
Scientia Iranica D (2019) 26(6), 3485{3509

Sharif University of Technology

Scientia Iranica

Transactions D: Computer Science & Engineering and Electrical Engineering

http://scientiairanica.sharif.edu

Twinner: A framework for automated software

deobfuscation

B. Momeni and M. Kharrazi

�

Department of Computer Engineering, Sharif University of Technology, Tehran, P.O. Box 11155/1639, Iran.

Received 29 July 2017; received in revised form 6 October 2018; accepted 12 October 2019

KEYWORDS

Virtualization

obfuscation;

Malware analysis;

Automated

deobfuscation;

Twincode generation.

Abstract. Malware analysis is essential to understanding the internal logic and intent of

malware programs in order to mitigate their threats. As the analysis methods have evolved,

malware authors have adopted more techniques such as the virtualization obfuscation

to protect the malware inner workings. This manuscript presents a framework for

deobfuscating software, which abstracts the input program as much as a mathematical

model of its behavior through monitoring every single operation performed during the

malware execution. Also, the program is guided to run through its di�erent execution

paths automatically in order to gather as much knowledge as possible in the shortest time

span. This makes it possible to �nd hidden logics and deobfuscate di�erent obfuscation

techniques without being dependent on their speci�c details. The resulting model is

recoded as a C program without the arti�cially added complexities. This code is called

a twincode and behaves in the same manner as the obfuscated binary. As a proof of

concept, the proposed framework is implemented and its e�ectiveness is evaluated on

obfuscated binaries. Program control
ow graphs are inspected as a measure of successful

code recovery. The performance of the proposed framework is evaluated using the set of

SPEC test programs.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Malware programs have evolved rapidly over the past

decade, initially developed for fun, now being tools for

�nancial pro�t and espionage. The new generation

of malware, as depicted by the EquationDrug and

the GrayFish [1], are constructed from well-developed

modules responsible for a variety of duties such as ex-

ploitation, C&C communication, rootkit functionality,

and so on. For example, the main module of the

Flame [2] occupies about 6 MB and integrates all of

the noted components together.

*. Corresponding author. Tel.: +98 21 6616 6627

E-mail addresses: b momeni@ce.sharif.edu (B. Momeni);

kharrazi@sharif.edu (M. Kharrazi)

doi: 10.24200/sci.2019.21601

Understanding the internal logic of a malware

is of great importance in order to defend against it

and limit its e�ectiveness. For example, knowledge of

the Domain Name Generation (DNG) algorithm of a

botnet could be used to predict its following command

and control domain name; the propagation IP address

selection algorithm of a worm indicates its infection

strategy and may provide insight into its target goals;

and knowledge of vulnerabilities employed by a rootkit

make it possible to immune systems to them. Gaining

this knowledge is not easy, because malware authors

use obfuscation techniques to protect the internal logic

of their code. Although initial obfuscation techniques

focused on changing the function names or replacing

them with multiple functions to create a more complex

looking code, as time has passed, much more advanced

techniques have been proposed to obfuscate the code

not only in its look but also in its logic.

3486 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

One of the advanced obfuscation techniques

currently being used is Virtualization Obfuscation

(VO) [3]. VO can be seen as a virtual machine for

a dynamically constructed computing architecture in-

stance. In its simplest form, the obfuscator has a single

virtual language consisting of a small set of assembly

instructions. Given a program in source/binary form,

it is (re)compiled to this virtual language. The obfus-

cator can translate each assembly instruction from the

source language (e.g., x86 assembly) to one or more

instructions in the target language. Finally, it assigns

random opcodes to the target language instructions.

This makes the �nal binary representation look like

pseudorandom bytes. The resulting code is stored in

the data section and the executable code is replaced

with a dynamically generated interpreter.

Many deobfuscation methods [3-8] depend on

speci�c aspects of the obfuscator. In the analysis of a

VO protected malware, static solutions need to analyze

the executable, which is entirely replaced with the VO

interpreter code. Therefore, they need to go deep into

the data section, distinguish those bytes as data and

encoded virtual opcodes, and decipher them into a

set of instructions for the used virtual machine. This

makes static analysis impractical specially if the VO

is combined with other obfuscation techniques such as

anti-disassembly and data encryption tricks. Dynamic

solutions are also challenging since many aspects of

the software runtime behavior such as Control Flow

Graph (CFG) and memory/registers access patterns

have changed. For example, although a solution, which

inspects executed branches to reconstruct the program

CFG, obtains a view of the VO interpreter CFG, it

misses the higher level CFG, which has been formed

among the virtual instructions. This may require the

deobfuscator to put more precise assumptions about

the VO strategy to focus on the hidden virtual program

and the deobfuscator may fail when those VO strategies

or used template languages are changed.

There have been two general approaches to deob-

fuscating the code. Consider an image which has been

broken into pieces like a jigsaw puzzle. One approach to

solving the puzzle and restoring the image is to examine

how each individual piece can �t into another piece.

For example, the low-level obfuscation patterns [9]

are listed in a database and whenever one of them

is detected in the obfuscated binary, it is replaced by

its corresponding original code. Nevertheless, growing

number of possible obfuscation techniques/patterns

and dependence on the proper knowledge about each

pattern complicate such an approach. An alternative

approach is to focus on the major image components

(e.g., a cloud in the sky) and try to group puzzle pieces

which hold a similar content together. These solu-

tions [10] consider high level characteristics such as the

syscalls existence and capture the related instructions

(e.g., to prepare syscall arguments). Such methods

can be used against new obfuscators to analyze their

behavior (e.g., list called syscalls), but they are not

useful for learning the internal logic, such as the

DNG algorithm of a bot or hidden behavior, e.g., a

backdoor which remains inactive until a secret message

is received. In other words, like in our puzzle example,

those solutions put a number of pieces in the center of

the puzzle as they look related to the mountains and

put other pieces at the top as they look like the clouds,

but they cannot match pieces which are gathered at the

top or in the center of the puzzle together. They cannot

generate any source code, detect/remove any deadcode,

or analyze hidden logics, which may be executed if the

malware environment is di�erent.

This manuscript proposes a middle approach to

the deobfuscation problem. Like in the puzzle example,

an alternative approach is to understand what the

image is and to slice it to create a new puzzle, which

shows the same image but with much simpler pieces.

In the context of deobfuscation problem, we mathe-

matically model the malware by capturing its behavior

alongside all possible execution paths. Afterwards, the

obtained model is used to generate a new code, namely

twincode, which is a compilable C program without the

initial arti�cial complexities of the obfuscated malware

and behaves exactly as the original binary. Most

importantly, twincode enables an analyst to inspect

the functionality of di�erent parts of the program by

modifying, compiling, and reevaluating it as required.

In the proposed framework, dynamic analysis is

employed to instrument the input binary using Pin [11],

tracing all assembly instructions, and monitoring the

binary (including changes in registers, memory, and in-

voked syscalls). Furthermore, to decrease the required

resources for a �xed degree of deobfuscation, concrete-

symbolic (concolic [12,13]) execution is employed by

which concrete inputs (and required environment con-

�guration) drive the execution through a speci�ed

path while the executed instructions are also inspected

symbolically to �nd the input/output relationship for

all inputs which could drive the program through the

same execution path. As the program becomes more

complicated, an open opportunity for understanding

the internal code logic is maintained. Understanding

the internal logic of a malware such as DNG algorithm

of a bot, generation of comprehensive behavioral signa-

tures for categorizing malware in their related families,

debugging benign software which are obfuscated, and

analysis of close sourced and obfuscated benign soft-

ware for the presence of concealed backdoor are a few

possible use cases of this framework.

The resulting twincode has a CFG similar to

that of the original code. It performs the same

memory changes as the original code and invokes the

same syscalls with the same parameters and mem-

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3487

ory/registers states. Behavior of complicated oper-

ations is captured by symbolic expressions in order

to eliminate the e�ects of the junk codes. Since

twincode is obtained by monitoring and simplifying the

program behavior through di�erent execution paths,

it is e�ective against behavior-preserving obfuscations.

For example, if an obfuscation transformation adds to

program behavior by checking for existence of a �le, its

corresponding twincode will also check for existence of

that �le. Twinner framework implementation is open

sourced and available to the research community.

The contributions of this manuscript can be sum-

marized as:

1. Proposing an automated deobfuscation frame-

work based on the deep abstraction and recoding

approach, keeping deobfuscation independent of

known obfuscators;

2. Providing a canonical representation of the deobfus-

cated code (i.e., twincode), which is a structured C

code with the same runtime behavior as the input

program, but simpli�ed for easier analysis;

3. Evaluating the proposed framework by employing

a proof of concept implementation to deobfuscate a

series of VO protected binaries.

The rest of this manuscript is structured as

follows. Section 2 enumerates and brie
y explains the

related deobfuscation techniques. Section 3 describes

the proposed framework. It enumerates key framework

elements and reduces the deobfuscation problem into a

set of subproblems. Section 4 deals with the implemen-

tation details of the proof of concept code, which is used

for the practical evaluations in Section 5. Afterwards,

Section 6 discusses the remaining challenges and how

they can be addressed, and compares the proposed

framework and other related works objectively. The

manuscript is concluded in Section 7.

2. Related work

Analysis and deobfuscation solutions can be put in

the following general categories. Some methods try

to detect obfuscation layers and reverse them one

by one. Such solutions [3,5] lead to high quality

results but are always a step behind the obfuscators.

Alternatively, a number of methods focus on speci�c

program features which are hard to hide, such as used

syscalls. These methods [6,10] work in the presence of

new obfuscation techniques but produce lower quality

results. Some frameworks [14,15] use these approaches

to present binary inspection services to higher level

analysis algorithms. But, there is also a third middle

approach, which is not investigated adequately. It is to

try to remove obfuscation e�ects by abstracting pro-

gram features and then, recoding the resulting abstract

behavioral model. This approach minimizes the trans-

formation errors since no program portion is ignored

during the inspection and simpli�cation process and

works despite future/unknown obfuscation techniques,

because the higher abstraction of the intermediary

model captures the core logic of the protected program

itself independent of the applied obfuscations. The rest

of this section enumerates and brie
y compares some

of the most notable studies related to the proposed

framework.

The Rolles [3] method from the �rst category em-

ploys symbolic execution to map di�erent parts of a VO

protected malware onto symbolic functions. It assumes

that the VM interpreter is reverse engineered once and

the only unknown thing about it is the randomization

of its opcodes and/or internal obfuscations of the VM

code. It also assumes that it is noti�ed when the

execution of the VM part starts. The VM parts are

converted to symbolic functions and compared with

the reverse engineered VM parts using theorem proving

techniques. When it �nds invoked parts, it replaces

them with the reversed codes. This method fails if (a)

the malware used VM is instantiated from a di�erent

family of VMs (with some di�erent template language)

or (b) the theorem prover cannot �nd the equivalent

symbolic function of the executed part among reverse

engineered parts.

