Kang (TSK) systems in their corresponding training data subsets
in terms of Information Coe�cient (IC).

Training subset Exp 1 Exp 2 Exp 3 Exp 4 Exp 5

U1 28.41% 28.11% 28.03% 27.67% 26.67%
U2 40.70% 37.84% 30.64% 32.19% 30.45%
U3 48.03% 45.45% 43.12% 41.60% 35.11%
U4 33.01% 28.04% 31.00% 26.21% 28.35%

Notes: Ui is the ith training subset provided by the rough-fuzzy noise
rejection clustering.
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Table 6. Performance of our proposed ensemble learning model and the other comparative models in testing periods in
terms of Information Coe�cient (IC).

Stock selection system Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

Single TSK 6.51% 19.42% 1.81% 14.53% 0.26% 8.50%
FNRC-TSK-AveEa 7.51% 15.32% 15.54% 16.48% 8.86% 12.74%
RFNRC-TSK-AveEb 11.89% 18.06% 15.17% 17.85% 13.22% 15.24%
Our proposed system: RFNRC-TSK-MBEc 12.43% 26.22% 19.86% 18.06% 14.16% 18.15%

a: FNRC-TSK-AveE: Fuzzy Noise Rejection Clustering based TSK system with averaging ensemble;
b: RFNRC-TSK-AveE: Rough-Fuzzy Noise Rejection Clustering based TSK system with averaging ensemble;
c: RFNRC-TSK-MBE: Rough-Fuzzy Noise Rejection Clustering based modular TSK system with membership-based

ensemble.

Table 7. Results of the student t-test for the pair-wise comparison of the stock selection systems.

Stock selection system RFNRC-TSK-AveE FNRC-TSK-AveE Single TSK

Our proposed system: RFNRC-TSK-MBE 0.0012 [2.91%] 0.0000 [5.41%] 0.0000 [9.64%]
RFNRC-TSK-AveE 0.0027 [2.50%] 0.0000 [6.73%]
FNRC-TSK-AveE 0.0000 [4.24%]

Notes: The table reports the p-values of tests for the pair-wise dominance of systems' ICs. The di�erence between the
IC averages of the respective systems is reported in brackets.

along the �ve periods. The correlation between the
RFNRC-TSK-MBE model's output and the one year
forward return is substantially high over each test
period.

According to the comparison results, the single
TSK model exhibited the weakest performance for
stock selection. The reason is di�erent fundamental
characteristics of the companies in di�erent activity
sectors. Therefore, a modular system works better
for such a problem. Furthermore, the FNRC-TSK-
AveE got a less IC than RFNRC-TSK-AveE, because
it is di�cult to distinguish a certain boundary between
di�erent clusters of a data set. Moreover, RFNRC-
TSK-MBE arrived at the highest IC value among all
the models. The superiority of the RFNRC-TSK-
MBE over the other ensemble models results from its
decomposition and combination methods. However, it
is notable that all the developed TSK systems have
shown good performance in stock selection. As a
general guideline, 5% is an acceptable IC value in
investment management [88]. Also, according to a
research paper published by JP Morgan [92], managers
with ICs between 0.05 and 0.15 can achieve signi�cant
risk-adjusted excess returns. Therefore, TSK system
can model the stock selection problem properly. The
proposed RFNRC-TSK-MBE model could reach an
IC value of 18.15% on average which is much more
than the other stock selection models in the litera-
ture [60,88,93,94]. The genetic programming model
provided by Becker et al. [60] could reach a maximum
IC of 8%. Additionally, the average IC of 9% was
obtained in [88] using grammatical evolution. The
authors claimed that 9% was a high IC value and their

models were successful at the stocks' ranking. Also,
Gillam et al. [93] studied the earnings prediction in a
global stock selection model. They could improve the
predictability of the model to the IC of 6%.

Finally, we carried out the statistical tests to ex-
amine whether the proposed model signi�cantly would
outperform the other three models or not. The results
of student t-test are reported in Table 7. According
to this table, the RFNRC-TSK-MBE signi�cantly out-
performs the other three models at a 99% statistical
signi�cance level. This table shows that the impact
of modularization (FNRC-TSK-AveE over single TSK)
is greater than other factors, i.e., the clustering and
ensemble methods.

In another experiment, the pro�tability of our
proposed model has been investigated for stock clas-
si�cation. In our experiment, all the stocks (described
in Subsection 5.1) have been classi�ed into two classes.
Similar to [3], we have de�ned Class 1 as the stocks
which elevate the share price to, or more than, 80%
within one year. The other stocks have been classi�ed
as Class 2. In this design, the �rst class constitutes the
minority of the data, while it is our interested class.
We have applied the over-sampling technique to deal
with the imbalanced data in the training set. In over-
sampling, the samples of the rare class are increased by
data replication.

The classi�cation performance of our proposed
model has been examined in terms of classi�cation
accuracy. For comparison purposes, ANFIS (Adaptive
Neuro-Fuzzy Inference System) has been implemented
on the same data base to develop a TSK fuzzy rule-
based system for stock classi�cation. The performance
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Table 8. Classi�cation performance of our proposed model versus Adaptive Nuro-Fuzzy Inference System (ANFIS) on
testing periods in terms of classi�cation� accuracy.