Kinder [4] approaches this problem by static

analysis. The main issue of the static analysis is

domain-
attening, in which the analysis of the VO

protected malware leads to analysis of the interpreter.

Assuming that VM has a decode-dispatch style, there

would be some Virtual Program Counter (VPC) in-

dicating the virtual opcode, which should be executed.

Assuming that the VPC can be found by some analysis,

Kinder resolves the domain-
attening issue by creating

a separate state per each value of (PC, VPC) pair.

This method does not recover any code to allow further

analysis of the resulting program, but allows analysis

of the malware behavior statically without merging

calculated states after each cycle of the decode-dispatch

loop.

Yadegari et al. [5] used taint propagation to

identify data
ows during an execution and then,

applied a series of semantics preserving transformations

to simplify that logic. For this purpose, they employed

Ether to obtain code traces and then, applied �ve

simpli�cation methods to the traces. Finally, they

constructed a CFG from the simpli�ed traces. This

method can work for packers which do not test their

environment settings (e.g., execution delay) to conceal

their runtime behavior. Peng et al. [16] proposed an

algorithm for exploring all possible execution paths of

an input program. It forces branch instructions by

changing them in memory to follow an intended side.

ROPMEMU [17] focuses on return oriented pro-

3488 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

gramming as an obfuscation technique. It uses dynamic

analysis to discover ROP gadgets, chain them to obtain

higher level traces by skipping over some of return-to-

library functions, and then merges gadget contents. It

reconstructs CFG diagrams from these gadgets as its

deobfuscated output. It also applies standard compiler

optimizations in order to remove some redundancies.

Methods from the second category resist more

complicated obfuscations, but they need to sacri�ce

their output completeness. The Coogan et al.'s [10]

method relaxes the problem from reversing the given

code into eliminating as much VM code as possible.

It achieves this by inspecting invoked syscalls, check-

ing their arguments, and �nding causal dependencies

among instructions to �nd codes with some in
uence

on those arguments. The Rotalum�e method [6] focuses

on reversing the code of the VM itself (instead of the

protected code, which is encoded in the data section).

For this purpose, it needs to know about the used

opcode values (random numbers) and their meaning.

It assumes that VM has a decode-dispatch structure in

which a big loop over a switch-case statement fetches

opcodes and then, jumps to the corresponding part of

the VM to emulate that instruction. Accordingly, Ro-

talum�e tries to �gure out fetched numbers as opcodes

and code parts, which are executed after each fetch as

their corresponding functionalities.

Another kind of malware obfuscation, which

is worth noting, is using weird machines. Weird

machines [18] are used in some unexpected manner.

For example, the ELF �le metadata can be used as

a Turing-complete language to execute the malware

while the executable program is not yet loaded [19].

Since our method starts instrumenting the input

program before the start of runtime loader, it can

watch instructions of runtime loader itself and generate

twincode of ELF-metadata weird machine. However,

there are weird machines which employ kernel-level

codes for their execution. As the kernel code is not

instrumented by our method, such machines remain

undetectable. For example, a sequence of page fault

and double page fault handling procedures can be used

as a weird machine [20]. The weird machine executes

the malware completely while no single instruction is

fetched to be executed yet.

3. Framework

Even though dynamic analysis is a powerful approach

to binary analysis, it has a set of issues which need

to be considered. Speci�cally, the executed code may

be analyzed incompletely due to missing proper inputs

to uncover important code portions. Even when the

program is executed along an interesting path, it may

look too complex since a simple logical operation could

be replaced with an obfuscated version. The �rst issue

1 int getsecret (unsigned int key, int salt) {

2 if (key > 5)

3 while (key > 0)

4 key++;

5 else if (salt > 5)

6 if (key > 6)

7 return complicatedFunction (key);

8 else

9 return (key>>24)

10 | (key>>16) | (key>>8) | key;

11 return (key ˆ salt) % 1024;

12 }

Figure 1. An example code with several obfuscations,

e.g., a while loop, which does not stop before an over
ow;

an unreachable code that calls a complicated function; and

some arithmetical obfuscations.

leads to a trade-o� between the dynamic code coverage

and the used time and memory resources. The second

issue can lead, in an extreme case, to analysis of the

used packing and/or emulation code instead of the

protected code, in
uencing the analysis e�ectiveness.

In order to better understand the two noted

issues, consider the code presented in Figure 1. For

example, all code lines except lines 9-10 are there to

hide the main logic of the getsecret function. Each

time the program is executed, information about one

of its many execution paths is obtained, depending on

the values passed to the function as input. Without

prior knowledge about the internal logic of the code,

it is challenging to distinguish between inputs, which

activate important paths or alternatively trigger traps

providing no useful analysis results.

Furthermore, after traversing di�erent execution

paths and identifying deadcodes, important parts of the

code may contain further obfuscations. For example,

the conditional branch of line 2 guarantees that the

key �ts in one byte when line 9 is being executed.

Thus, lines 9-10 can be simpli�ed to return the key

itself. Hence, each analyzed execution path should

be simpli�ed based on the asserted constraints in

the collected context in order to remove the path-

dependent obfuscations.

In what follows, the twinner framework is pre-

sented, which eliminates both syntactical and logical

obfuscations by observing the executed binary code

during a gray-box instrumented run, modeling its

behavior, simplifying the model by abstracting the be-

havior/logic, and then regenerating the code according

to the simpli�ed logic. It should be noted that it is

di�cult to conceal high level program behaviors. For

example, a variable may be stored in multiple memory

locations to hide existence of a common variable.

However, still those addresses have to be used instead

of that common variable. Thus, abstracting out the

memory addresses used cancels out the e�ect of such

an obfuscation. In fact, the higher the abstraction

level, the easier the transformation to simpli�ed logic

in practice.

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3489

Figure 2 shows the proposed framework in

which the components/products are shown as rect-

angles/ellipses. This framework inspects an input

obfuscated program iteratively using dynamic analysis.

In each iteration, an execution path of the program

is analyzed to obtain the relevant information of that

part. Meanwhile, the program interacts with its

environment, manipulates its memory/registers, and

invokes syscalls. A malware can hide its logic in each

part. For example, it can move user input through

many locations to evade its ultimate usage place or it

may obfuscate the memory contents by non-interfering

dummy operations such as calculating (� + 1) � 2� 2

instead of 2� expression.

All such activities are monitored symbolically

to aggregate the obtained information and form an

abstract behavioral model. Behavior of the program

is simpli�ed in two phases. First, while capturing each

execution trace, several simpli�cation rules are applied

to the program input-to-output symbolic relationships.

Second, while updating the behavioral model based on

the simpli�ed traces, a theorem proving tool is used

to further simplify expressions and constraints as well

as to remove possible deadcode branches. The model

evolves by each iteration and at the end, a twincode

is generated, which has a simpli�ed logic but behaves

exactly as if it is the original code.

The Concolic Execution Engine (CEE) compo-

nent, shown at the bottom of Figure 2, deals with the

dynamic analysis challenges, runs the protected binary

in an speci�c desired path, and reports its symbolic

execution results. The Program Search Strategy (PSS)

Obfuscated Program

Concolic Execution

Engine (CEE)

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12

c13

Execution Trace

Graph (ETG)

c1

c2

cn

s1

sk

c3

c4

s2

Trace

s1

Program Search

Strategy (PSS)

Satis�ability Modulo Theories

Solver (SMTS)

Execution

Constraints

Symbolic

Constraints

Symbols Values

Assignment

Figure 2. The deobfuscation framework in which

components are shown as rectangles and products are

drawn as ellipses.

component, shown at the center of Figure 2, employs

the CEE in each iteration to learn about an execution

path, updates its behavioral model accordingly, decides

about the next path, and places a new call to the CEE

component to analyze the next selected path. The

PSS component also consults with the Satis�ability

Modulo Theories Solver (SMTS) component, at the top

of Figure 2, in order to �nd the required concrete inputs

to inspect the next program paths and to simplify the

obtained mathematical model.

The rest of this section discusses the proposed

code behavior modeling approach in Section 3.1. After-

wards, Section 3.2 describes how the obtained model

can be simpli�ed by abstracting its behavior/logic and

Section 3.3 discusses how it can be encoded as a

twincode for further analysis.

3.1. Path exploration and modeling

An intermediate goal of the proposed deobfuscation

framework is to obtain a behavioral model of the

protected binary. This model is represented by the

Execution Trace Graph (ETG) in the middle of Fig-

ure 2. Upon running a program, a series of assembly

instructions are executed depending on the program

inputs and its environment (e.g., network status). Each

one of the followed execution paths covers parts of

the program, forming a trace, which indicates a list

of events including the satis�ed conditions, the changes

in the memory/registers contents, and invoked syscalls,

all as symbolic expressions.

statement s ::= con�ned c j illuminated i: (1)

Eq. (1) shows two types of statements which can

be seen during the execution. Con�ned statements

are those which are instrumented and their complete

behavior can be tracked symbolically. Illuminated

statements constitute the sources of uncontrolled ran-

domness, such as invoked system calls. When a

con�ned statement is executed, it updates the concrete

memory state, the symbolic changes of the program,

and satis�ed constraints. When an illuminated state-

ment is executed, it changes the concrete program state

in an uncontrolled way and hence, it can lead to the

creation of new symbols. The operational semantics

of statements execution is shown in Figure 3. Each

operation rule has the form of Eq. (2), in which E

(bottom-left) shows the current state of the program

and s indicates the current statement. For execution

of s, a series of computations are carried out (top)

and consequently, the program state is updated to E

0

(bottom-right). The next statement is shown by s

0

:

computations

E; s E

0

; s

0

Name-of-Operation: (2)

The �rst rule in Figure 3 models the execution of a

con�ned statement c while the concrete program state

3490 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

f = Behavior(c) c = Condition(c) c(S) = > c

0

= c �mC

j

s = Next(f(S); c)

S; j; hT S

k

i

j�1

k=1

; C

j

;mC

j

;mI; c f(S); j; hT S

k

i

j�1

k=1

; C

j

^ c

0

; f �mC

j

; mI; s

CONFINED-OP

S

0

= S �mI[j + 1] SC

j

= Terminator(i) T S

j

= (C

j

;mC

j

; SC

j

) s = Next(S

0

; i)

S; j; hT S

k

i

j�1

k=1

; C

j

; mC

j

;mI; i S

0

; j + 1; hT S

k

i

j

k=1

;>; id

mS

; mI; s

ILLUMINATED-OP

Figure 3. Operational semantics for execution of the program in CEE.

is denoted by S. Behavior(c) : mS ! mS is a

function from the current memory state (S) to the

next state, encoding how the statement c updates the

program state. The memory state mS := N ! N is

a map from memory addresses (and registers) to their

encoded values. Finally, Condition(c) : mS ! f?;>g,

is a function over the current program state, encod-

ing the constraint which was checked by statement

c. Updating the environment to invert the value of

Condition(c) can change the subsequent instructions.

Each execution trace, modeling a single execution

path, can be divided into multiple trace segments

(T S

k

) by illuminated statements. This division allows

the symbolic changes of con�ned statements in each

fully instrumented sequence of instructions to be kept

separately. It also allows memory symbols, which are

introduced by execution of illuminated statements, to

be controlled and initialized at the beginning of each

trace segment.

The CONFINED-OP rule updates the concrete state

(S) by passing it through the behavior function of c

statement (f(S)). As it does not �nish the execution

of a trace segment, the segment index (j) remains

unchanged. Similarly, the sequence of trace segments

(hT S

k

i

j�1

k=1

) is not a�ected. But, the symbolic encoding

of memory changes and satis�ed constraints in the

current segment (T S

j

) should be updated based on the

behavior (f) and condition (c) functions of statement

c. mC

i

: mS ! mS, which maps the old program state

(exactly before execution of T S

j

) onto its new state

(after execution of T S

j

), can be updated by combining

with the behavior function (f � mC

j

), because the

program state should undergo changes of all executed

instructions, sequentially (f(mC

j

(:))). C

i

: mS !

f?;>g inspects the old program state (exactly before

execution of T S

j

) and reports whether all assertions

of T S

j

are satis�ed (C

i

(:) = >) or some alternative

sequence of statements and their corresponding seg-

ment should be executed (C

i

(:) = ?). Because the

condition function (c) of statement c operates in the

current program state (S), we have to update it to

take care of program state di�erences (c

0

= c � mC

j

)

so that it can process the old program state and

then, update the segment assertions using a boolean

conjunction (C

j

^ c

0

). mI : N ! mS, which indicates

how new symbols should be initialized at the beginning

of each trace segment, is not a�ected too. Finally, the

next statement, which is observed during the concolic

execution, is denoted by s = Next(f(S); c).

S

0

= S �mI[j + 1](x)

=

(

mI[j + 1](x); mI[j + 1](x) 6= ?

S(x); otherwise

(3)

The ILLUMINATED-OP rule is invoked after execution of

an illuminated statement (i) and when the program

state has been updated out of the instrumentation

control. The program state (S) needs to be updated

as dictated in its corresponding memory initialization

function (mI [j + 1] : mS where mS = N !

N [f?g). As shown in Eq. (3), the new state is

formed by overriding the memory cells which have been

assigned to a new value by PSS decision. The trace

segment index is increased to (j+1) and the new trace

segment is appended to the sequence of trace segments

(T S

j

= (C

j

;mC

j

; SC

j

)). C

j

and mC

j

are symbolic

conditions and behavior encodings of the segment,

which are accumulated during the execution of trace

segment T S

j

, and SC

j

= Terminator(i) denotes

the terminating operation, which �nishes execution of

that segment (e.g., invoking the \open" system call).

The condition and behavior tracking functions need

to be updated for the new trace segment too. For

this purpose, a tautology function (>) is assigned as

the new condition (C

j+1

) and an identity function

(id

mS

(x) = x for x 2 mS) is used for initializing the

behavior function.

De�nition 1 (Trace): The trace T

n

is a sequence of n

trace segments hT S

k

= (C

k

;mC

k

; SC

k

)i

n

k=1

where the

T S

k

models a section terminated by SC

k

2 N. C

k

:

mS ! f?;>g, and mC

k

: mS ! mS are obtained

as shown in the operational semantics in Figure 3 and

they denote the conditions which must be satis�ed in

the program state before execution of T S

k

in order to

guide the execution through the statements of T S

k

and

observe changes of mC

k

in the program state.

De�nition 2 (Guided execution): When a program

P is executed according to the operational semantics

in Figure 3 and its memory state is overridden at the

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3491

beginning of each trace segment T S

k

according to mI :

N ! mS, it is said that execution of P is guided by

the function mI. This guided execution is shown as

E [P ;mI], which is the set of all possible traces T that

can be obtained through the execution.

ETG is a graph consisting of all program traces.

It is not necessarily a tree, because parts of the ETG

can refer (via branches) to its other parts. However,

it does not correlate with the obfuscated program

CFG, because all branches that are resolved during

a trace are simpli�ed together. The ETG branches

only when there is an input-dependent condition.

For example, deobfuscating a VO protected program

eliminates all checks on the values of the pseudo-

opcodes, because inspecting those opcodes always leads

to their corresponding implementation in the used vir-

tual machine instance. Instead, the ETG corresponds

to the original program CFG. The ETG is eventually

encoded as the twincode, as will be discussed later in

Section 3.3.

The PSS component is responsible for driving the

deobfuscation process to extract information from the

input binary iteratively. Pointing to the algorithm

sketch in Figure 4, the PSS starts with an initial

execution of the P obfuscated program. This initial

trace establishes a single-path ETG to approximate

the input program. In each iteration, PSS executes the

binary through a new execution path trying to collect a

set of traces covering all assembly instructions (static

coverage) and all possible branching paths (dynamic

coverage). As an example, given that a read register

contains a symbol which was checked to be greater

than � to follow an execution path, PSS can assign a

number less than � to that symbol in order to guide the

program along a new path in the following iteration.

This issue is correlated with deadcode (i.e., the parts

which cannot be executed with any input) detection

challenge. To solve either of the above issues, the

PSS needs to know whether there is a set of concrete

values for the used symbols to drive the CEE along

a speci�c path. This problem is equivalent to solving

the constraints corresponding to the desired execution

path, which is known as Satis�ability Modulo Theories

(SMT) [21] solving. If an SMT query is proved to

be unsatis�able, the related code is a deadcode. If a

concrete solution can be found, the CEE can be guided

through that path.

The SMTS component, at the top of Figure 2, is

designed to respond to SMT queries of PSS. Since SMT

solvers are decision procedures, they can terminate

eventually. However, deciding that a SMT query is

satis�able is an NP-complete problem and can be a

performance bottleneck in the worst case. To ensure

that SMTS terminates in a polynomial time similar

to other components of the proposed framework, it is

possible to con�gure a deadline for solving each SMT

query and obtain a concrete solution. In the worst case,

when the SMT solver cannot answer within a �xed-time

deadline, the corresponding branch is left unexplored

and marked as possible deadcode. An alternative in

the worst-case scenarios is to negate the conditions of

non-conforming branches in memory so that the solver

can follow the desired side of each branch independent

of the used concrete values. However, it can be

used by a malware to slow down deobfuscation and

delay analysis of other execution paths. The current

PoC implementation does not use branch negation to

avoid analysis of possible deadcode areas and save the

analysis time for other parts.

The search strategy indicates which execution

path should be queried thereafter. Putting collected

traces together, it builds a conception of the complete

ETG, searches within it, and decides where to explore

more to construct a more comprehensive model. In

other words, in each iteration, the constructed graph

approximates the obfuscated binary in more details.

An example of the strategy is to perform Depth-

First Search (DFS) until an instruction is visited k

times (hence, k rounds of an input-dependent loop

unfolded). Search strategies and maximizing code

coverage are research subjects [22,23] in the �eld of

software automated testing.

Figure 4. Sketch of the PSS algorithm using SMTS for solving symbolic constraints and CEE for executing through the

intended paths.

3492 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

3.2. Abstraction and simpli�cation

As discussed earlier, dynamic analysis approaches need

to address two main issues, namely e�ectiveness and

dynamic coverage. In complex obfuscation scenarios,

such as VO, the analysis may follow the logic of the

used virtual machine instead of the protected code,

making the deobfuscation ine�ective (even though

technically correct). To overcome the e�ectiveness

challenge, instead of capturing the executed assembly

instructions (like [8]), CEE captures the behavior of

each executed instruction in terms of its mathematical

formula. Although instructions can be obfuscated,

their functionality and hence, the formula modeling

how registers and memory addresses are changed by

the program execution remain obtainable across all

obfuscations. In addition, dynamic coverage makes

a trade-o� between completeness of analysis and the

used time and memory resources. For this trade-

o�, concolic [12,13] execution is employed in which

all instructions are executed normally (therefore, anti-

disassembly techniques are mitigated automatically)

and each instruction is inspected symbolically (there-

fore, the obtained input/output relationship is not

restricted to the environment/concrete inputs).

Another challenge pertains to how to drive the

program during the dynamic analysis (under the con-

trol of the CEE) along the execution path, which is

determined by the PSS (in terms of a set of concrete

inputs). For this purpose, the CEE traces all input

values as symbols during the concolic execution. There-

fore, the CEE has the chance of modifying values of all

symbols in the memory and registers before they are

read by the program.

De�nition 3 (symbol): A symbol SYM = (v; t)

models a value which can be stored at some memory

address or register. v is the concrete value represented

by SYM in the current execution and t is the type of v

(e.g., uint16 t) indicating the set of values which could

be used by SYM.

De�nition 4 (more constrained initialization

relation): A memory initialization function mI

0

is

said to be \more constrained" than another memory

initialization function mI and is denoted by mI b

mI

0

if and only if mI

0

is exactly the same as mI,

but initializes more memory symbols. It is formally

depicted in Eq. (4).

8mI;mI

0

: N ! mS :mI b mI

0

()

�

mI 6= mI

0

^ 8j : N:8x 2 N:

mI[j](x) 6= ? =) mI[j](x) = mI

0

[j](x)

�

: (4)

An obfuscator can challenge dynamic analysis

solutions in two main ways. On the one hand, it

can add guard codes to hide the original program

at runtime. A notable guard code is the latency-

checker by which a time consuming action is performed

and its measured time is compared with a threshold.

As debugging slows down the execution, the malware

can detect such extra latency. In defense, the notion

of symbolic inputs can be extended to consider the

intermediate memory states. For example, the RDTSC

instruction loads the current time-stamp into registers.

Although this value is not a user-input, it is not

computed by the program either. It is a system-input.

The CEE component can mark such inputs and report

them back to the PSS. This resolves the guard code

problem by asking the PSS component to �nd user and

system inputs in order to maximize the analysis code

coverage.

On the other hand, the computed function can

be complicated (e.g., by additional neutral arithmetic);

as a result, the observed functionality of the program

remains incomprehensible. To address this issue, the

calculated symbolic expression is simpli�ed as it is

gathered by the instruction analysis routines based

on a set of expression simpli�cation rules. Some of

these rules are listed in Table 1. For the complete list,

the Operator subclasses from the exptoken namespace

in the Twinner git repository can be inspected. For

example, the �rst row of Table 1 states that the bitwise

AND of a symbol with jSj bits and some bitmask, which

is zero in its lowest jSj bits, removes the symbol S.