Model Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

RFNRC-TSK-MBE 77.3% 80.9% 88.1% 79.5% 50.3% 75.22%
ANFIS 69.1% 72.6% 72% 61.9% 49.7% 65.06%
�: In this experiment, all stocks have been classi�ed in two classes. Class 1 represents

stocks which appreciate in share price equal to or more than 80% within one year.
Class 2 contains all other stocks.

Table 9. Performance of our proposed RFNRC-TSK-MBE model in testing periods in terms of appreciation of selected
stocks price.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Average

Average appreciation of the selected stocks 67.2% 89.5% 19.7% 12.2% 128.3% 63.38%
Average appreciation of all 150 stocks 55.3% 37.1% 2.2% 8% 117.5% 44.02%
Excess appreciation of the selected stocks
over all 150 stocks

11.9% 52.4% 17.5% 4.2% 10.8% 19.36%

of ANFIS in stock classi�cation in Dow Jones Industrial
Average (DJIA) market was previously investigated [3].
According to that research, ANFIS outperforms other
neural network models, multi-layer perceptron, and
radial basis function in terms of classi�cation accuracy
and time complexity. The classi�cation accuracy of our
proposed RFNRC-TSK-MBE model is compared with
ANFIS model in Table 8. The ANFIS system is trained
in 40 epochs, with two Gaussian membership functions
for each of the �ve input variables. According to this
table, our proposed model outperforms ANFIS model
in all of the �ve investigated periods. Our proposed
model reached the average classi�cation accuracy of
75.22% in �ve periods, whereas ANFIS could earn
classi�cation accuracy of 65.06%, on average.

Furthermore, the average appreciation of the
stock price of the selected stocks (i.e., the stocks that
are classi�ed as Class 1 by the model) is compared with
that of all the investigated stocks in the subsequent
year. Table 9 reports the experimental results in terms
of average appreciation. Again, this table con�rms the
ability of our proposed model in stock selection. The
RFNRC-TSK-MBE could earn the excess appreciation
rates of 11.9%, 52.4%, 17.5%, 4.2%, and 10.8% for the
selected stocks over all 150 stocks in �ve consecutive
test periods and 19.36% on average.

6. Conclusion

This paper proposed a new ensemble learning model to
develop a modular Takagi-Sugeno-Kang (TSK) system
for stock selection. The proposed ensemble learning
model included four stages. The �rst stage involved
data preprocessing and variable selection. The second
stage was about partitioning of the training data into
several overlapping regions using the proposed Rough-

Fuzzy Noise Rejection Clustering (RFNRC) algorithm.
The proposed algorithm bene�ts from the strengths
of rough, fuzzy and possibilistic clustering, while it is
subject to their weaknesses for developing a modular
system. The diversity of the individual learners was
guaranteed by such a data partitioning algorithm. At
the third stage, an individual TSK system was gen-
erated for each region. The structure and parameter
identi�cation phases of the TSK systems were done
using Adeli-Hung algorithm and genetic algorithm. At
the fourth stage, the outputs of the individual TSK
systems were aggregated using the proposed weighted
ensemble strategy based on the rough-fuzzy member-
ships.

In this framework, while handling large data sets,
each module might concentrate on knowledge discovery
within a di�erent region of the problem. Subsequently,
all of the modules contributed to problem-solving with
a degree based on the similarity of the instance with
the prototypes of the modules. The similarity was
measured according to the rough partitions and the
possibilistic-fuzzy memberships.

We implemented our proposed ensemble learning
model on 150 Iranian companies with di�erent activity
sectors listed on Tehran Stock Exchange (TSE) to
develop a modular TSK system for stock selection.
Based on the experimental results, our developed mod-
ular system could appropriately select the stocks with
information coe�cient of 18.15% on average, which is
a good performance relative to that in the previous
researches [60,88,93]. Furthermore, our proposed sys-
tem signi�cantly outperformed the single TSK system
(IC=8.5%) and also other modular TSK systems, i.e.,
a fuzzy noise rejection clustering based TSK system
with averaging ensemble (IC=12.74%) as well as a
RFNRC based TSK system with averaging ensemble
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(IC=15.24%). Upon investigating the comparison
results, some conclusions can be drawn. First, modular
systems outperformed a single system for problems
with di�erent regions of data characteristics, like stock
selection problem, based on fundamental analysis. Sec-
ond, the data partitioning using our proposed hybrid
clustering algorithm led to more capable modular
systems. Additionally, considering the memberships in
the ensemble strategy improved the performance of the
ensemble model, signi�cantly.

Additionally, the performance of our proposed
model in stock classi�cation was investigated. Accord-
ing to the results, our proposed model outperformed
Adaptive Neuro-Fuzzy Inference System (ANFIS) re-
garding classi�cation accuracy (75.22% versus 65.06%).
Based on this experiment, we can earn much more
return on investment using the selected stocks by
our proposed model for portfolio diversi�cation. The
selected stocks reached 19.36% excess appreciation on
average, where the average appreciation of all investi-
gated stocks was 44.02%.
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