Theorem 1 (repeatability): Given a program P and

one of its traces T

n

= hT S

k

= (C

k

;mC

k

; SC

k

)i

n

k=1

,

which has been acquired through an execution E [P ;mI]

for some memory initialization function mI, either

repeating the execution E [P ;mI] always produces the

same trace or there exists a more constrained memory

initialization function mI

�

: N ! mS that always

produces the same execution trace, as depicted in

Eq. (5):

8P ;mI:8T

n

: E [P ;mI]:9mI

�

: N ! mS :

�

(mI = mI

�

_mI b mI

�

)

^jE [P ;mI

�

]j = 1 ^ T

n

2 E [P ;mI

�

]

�

: (5)

Proof. Repeating the execution E [P ;mI] (using

mI = mI

�

), a trace such as T

�

m

= hT S

�

k

=

(C

�

k

;mC

�

k

; SC

�

k

)i

m

k=1

is produced. If we can prove

equality of this arbitrary trace with the target trace

of the theorem (T

�

m

= T

n

), it is proved that no other

trace will be produced during that guided execution

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3493

Table 1. List of the runtime symbolic expression simpli�cation rules used within the CEE component. X � Z show

symbolic expressions; S shows a symbol; a� e show concrete values; j:j function shows the bit length; and len(.) represents

the number of used tokens.

Visited expression Simpli�ed formula Required context

S ^ a 0 (2

jSj

� 1) ^ a = 0

S ^ a S (2

jSj

� 1) ^ a = (2

jSj

� 1)

Z � a+ b Z � c c = a� b

Z ^ 0 0

Z

+

�

_

0 Z

(X _ Y) ^ a (X

0

_ Y

0

) ^ a X

0

= X ^ a, Y

0

= Y ^ a

len(X

0

) � len(X); len(Y

0

) � len(Y)

(X + Y) ^ a (X

0

+ Y

0

) ^ a a = 2

b

� 1

X

0

= X ^ a, Y

0

= Y ^ a

len(X

0

) � len(X); len(Y

0

) � len(Y)

(X

^

_

Y)� a X

0

^

_

Y

0

X

0

= X � a, Y

0

= Y � a

len(X

0

) � len(X); len(Y

0

) � len(Y)

(Z _ a) ^ b b a ^ b = b

(Z

^

_

�

a)

^

_

�

b Z

^

_

�

c c = a

^

_

�

b

(Z

�

�

a) ^ b (Z

0

�

�

a) ^ b Z

0

= Z ^ (b

�

�

a)

len(Z

0

) � (Z)

(Z

�

�

a)� b Z

�

�

c c = a� b

((Z ^ a) _ b) ^ c (Z _ d) ^ e d = b ^ c

e = (a _ d) ^ c

((Z ^ a)

+

�

�

b) ^ c (Z

+

�

�

b) ^ c a = 2

d

� 1; c = a ^ c

((Z ^ a)� b) ^ c (Z ^ a)� b c = 2

d

� 1; jaj + jbj � jcj

(Z � a)

�

=

b Z � c c = a

�

=

b

(Z

^

_

a)� b (Z � b)

^

_

c c = a� b

(Z

�

=

a)� b Z � d a = 2

c

; d = b� c; d > 0

and hence, jE [P ;mI

�

]j = 1 which completes the proof.

For this purpose, it is enough to show that n = jT

n

j =

jT

�

m

j = m and (C

k

;mC

k

; SC

k

) = (C

�

k

;mC

�

k

; SC

�

k

) for

1 � k � n. Also, in scenarios that this equality

cannot be proved, E [P ;mI

�

] can be changed by adding

more constraints to mI

�

in order to maintain the

equality of traces while the equation mI b mI

�

is

not violated. In these scenarios, the second form of the

target proposition (Eq. (6)) is proved.

�

(mI b mI

�

)^jE [P ;mI

�

]j=1 ^ T

n

2 E [P ;mI

�

]

�

:

(6)

In both traces, execution of P is initiated by the

same statement; thus, the initial states of T S

1

and

T S

�

1

trace segments are the same. If we can prove

that this equality is maintained during the execution

of the �rst trace segment and the same sequence of

statements is executed in both runs, the �nal system

call of both segments will be the same (since it is the

last statement obtained during the execution of the �rst

segment) and it observes the same concrete state of P

(because the equality has been preserved during the

execution of that trace segment). This ensures that

either both traces will terminate or both will continue

execution from the second trace segment. However,

the possible di�erences in the kernel state can make

the initial concrete states of the following two trace

segments di�erent.

By induction, we prove that if the �rst q trace

segments are equal (hT S

k

i

q

k=1

= hT S

�

k

i

q

k=1

), the

q + 1th trace segments (T S

q+1

and T S

�

q+1

), which

have to start with the same statements but di�erent

concrete states, can be made equal only by adding more

constraints to mI

�

while maintaining the equation

mI b mI

�

. This completes the proof by showing that

n = m, because no trace can be terminated earlier

when the concrete states of both are the same at the

time of invoking the same system calls. For this proof,

we should note that the �rst statement of T S

q+1

and

3494 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

S

0

q+1

= S

q+1

�mI[q + 1] SC

q

= Terminator(i) T S

q

= (C

q

;mC

q

; SC

q

) s = Next(S

0

q+1

; i)

S

q+1

; q; hT S

k

i

q�1

k=1

; C

q

;mC

q

;mI; i S

0

q+1

; q + 1; hT S

k

i

q

k=1

;>; id

mS

;mI; s

ILLUMINATED-OP:

(7)

Box I

T S

�

q+1

is an illuminated statement i, which is seen after

return of the SC

q

= SC

�

q

, while the concrete states of

the two runs (see Figure 3) can di�er (S

q+1

6= S

�

q+1

)

before executing i itself. However, after execution of i,

all following statements should be con�ned, because the

�rst following illuminated statement will terminate the

trace segment. Execution of the �rst illuminated state-

ment uses the operation rule of Eq. (7) shown in Box I.

The set of possible di�erence points between two

functions u; v : N ! N can be obtained by Eq. (8):

u� v = v � u = fx : Nju(x) 6= v(x)g: (8)

The possible di�erence points of the initial program

states (S

q+1

�S

�

q+1

) can either be overridden bymI[q+

1] during execution of i (in which case it is not required

to update mI

�

) or will remain di�erent in some cases

between two sets ((S

q+1

�S

�

q+1

)�fx 2 NjmI[q+1](x) 6=

?g). In this case, the concrete states can be made equal

by updating mI

�

[q + 1] according to Eq. (9) shown in

Box II. This ensures that S

0

q+1

= S

0�

q+1

.

Because this reasoning is made about an arbitrary

member of the new guided execution set (T

�

m

2

E [P ;mI

�

]), it shows that from any initial di�erence

set such as (S

q+1

�S

�

q+1

), an appropriate patch can be

constructed for updating mI

�

[q + 1] and consequently

equating trace segments T S

q+1

and T S

�

q+1

. However,

for constructing mI

�

[q + 1] in practice, there are two

approaches. One approach is to override all memory

cells which were not overridden by the �rst memory

initialization vector, as shown in Eq. (10):

mI

�

[q + 1] = S

q+1

�mI[q + 1]: (10)

Another approach is to repeat the execution

iteratively, once running E [P ;mI

(1)

], where mI

(1)

=

mI, in order to obtain di�erence sets and produce

mI

(2)

for overriding those di�erences and then, running

E [P ;mI

(2)

] to obtainmI

(3)

and so on. Since more cells

are initialized in each turn, the initialization vector

becomes more constrained (mI

(1)

b mI

(2)

b ::: b

mI

�

) and the guided execution set will converge to a

single-member set.

Since concrete program states are made equal, the

next executing statements in both trace segments will

also be the same (s = Next(S

0

q+1

; i) = Next(S

0�

q+1

; i)).

In addition, the initial constraints and behavior func-

tions are initialized with the same value (>; id

mS

).

Execution of the next con�ned statement c is per-

formed by the operation rule of Eq. (11), shown in

Box III.

Because both trace segments are running the

same c statement, their condition/behavior functions

will also be the same (f = f

�

and c = c

�

).

Furthermore, since S

q+1

= S

�

q+1

before execution

of c, the following concrete states will also be the

same (f(S

q+1

) = f

�

(S

�

q+1

)). Similarly, the updated

condition (Eq. (12)) and behavior (Eq. (13)) functions

will be equal. Finally, equality of the following concrete

states (f(S

q+1

) = f

�

(S

�

q+1

)) leads to execution of the

same following statements (s = Next(f(S

q+1

); c) =

Next(f

�

(S

�

q+1

); c)).

C

q+1

^ c

0

=C

q+1

^ (c �mC

q+1

)

=C

�

q+1

^ (c

�

�mC

�

q+1

) = C

�

q+1

^ c

0

�

; (12)

mI

�

[q + 1](x) =

8

>

<

>

:

mI[q + 1](x); mI[q + 1](x) 6= ?

S

q+1

(x); mI[q + 1](x) = ? ^ S

q+1

(x) 6= S

�

q+1

(x)

?; otherwise

(9)

Box II

f = Behavior(c) c = Condition(c) c(S

q+1

) = > c

0

= c �mC

q+1

s = Next(f(S

q+1

); c)

S

q+1

; q + 1; hT S

k

i

q

k=1

; C

q+1

;mC

q+1

;mI; c f(S

q+1

); q + 1; hT S

k

i

q

k=1

; C

q+1

^ c

0

; f �mC

q+1

;mI; s

CONFINED-OP:

(11)

Box III

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3495

f �mC

q+1

= f

�

�mC

�

q+1

: (13)

Repeating this reasoning for every following con-

�ned statement c, the concrete and symbolic program

states will remain equal in both trace segments until

execution of the next illuminated statement i, which

terminates the trace segment.�

Theorem 1 states that all programs are determin-

istic. That is, without interacting with the outside

world (e.g., an OS syscall), a program has no inherent

source of randomness which is not marked as a symbolic

input. In other words, since all instructions, which can

provide some inputs to the program (e.g., syscalls or

hardware timers), are instrumented, those inputs can

be modi�ed by CEE before being used for the �rst

time. For example, opening a �le may succeed/fail

at di�erent times, but even if a �le is deleted, the

malware can be made to believe that the �le is present

by feeding the �le data stream to the malware through

memory modi�cations. Ensuring that the environment

is not changed at all (or the malware cannot sense those

changes), re-executing it leads to the same results all

the times.

3.3. Twincode generation

Completing the introduced chain of components of

the proposed framework, this section explains how the

twincode is generated as the ultimate result. Twincode

is structured as the ETG, encoding the same conditions

of the analyzed program, preparing memory/registers

contents as a function of their previous states, and

invoking the same syscalls. Consequently, it behaves

like the obfuscated program with the di�erence that

its functionality is simpli�ed and visible in the C

code. Thus, it can be used as input to other analysis

techniques and/or manual inspection. Each trace

represents the program behavior during an execution

path. Therefore, if all execution paths of the input

program are determined, their corresponding traces can

be mined out and putting those traces together, the

�nal twincode can be generated.

De�nition 5 (twincode of a program): The twin-

code of the program P, shown as (P), is an encoding

of its ETG as shown in Figure 5.

The algorithm in Figure 5 starts with the ETG

root node and visits its nodes as follows. Visiting a

node such as u, which is connected to n other nodes,

an if-else construct is outputted having an if part

for each one of the n connected nodes. Upon visiting

a segment terminator node, the symbolic changes of

that part are simpli�ed using SMTS and outputted;

the syscall invocation code for its corresponding syscall

is outputted afterwards; register/memory symbols of

the next segment are instantiated and initialized with

concrete register/memory values at that time instant;

and the segment identi�er is incremented. Upon

Figure 5. Sketch of the twincode encoding algorithm.

visiting a previously encoded ETG node, its previous

encoding is reused by moving its corresponding code to

a separate function.

As the program is analyzed more in each iteration,

its new parts are discovered and its ETG is evolved.

Thus, any realization of the PSS must be able to

perform the search incrementally. Another feature of

the twincode is that, starting from di�erent obfuscated

versions of a program, similar twincodes are produced.

In other words, twincodes of all obfuscated versions will

contain traces which can be obtained from the original

program. This allows the twincode to be analyzed

instead of a speci�c obfuscated version.

De�nition 6 (equivalent programs): Two pro-

grams P and P

�

are equivalent, shown as P � P

�

,

if and only if they behave equivalently for all pos-

sible memory initializations (inputs), as depicted in

Eq. (14).

8P ;P

�

:P � P

�

()

8mI : N ! mS:E [P ;mI]=E [P

�

;mI]: (14)

Theorem 2 (equivalence): If O

P

and O

�

P

are two

obfuscated instances of program P, with the assumption

that the used obfuscation transformation has neither

eliminated nor added to the observable behavior of

P, both (O

P

) and (O

�

P

) are equivalent with P, as

depicted in Eq. (15).

8P ;P

�

;O

(:)

: [(O

P

� P) ^ (O

�

P

� P)] =)

 (O

P

) � (O

�

P

) � P : (15)

3496 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

Proof. In order to prove the target proposition

((O

P

) � (O

�

P

) � P) based on the given assumption

(O

P

� O

�

P

� P), we can use the proof by contradiction

technique. In other words, we should start by assuming

that Eq. (16) holds and show that it leads to a

contradiction.

[O

P

� O

�

P

� P]^[((O

P

) 6� P) _ (O

�

P

) 6� P] : (16)

Without loss of generality, assume that (O

P

) 6�

P holds (the same reasoning can be used about the

case of (O

�

P

) 6� P). Note Eqs. (17) to (22) shown in

Box IV.

Alternatively, in Eq. (19), it is possible to say:

9T

P[x]

m

2 E [P ;mI]:8T

 (O

P

)[x]

n

2 E [(O

P

);mI]:

T

 (O

P

)[x]

n

6= T

P[x]

m

:

However, due to their symmetry, we use the �rst

case without loss of generality. Thus, the opposite

assumption of Eq. (17) leads to O

P

6� P in Eq. (22),

which is in contradiction with the assumption of O

P

�

P .�

Providing better, faster, and more optimized

search strategies and/or SMT solvers, as presented

in [24], automatically provides a better twincode gen-

erator. This is a notable contribution, which allows

the research line of software deobfuscation to directly

bene�t from progress in the software automated testing

and SMT solving �elds. Any SMT solver can be �tted

in this framework a�ecting the analysis performance,

but not its correctness or completeness. The following

section explains the details of the implementation and

the related practical concerns.

4. Implementation

This section discusses how the implementation has

been carried out and enumerates some of the major

practical challenges which should be resolved in the

process. It is noteworthy that the proposed framework

has been implemented in C++ and consists of more

than 35 thousand lines of code. Furthermore, the

code is released under GPLv3 through the project page

in [25].

Figure 6 depicts the component diagram of this

reference implementation. The PSS is realized by

the twinner component. It provides a command line

interface to con�gure the deobfuscation parameters and

uses DFS as its search strategy. In each analysis

round, it forks a new process to execute the CEE;

extracts a trace information including a sequence of

satis�ed constraints; and updates the ETG accordingly.

Although the DFS works over an evolving graph, it

does not miss any part since the graph can be ordered

unambiguously. ETG nodes contain constraints and

are ordered in such a way that all constraints observed

in the former traces are placed on the left of those which

are seen afterwards.

<<component>>

<<platform>>

Pin Instrumentation Framework

<<component>>

<<pintool>>

TwinTool

<<component>>

Twinner

<<component>>

<<library>>

CVC4

<<component>>

Concolic Execution Engine

<<component>>

Program Search Strategy

<<component>>

Satis�ability Modulo Theories

Solver

Execution Constraints

Trace

Symbolic Constraints

Symbols Values Assignment

Binary Program

TwinCode
<<use>>

<<use>>

realizes

realizes

Executes on

realizes

Figure 6. Component diagram of the proposed

framework reference implementation.

 (O

P

) 6� P ; (17)

=) 9mI : N ! mS :E [(O

P

);mI] 6= E [P ;mI] B by De�nition 6; (18)

=) 9T

 (O

P

)[x]

n

2 E [(O

P

);mI]:8T

P[x]

m

2 E [P ;mI]:T

 (O

P

)[x]

n

6= T

P[x]

m

B by De�nition 2; (19)

=) 9T

O

P

[x]

n

2 E [O

P

;mI]:T

O

P

[x]

n

= T

 (O

P

)[x]

n

^ 8T

P[x]

m

2 E [P ;mI]:T

O

P

[x]

n

6= T

P[x]

m

B by De�nition 5; (20)

=) 9mI : N ! mS :E [O

P

;mI] 6= E [P ;mI] B by De�nition 2; (21)

=)O

P

6� P B by De�nition 6: (22)

Box IV

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3497

1 .section .rodata

2 .LC0:

3 .string "overflow\n"

4 .LC1:

5 .string "underflow\n"

6 .LC2:

7 .string "%d\n"

8 .text

9 main:

10 pushq %rbp

11 movq %rsp, %rbp

12 subq $32, %rsp

13 movl %edi, -20(%rbp)

14 movq %rsi, -32(%rbp)

15 movq -32(%rbp), %rax

16 addq $8, %rax

17 movq (%rax), %rax

18 movzbl (%rax), %eax

19 movb %al, -9(%rbp)

20 cmpb $47, -9(%rbp)

21 jle .L2

22 cmpb $57, -9(%rbp)

23 jg .L3

24 movsbl -9(%rbp), %eax

25 subl $48, %eax

26 movl $0, -8(%rbp)

27 jmp .L4

28 .L5:

29 addl %eax, %eax

30 addl $1, -8(%rbp)

31 .L4:

32 cmpl $9, -8(%rbp)

33 jle .L5

34 movl %eax, %esi

35 movl $.LC2, %edi

36 movl $0, %eax

37 call printf

38 movl $0, %eax

39 jmp .L7

40 .L3:

41 movl $.LC0, %edi

42 call puts

43 movl $-2, %eax

44 jmp .L7

45 .L2:

46 movl $.LC1, %edi

47 call puts

48 movl $-1, %eax

49 .L7:

50 leave

51 ret

(a) X86 64 code (AT&T syntax)

Complete CFG

root

L21: jle .L2

F T

L23: jg .L3

F T
L45

L31 L40

L28

L33: jle .L5

F T

L37

L49

L42 L47

(b) Non-pruned CFG

Sample ETG

root

L21: jle .L2

F T

L23: jg .L3

F T
L45

L37

L40

L49

L42

L47

(c) The ETG

1 #include "twincode.h"

2

3 int main (int argc, char *argv[]) {

4 struct RegistersSet regs;

5 SAVE_REGISTERS (regs);

6 const UINT64 rax_0 = regs.rax, rbx_0 = regs.rbx, rsp_0 = regs.rsp,;

7 const UINT8 m7fffffffe5eb_0_8 = *((UINT8 *) 0x7fffffffe5eb);

8

9 if ((((UINT64 (rsp_0) + UINT128 (0xffffffff, 0xffffffff, 0xffff8000, 0x1d28)) & 0xffffffffffffffff) == 0)) {

10 if ((((UINT64 (argv[1]) + UINT128 (0xffffffff, 0xffffffff, 0xffff8000, 0x1a15)) & 0xffffffffffffffff) == 0)) {

11 if ((UINT128 (0x0, 0x0, 0x0, 0x2f) < signExtend_0x80_0x8 (UINT64 (m7fffffffe5eb_0_8)))) {

12 if ((UINT128 (0x0, 0x0, 0x0, 0x39) >= signExtend_0x80_0x8 (UINT64 (m7fffffffe5eb_0_8)))) {

13

14 regs.rdi = UINT64 (0x4006a7);

15 regs.rsi = UINT64 ((((signExtend_0x20_0x8 (m7fffffffe5eb_0_8) - 0x30) * 0x400) & 0xffffffff));

16 printf (/*"%d\n"*/ (const char *) 0x4006a7,

17 (UINT64) (((signExtend_0x20_0x8 (m7fffffffe5eb_0_8) - 0x30) * 0x400) & 0xffffffff));

18 regs.rax = UINT64 (0x0);

19 return int (regs.rax);

20 } else {

21 regs.rdi = UINT64 (0x400694);

22 puts (/*"overflow"*/ (const char *) 0x400694);

23 regs.rax = UINT64 (0xfffffffe); // -2

24 return int (regs.rax);

25 }

26 } else {

27 regs.rdi = UINT64 (0x40069d);

28 puts (/*"underflow"*/ (const char *) 0x40069d);

29 regs.rax = UINT64 (0xffffffff); // -1

30 return int (regs.rax);

31 }

32 }

33 }

34 }

(d) Twincode of the above assembly code

Figure 7. Example assembly code, corresponding CFG, ETG, and twincode depicting some of trace extraction runtime

challenges such as requirements for the management of the memory consumption, constraint simpli�cation, and other

abstractions.

For example, consider the program shown in

Figure 7(a). It reads an input byte in line 18; compares

it in lines 21 and 23 to �lter out small and large

values; computes a function over the input in lines

27-34; and prints the result in lines 35-37. Assume

that the �rst execution goes through the left path

shown in Figure 7(c) (false branches of lines 21 and

23 conditions). When the DFS �nishes traversing the

subgraph starting at L37, i.e., left child L of constraint

C of node L23, it continues by asserting all constraints

from the root node of ETG up to C and negation of

constraint L. The next execution of the program will

produce a list of constraints starting with L21 and L23.

Therefore, the new nodes which are added to the ETG

are placed in the subgraph starting at right child of C

and the DFS does not miss the ETG parts which are

added during the search.

The CEE is realized by twintool, which is imple-

mented within the ldmbl [26] architecture. The ldmbl

architecture abstracts low-level OS and hardware-

dependent implementation details based on the Pin [11]

Dynamic Binary Instrumentation (DBI) framework in

order to facilitate heavyweight instrumentation use

cases such as concolic execution. Twintool is responsi-

ble for extracting a single trace from the given binary.

It runs the input program concolically, instrumenting

all assembly instructions, tracking memory, and reg-

ister changes symbolically. This gray-box approach

has the advantage that the intermediate conditions

which have been inspected by the binary will become

visible to twintool and can be recorded in the trace

without any dependence on extra information, such as

a speci�c compiler or the source code, which is normally

unavailable during the malware analysis. The intel64

assembly instructions are represented by 1148 di�erent

mnemonics, each one having several modes for di�erent

operands. For example, the SUB mnemonic encodes

22 distinguished forms [27, p. 1459] such as SUB AX,

imm16 and SUB r/m8, r8. Deobfuscating a program

needs all of the used forms of its assembly instructions

3498 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

to be supported in the twintool. To make it scalable,

twintool implements a Generic Instrumentation Layer

(GIL) as designed in the ldmbl [26] architecture. It

automatically detects operand types (e.g., memory

address) and their read/write sizes; organizes them

within 40 generic categories (e.g., DstRegSrcImplicit);

and instruments them using a set of Generic Analysis

Routines (GARs). Thereafter, every invoked GAR

�nds the appropriate instruction analysis callback;

wraps operands with proxy objects hiding di�erent

operand types/sizes; and invokes the callback to op-

erate on them.

There are three proxy classes for memory, reg-

ister, and constant values. Each one allows reading

and writing (on mutable expressions), taking care

of separation of pintool and input program memory,

operation sizes, and overlapping locations. For exam-

ple, the RegisterResidentExpressionValueProxy class

updates EAX , AX , AH , and AL registers when an

instruction updates the RAX register. This allows each

instruction analysis routine to focus on its own speci�c

logic while the GIL applies it to a bunch of lower-level

assembly instruction models.

Figure 8 shows implementation of the ADD in-

struction analysis routine. It reads immutable/mutable

source/destination expressions from proxy objects at

lines 4 and 6, clones the destination expression at line

7, performs symbolic addition at line 9, and updates the

destination (memory or register) using the proxy object

at line 10. The abstraction provided by the twintool

library makes it more extensible and easier to support

new assembly instructions. For example, whenever an

address is accessed for the �rst time, a new symbol

is allocated for it. If an ADD instruction uses a new

user input as its source operand, line 4 of Figure 8

allocates the new symbol for it. Afterwards, symbols

may be copied to other addresses and/or undergo

di�erent operations (e.g., addition and multiplication).

When symbols are created, some concrete values exist

in them. Those initial values form the concrete state

of the program and dictate which execution path will

be followed within its running instance. Consequently,

the program can be forced to follow another path by

changing initial values of the symbols. Finally, line 11

updates the EFLAGS register with an AdditionOpera-

tionGroup object, which can be queried in the following

conditional instructions, e.g., conditional branches.

The last component of the framework (i.e., the

SMTS) is realized using the CVC4 [28] library for

solving symbolic constraints. It accepts a set of

symbolic constraints and produces one of the three

possible answers. It analyzes constraints to �nd a

concrete solution satisfying all of them, simultaneously.

If constraints are unsatis�able, the CVC4 library either

proves this fact or fails after a maximum analysis time.

Several challenges arise here. First, the constraints

which twintool has extracted from the binary may

depend on the real inputs to the program and/or

arti�cially added parts such as the VM interpreter code

in a VO scenario or the decryptor/decompresser code

for a packed malware. Next, these symbolic constraints

may become more and more complicated; as a result,

keeping them in the memory becomes a challenge. This

makes solving of those constraints time consuming or

infeasible within the given time limits.

Addressing these challenges requires more knowl-

edge about the program inputs and how they a�ect

the execution path. The �rst input category is user

inputs, which are given as initial values to the program,

and the second category is system inputs (including

syscalls), which may depend on states which are hidden

from the malware. User inputs (i.e., command line

arguments of the program and environment variables)

are placed in the stack and can be read by the program.

Consequently, they change the execution path either

(a) explicitly, via conditional branches (e.g., je .L2);

or (b) implicitly, via calculated values (e.g., movq

-16(%rbp), %rax; jmp %rax). The next in
uencing

factor (i.e., syscalls) depends on the OS. This includes

reading from a �le, network communication, or even

reading from the standard input. A typical syscall

receives some arguments from the caller program (e.g.,

a bu�er given to \read(fd, buf, len)") and completes its

logic according to the given arguments and other parts

of its memory (state of the caller process, in general,

such as the open \fd" �le descriptor) as well as the

internal state of the kernel itself (e.g., the mounted �le

systems). Finally, syscall may change any parts of the

caller's memory and/or registers.

On the one hand, the user and system inputs

are captured as symbols. On the other hand, ob-

fuscator related data items such as arti�cial arith-

metic operations are treated as constants. For ex-

ample, the virtual opcodes which encode the text

1 void InstructionSymbolicExecuter::addAnalysisRoutine (const MutableExpressionValueProxy &dst, const ExpressionValueProxy &src) {

2 edu::sharif::twinner::trace::Trace *trace = getTrace ();

3 edu::sharif::twinner::util::Logger::loquacious () << "addAnalysisRoutine(...)\n\tgetting src exp...";

4 const edu::sharif::twinner::trace::Expression *srcexp = getExpression (src, trace);

5 edu::sharif::twinner::util::Logger::loquacious () << "\tgetting dst exp...";

6 const edu::sharif::twinner::trace::Expression *dstexpOrig = getExpression (dst, trace);

7 edu::sharif::twinner::trace::Expression *dstexp = dstexpOrig->clone ();

8 edu::sharif::twinner::util::Logger::loquacious () << "\tbinary operation...";

9 dstexp->add (srcexp);

10 setExpression (dst, trace, dstexp);

11 eflags.setFlags (new edu::sharif::twinner::twintool::operationgroup::AdditionOperationGroup (dstexpOrig, srcexp));

12 edu::sharif::twinner::util::Logger::loquacious () << "\tdone\n";

13 }

Figure 8. Implementation of the ADD assembly instruction analysis routine.

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3499

section of the malware are the same in all executions.

Although the execution path depends on both the

virtual opcodes and the program inputs, the opcodes

may not be changed based on the user interactions

or the network and �le system states. Consequently,

simplifying constraints and transformation expressions

based on the symbols is enough to automatically

remove any dependence on those obfuscator related

details.

Another example is shown in Figure 7(b). The

loop created by node L33 is totally removed in Fig-

ure 7(c) because it depends on -8(%rbp), which is

initialized in line 26 of Figure 7(a) as a constant.

This will not help the obfuscator to initialize it as a

function of user inputs and then, cancel their e�ects

in the comparison of line 32, because simpli�cation of

the constraints can simplify and remove the arti�cial

dependency. A more concerning challenge is how

these obfuscations a�ect the memory used for keeping

transformations and constraint symbolic expressions.

As an example, consider lines 28-33 in Figure 7(a), in

which the value of %eax register, e.g., symbolic input s,

is added to itself repeatedly to produce s+s, s+s+s+s,

etc. growing the required memory exponentially. To

overcome this challenge, twintool simpli�es symbolic

expressions as they are captured, instead of keeping

them up to the end of execution to be processed in

SMTS. Thus, the expression is kept as 2s, 4s, etc. with

constant memory footprint.

The twincode generated by the described assem-

bly code is shown in Figure 7(d). Lines 9-10 check

the stack location and the program arguments on the

stack; lines 11-12 check for the input interval leading

to the execution of part L37 of the ETG, as shown in

Figure 7(c); line 16 prints the input multiplied by 1024

(i.e., 0x400); and lines 22 and 28 print messages about

over
ow/under
ow scenarios of the original program.

Some of the initialization parts of Figure 7(d) are

replaced with dots for sake of clarity. The complete

compilable version can be retrieved from the test folder

within the twinner repository.

5. Evaluation

This section evaluates Twinner from the practical point

of view. For this purpose, Twinner is tested against

the VO technique to observe the practical quality

of the deobfuscation results. The VO replaces the

entire text section of the program with an interpreter

and it contains the classic obfuscations. That is,

evaluation of the VO-protection scenario subsumes the

deobfuscation of classical methods such as packing and

encryption. Additionally, the set of SPEC [29] test

programs is instrumented to examine the performance

of a trace extraction run for large and complex real-

world programs.

5.1. E�ectiveness

To measure the similarity of the original program

and the deobfuscated twincode, we can compare their

ETGs. The structure of ETG is preserved while

being encoded as a twincode. ETG is an appropriate

metric, because it encodes the behavioral model which

has been learned by analysis of the given binary.

It also corresponds with the CFG of its twincode

counterpart while CFG of the original program can

be altered and replaced completely by obfuscation

transformations. VO is one of the most complicated

methods for obfuscating an arbitrary program. In this

technique, a random instance of a template language

is selected; the program is compiled to it and placed

in the data section; and the entire text section is

replaced by a virtual machine interpretor generated

to be able to parse that random template language

instance. Thus, CFG of the obfuscated program is

completely independent of the original program and

it can be examined as a di�cult test scenario. If the

CFG of the original program can be recovered in the

structure of the resulting twincode, which can be seen

as the resulting ETG, it shows that obfuscation e�ect

has been cancelled.

In this section, we will VO-protect 4 programs

with a variety of CFGs as the �rst step to obtain

similarly incomprehensible and indistinguishable bi-

naries, which only di�er in the pseudorandom data

sections. Afterwards, VO-protected programs are re-

versed and deobfuscated to obtain their execution trace

graphs. Finally, similarity of ETGs of the deobfuscated

programs and the corresponding original programs is

measured according to De�nition 7 in order to quantify

e�ectiveness of the Twinner deobfuscation process.

De�nition 7 (ETG similarity): Similarity of two

ETG instances, shown as g

1

= (V

1

; E

1

) and g

2

=

(V

2

; E

2

) graphs, where jV

1

j � jV

2

j, is given by �

g

1

;g

2

and de�ned as follows:

� S

G

= fH = (V

H

; E

H

)j9V

h

� V

H

:H [V

h

]

�

=

Gg is

the set of H graphs which have an induced subgraph

H [V

h

] being the isomorph of the given G graph;

� S

g

1

;g

2

= S

g

1

\S

g

2

is the set of all graphs which have

some induced subgraphs being the isomorph of the

given g

1

and g

2

;

�

^

S

g

1

;g

2

= (

^

V ;

^

E) 2 S

g

1

;g

2

^ 8G = (V

G

; E

G

) 2

S

g

1

;g

2

:jV

G

j � j

^

V j indicates the supremum graph of

the g

1

and g

2

graphs, which is a member of S

g

1

;g

2

set and has the minimum number of vertices among

all members of the set;

� The similarity of the g

1

and g

2

graphs is de�ned

as �

g

1

;g

2

= 1 �

j

^

V j�jV

1

j

j

^

V j

while �

g

1

;g

2

= 1 shows

identical graphs and �

g

1

;g

2

= 0 shows the minimum

normalized similarity among them.

3500 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

CFG for 'main' function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(a) P0 with nine main execution paths

CFG for 'main' function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(b) P1 with two

consecutive conditions

CFG for 'main' function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(c) P2 with three

exceptional branches

CFG for 'main' function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(d) P3 with a mix of

exceptional and merging paths

Figure 9. Control
ow graphs of test input programs set.

Table 2. Virtual opcodes of the VO-protection interpreter.

Opcode Description

0x00 Reads an argument and calls exit syscall on it.

0x01 Reads two args and a comparison code, applies one of six comparison operators on them to

select between then/else parts, reads two jump o�sets and use one of them to execute the

then/else part of the conditional block.

0x02 Reads a format string and calls printf on it.

0x03 Reads an o�set and jumps to it unconditionally.

0x04 Reads two pointer args, compares their corresponding C strings by calling strcmp, and stores

the result in the aux variable.

The test input programs have no speci�c impor-

tance. It is only required to select programs with

di�erent behaviors to clearly show how much the VO-

protection eliminates their di�erences and how much

the ETG restores those eliminated features. Figure 9

shows the CFGs of the selected four input programs.

The �rst program, depicted in Figure 9(a), has 9

parallel execution paths. The �rst path is run when

the input arguments are not well-formed. The other 8

paths are selected based on the three code characters

in the program argument and an appropriate message

is printed in each path. The next program, depicted

in Figure 9(b), has two main execution paths one

of which consists of 2 consecutive conditional blocks.

This test can be used to examine how the repeated

code sequences of the second conditional block are

reused during the analysis of di�erent paths of the

�rst conditional block. The P2 program, shown in

Figure 9(c), has a main execution path with three

exceptional branches. Finally, Figure 9(d) depicts the

P3 program with a mix of exceptional branches and

consecutive merging paths.

The next step of evaluation is to obtain two arti-

facts from each given input test program. One of them

is a VO-protected binary, which can be used as the

input to the deobfuscation process. The other artifact

is the ETG of the given test program without any

obfuscation. This initial ETG can be compared with

the result of the deobfuscation process to determine

how much the deobfuscation e�ect has been removed

successfully. To VO-protect each one of the test

programs, they are compiled for a virtual language with

5 primitive opcodes. The interpreter of this language

is shown in Figure 10(a) and its virtual opcodes are

described in Table 2. The program itself is encoded

in the program text, followed by the ptr variable at

runtime. In an in�nite loop containing a switch-case,

ptr is inspected to select one of the virtual opcodes and

perform the corresponding conditional/unconditional

jumps, printing operation, etc.

The CFG of the resulting VO-protected code is

shown in Figure 10(b), which is clearly independent

of the initial programs. The top node in Figure 10(b)

corresponds to the beginning of interpreter, which calls

the switch (line 19 in Figure 10(a)). The second node of

CFG can jump to �ve destinations, which correspond

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3501

1 int aux; // for intermediate values such as ret value

2

3 int end_of_execution(const char *&ptr);

4 void printf_command(const char *&ptr);

5 void strcmp_command (const char *&ptr);

6 void jump_command(const char *&ptr);

7 void if_then_else_command(const char *&ptr);

8 bool do_comparison(const char *&ptr, int arg0, int arg1);

9 int get_argument(const char *&ptr);

10 const char *init_program(int *argcptr, char *argv[]);

11

12 ...

13

14 #define program_text "\x01\x01\xff\xff...\x00\x00\x02\xff←֓

\xff\xff\xff\xff\xff\xff\xff\x00\x02\x00\x00\x00\x00"

15

16 int main (int argc, char *argv[]) {

17 const char *ptr = init_program (&argc, argv);

18 for (;;) {

19 switch (*ptr) {

20 case 0x00:

21 return end_of_execution (ptr);

22 case 0x01:

23 if_then_else_command (ptr);

24 break;

25 case 0x02:

26 printf_command (ptr);

27 break;

28 case 0x03:

29 jump_command (ptr);

30 break;

31 case 0x04:

32 strcmp_command (ptr);

33 break;

34 }

35 }

36 }

(a) Parts of the interpretor code

CFG for ’main’ function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(b) Corresponding control
ow graph

Figure 10. The interpreter used for virtualization obfuscation protection of test programs.

to �ve virtual opcodes. The �rst destination on the

right belongs to end of execution opcode and hence,

halts the interpreter. The second destination on the

right in Figure 10(b) corresponds to if then else virtual

opcode, which reads �ve arguments (two operands to

be compared, a comparison code to determine the

comparison operator, and two o�sets for then/else

parts of the conditional jump). The following two

nodes correspond to the printf and unconditional jump,

respectively, which call printf high-level function and

change the ptr variable according to the jump o�set.

The last node corresponds to the strcmp function,

which reads two pointer arguments, compares the two

strings that are found at the given addresses, and stores

the result of the comparison in the aux variable for the

next checks. This aux variable can be accessed as an

encoded argument by the following virtual operations.

The four nodes corresponding to the last four cases

of the switch statement merge into the bottom-most

node in Figure 10(b) and jump back to the loop header

node. Afterwards, they continue with interpretation of

the next virtual operation.

All programs are mapped onto exactly the same

interpreter with the same CFG and the di�erence

between four given programs is limited to the contents

of the program text string. This makes all obfuscated

binaries syntactically the same, while their di�erent

runtime behaviors are preserved. Now, there are two

binaries for each test program; one without any pro-

tection and one with VO-protection. Analyzing them

by Twinner to obtain their corresponding twincode

and ETG leads to a pair of graphs for each program.

Figure 11 shows ETG of the given input binaries and

their corresponding deobfuscated versions are depicted

in Figure 12. Comparing Figure 11(a)-(d) with their

counterparts in Figure 12(a)-(d) side by side, it is clear

that each ETG is fully recovered.

For example, consider the ETG of the obfuscated

version of P1 program, which is depicted in Fig-

ure 12(b), and its corresponding pre-obfuscation ETG,

which is shown in Figure 11(b). Both graphs consist of

three main parts. The �rst part, which branches from

the main execution path on the right side of �gure,

checks for the correct number of arguments. This part

corresponds to the left-most path in Figure 9(b). The

second part branches into three scenarios and prints

the \�rst-else-part " message in two scenarios and the

\�rst-then-part " in the last scenario. All the three

paths are correctly merged before reaching the last

part of the program. These three branching scenarios

correspond to the two expressions of which the logical

conjunction has been checked as shown in the top-

right side of Figure 9(b). The third part prints two

then/else-part messages, merges similar to the bottom-

right side of Figure 9(b), and then, joins the �rst part

(for checking arguments). Comparing the output ETG

in Figure 12(b) with the input ETG in Figure 11(b)

shows the complete recovery of all scenarios from the

VO-protected binary.

Also, twincodes of these four programs are pro-

3502 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

Execution Trace Graph

0

0x6e9b80

((rsp_0 - 0x7fffffffe2a8) & 0xffffffffffffffff)
 == 0

0x34018c0

((rsp_0 - 0x7fffffffe2a8) & 0xffffffffffffffff)
 != 0

0x6e9a10

0x195a250

((n_v_argv_1 - 0x7fffffffe5b8) & 0xffffffffffffffff)
 == 0

0x30a8900; Aborted

((n_v_argv_1 - 0x7fffffffe5b8) & 0xffffffffffffffff)
 != 0

0xaa81e0

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x1)

FunctionInvocation (calling-line=regs.rax = puts (/*"Usage: program <command codes>"*/ (const char *) 0x4006c8);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x1)

FunctionInvocation (calling-line=regs.rax = puts (/*"multi-path program with printf-leafs"*/ (const char *) 0x4007f0);)

0xb1d900

FunctionInvocation (calling-line=regs.rax = puts (/*"a <= 5, b <= 5, c <= 5 -- case 8"*/ (const char *) 0x4007c8);)

0x1a41130

FunctionInvocation (calling-line=regs.rax = puts (/*"a <= 5, b > 5, c <= 5 -- case 6"*/ (const char *) 0x400788);) FunctionInvocation (calling-line=regs.rax = puts (/*"a <= 5, b <= 5, c > 5 -- case 7"*/ (const char *) 0x4007a8);)

0xa16290

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

FunctionInvocation (calling-line=regs.rax = puts (/*"a <= 5, b > 5, c > 5 -- case 5"*/ (const char *) 0x400768);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 == 0

0x34e3cd0; Aborted

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 != 0

0xab3c70

0x0
 == 0

0xbdf950

0x285b400

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

0x28b6a10

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_0) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

0x1b19060

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_0) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

0x0
 == 0

0x1ab6440

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

FunctionInvocation (calling-line=regs.rax = puts (/*"a > 5, b <= 5, c > 5 -- case 3"*/ (const char *) 0x400728);) FunctionInvocation (calling-line=regs.rax = puts (/*"a > 5, b <= 5, c <= 5 -- case 4"*/ (const char *) 0x400748);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

FunctionInvocation (calling-line=regs.rax = puts (/*"a > 5, b > 5, c <= 5 -- case 2"*/ (const char *) 0x400708);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

FunctionInvocation (calling-line=regs.rax = puts (/*"a > 5, b > 5, c > 5 -- case 1"*/ (const char *) 0x4006e7);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

(a) P0 ETG

Execution Trace Graph

0

0xa061d0

((rsp_0 - 0x7fffffffe2b8) & 0xffffffffffffffff)
 == 0

0x2469340

((rsp_0 - 0x7fffffffe2b8) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = puts (/*"second condition; else part"*/ (const char *) 0x4006e9);)

0xb7a290

FunctionInvocation (calling-line=regs.rax = puts (/*"first condition; else part"*/ (const char *) 0x4006b2);)

0x1a99410

0x9d37b0

FunctionInvocation (calling-line=regs.rax = puts (/*"first condition; else part"*/ (const char *) 0x4006b2);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x3)

FunctionInvocation (calling-line=regs.rax = puts (/*"first condition; then part"*/ (const char *) 0x400697);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_1) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x3)

0xa05dd0

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_0) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x8)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_0) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x8)

0xa0b2f0

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x1)

FunctionInvocation (calling-line=regs.rax = puts (/*"Usage: program <command codes>"*/ (const char *) 0x400678);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x1)

0xbb08d0

((rsi_0 - 0x7fffffffe398) & 0xffffffffffffffff)
 == 0

0x2681130; Aborted

((rsi_0 - 0x7fffffffe398) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = puts (/*"second condition; then part"*/ (const char *) 0x4006cd);)

0xad5680

0x0
 == 0

((n_v_argv_1 - 0x7fffffffe5b9) & 0xffffffffffffffff)
 == 0

0x1d2a100; Aborted

((n_v_argv_1 - 0x7fffffffe5b9) & 0xffffffffffffffff)
 != 0

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x5)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_1_2) - 0x30) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x5)

(b) P1 ETG

Execution Trace Graph

0

0x7fe0f0

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 == 0

0x140b540; Aborted

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 != 0

0x6ea250

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--wrongopt"*/ (const char *) n_v_argv_1 /*0x7fffffffe564*/, /*"--option"*/ (const char *) 0x4006b7);)

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 == 0

0x95bf10; Aborted

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 != 0

0x6ec320

FunctionInvocation (calling-line=regs.rax = puts (/*"unknown option!"*/ (const char *) 0x4006c0);)

0x889bd0

0x7fdd30

0x7f6620

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid value!"*/ (const char *) 0x4006d9);)

((rax_2 & 0xffffffff) & (rax_2 & 0xffffffff))
 != 0

FunctionInvocation (calling-line=regs.rax = puts (/*"correct option/value pair is given!"*/ (const char *) 0x4006e8);)

((rax_2 & 0xffffffff) & (rax_2 & 0xffffffff))
 == 0

((rax_1 & 0xffffffff) & (rax_1 & 0xffffffff))
 != 0

FunctionInvocation (calling-line=regs.rax = strcmp (/*"wrongvalue"*/ (const char *) m7fffffffe338_1_64 /*0x7fffffffe56f*/, /*"optvalue"*/ (const char *) 0x4006d0);)

((rax_1 & 0xffffffff) & (rax_1 & 0xffffffff))
 == 0

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x2)

FunctionInvocation (calling-line=regs.rax = puts (/*"Usage: program <command codes>"*/ (const char *) 0x400698);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x2)

0x0
 == 0

(c) P2 ETG

Execution Trace Graph

0

0xbf8f10

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 == 0

0x30ce200

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = puts (/*"last line!"*/ (const char *) 0x4008c7);)

0x1b96590

FunctionInvocation (calling-line=regs.rax = puts (/*"sum of two numbers is NOT more than 15"*/ (const char *) 0x4008a0);)

0xc636d0

FunctionInvocation (calling-line=regs.rax = puts (/*"num1 is NOT smaller than num2"*/ (const char *) 0x400857);)

0x1e712e0

FunctionInvocation (calling-line=regs.rax = puts (/*"num1 is smaller than num2"*/ (const char *) 0x40083d);)

0xbf8ad0

0xd7cf60

((m7fffffffe338_1_64 - 0x7fffffffe570) & 0xffffffffffffffff)
 == 0

0x24eef50; Aborted

((m7fffffffe338_1_64 - 0x7fffffffe570) & 0xffffffffffffffff)
 != 0

0xbfe030

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x4)

FunctionInvocation (calling-line=regs.rax = puts (/*"Usage: program --left <num1> --right <num2>"*/ (const char *) 0x4007a8);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x4)

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--left"*/ (const char *) n_v_argv_1 /*0x7fffffffe569*/, /*"--left"*/ (const char *) 0x4007d4);)

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 == 0

0x3d0a410; Aborted

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 != 0

0x0
 == 0

0xc7a220

0x1a97360

signExtend_0x80_0x8 (n_v_argv_4_0)
 <= UINT128 (0x0, 0x0, 0x0, 0x39)

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid right value!"*/ (const char *) 0x400828);)

signExtend_0x80_0x8 (n_v_argv_4_0)
 > UINT128 (0x0, 0x0, 0x0, 0x39)

0xc9c500

0xd6ed50

signExtend_0x80_0x8 (n_v_argv_2_0)
 > UINT128 (0x0, 0x0, 0x0, 0x2f)

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid left value!"*/ (const char *) 0x4007f3);)

signExtend_0x80_0x8 (n_v_argv_2_0)
 <= UINT128 (0x0, 0x0, 0x0, 0x2f)

0xc9cca0

0x1aa5ac0

((rax_2 & 0xffffffff) & (rax_2 & 0xffffffff))
 == 0

FunctionInvocation (calling-line=regs.rax = puts (/*"right option is missing!"*/ (const char *) 0x40080f);)

((rax_2 & 0xffffffff) & (rax_2 & 0xffffffff))
 != 0

0xcc7a50

0x1cb1b30

(n_v_argv_4_1 & n_v_argv_4_1)
 == 0

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid right value!"*/ (const char *) 0x400828);)

(n_v_argv_4_1 & n_v_argv_4_1)
 != 0

0xce96c0

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--right"*/ (const char *) m7fffffffe340_1_64 /*0x7fffffffe572*/, /*"--right"*/ (const char *) 0x400807);)

signExtend_0x80_0x8 (n_v_argv_2_0)
 <= UINT128 (0x0, 0x0, 0x0, 0x39)

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid left value!"*/ (const char *) 0x4007f3);)

signExtend_0x80_0x8 (n_v_argv_2_0)
 > UINT128 (0x0, 0x0, 0x0, 0x39)

(n_v_argv_2_1 & n_v_argv_2_1)
 == 0

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid left value!"*/ (const char *) 0x4007f3);)

(n_v_argv_2_1 & n_v_argv_2_1)
 != 0

0xda3610

((rax_1 & 0xffffffff) & (rax_1 & 0xffffffff))
 == 0

FunctionInvocation (calling-line=regs.rax = puts (/*"left option is missing!"*/ (const char *) 0x4007db);)

((rax_1 & 0xffffffff) & (rax_1 & 0xffffffff))
 != 0

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_2_0) - 0x30) & 0xffffffff))
 >= signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_4_0) - 0x30) & 0xffffffff))

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_2_0) - 0x30) & 0xffffffff))
 < signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_4_0) - 0x30) & 0xffffffff))

((m7fffffffe348_2_64 - 0x7fffffffe57a) & 0xffffffffffffffff)
 == 0

0x2e2bd80; Aborted

((m7fffffffe348_2_64 - 0x7fffffffe57a) & 0xffffffffffffffff)
 != 0

0x0
 == 0

FunctionInvocation (calling-line=regs.rax = puts (/*"sum of two numbers is more than 15"*/ (const char *) 0x400878);)

signExtend_0x80_0x8 (n_v_argv_4_0)
 > UINT128 (0x0, 0x0, 0x0, 0x2f)

FunctionInvocation (calling-line=regs.rax = puts (/*"invalid right value!"*/ (const char *) 0x400828);)

signExtend_0x80_0x8 (n_v_argv_4_0)
 <= UINT128 (0x0, 0x0, 0x0, 0x2f)

signExtend_0x80_0x20 ((((signExtend_0x20_0x8 (n_v_argv_4_0) - 0x30) + (signExtend_0x20_0x8 (n_v_argv_2_0) - 0x30)) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0xf)

signExtend_0x80_0x20 ((((signExtend_0x20_0x8 (n_v_argv_4_0) - 0x30) + (signExtend_0x20_0x8 (n_v_argv_2_0) - 0x30)) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0xf)

(d) P3 ETG

Figure 11. Execution trace graphs of input binaries

before obfuscating them.

duced, which can be used for further analysis. Fig-

ure 13(a) shows the twincode obtained by analysis of

the VO-protected version of P2. The �rst condition

(line 7) has renamed the argc to rdi 0 and checks

for the correct number of arguments. Line 15 checks

for the presence of a valid option and line 23 checks

Execution Trace Graph

0

0x514e2a60

((rsp_0 - 0x7fffffffe2a8) & 0xffffffffffffffff)
 == 0

0xa7cc20

0x207df2c0

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x2)

FunctionInvocation (calling-line=regs.rax = printf (/*"Usage: program <command codes>
"*/ (const char *) 0x400cb8);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x2)

FunctionInvocation (calling-line=regs.rax = printf (/*"multi-path program with printf-leafs
"*/ (const char *) 0x400df8);)

0x13e630b0

0x461e480

FunctionInvocation (calling-line=regs.rax = printf (/*"a <= 5, b > 5, c <= 5 -- case 6
"*/ (const char *) 0x400d80);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

FunctionInvocation (calling-line=regs.rax = printf (/*"a <= 5, b > 5, c > 5 -- case 5
"*/ (const char *) 0x400d60);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

0x8a9ed00

FunctionInvocation (calling-line=regs.rax = printf (/*"a <= 5, b <= 5, c <= 5 -- case 8
"*/ (const char *) 0x400dd0);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

FunctionInvocation (calling-line=regs.rax = printf (/*"a <= 5, b <= 5, c > 5 -- case 7
"*/ (const char *) 0x400da8);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

0x9d7b7c0

0xdc869f0

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

0x11d44bb0

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_0) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

0x45d91c90

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_0) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

0x0
 == 0

0x175bc910

((((n_v_argv_1 & 0xffffffffffffff) | (n_v_argv_1 & 0xff00000000000000)) - 0x7fffffffe5b0) & 0xffffffffffffffff)
 == 0

0xbc258b30; Aborted

((((n_v_argv_1 & 0xffffffffffffff) | (n_v_argv_1 & 0xff00000000000000)) - 0x7fffffffe5b0) & 0xffffffffffffffff)
 != 0

(logicalShiftToRight (m7fffffffe25e_0_8, UINT128 (0x0, 0x0, 0x0, 0x8)) & 0xff)
 == 0x0

0x22e241d0

0x0
 == 0

0x87767940

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

0xa69a1230

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 == 0

0xdf30f430

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = printf (/*"a > 5, b <= 5, c <= 5 -- case 4
"*/ (const char *) 0x400d38);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

FunctionInvocation (calling-line=regs.rax = printf (/*"a > 5, b <= 5, c > 5 -- case 3
"*/ (const char *) 0x400d18);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

FunctionInvocation (calling-line=regs.rax = printf (/*"a > 5, b > 5, c > 5 -- case 1
"*/ (const char *) 0x400cd8);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

FunctionInvocation (calling-line=regs.rax = printf (/*"a > 5, b > 5, c <= 5 -- case 2
"*/ (const char *) 0x400cf8);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

(a) P0 ETG

Execution Trace Graph

0

0xc9d1d0

((rsp_0 - 0x7fffffffe2a8) & 0xffffffffffffffff)
 == 0

0x59a98b30

((rsp_0 - 0x7fffffffe2a8) & 0xffffffffffffffff)
 != 0

0xc9d240

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 == 0

0x3f693960; Aborted

((rsi_0 - 0x7fffffffe388) & 0xffffffffffffffff)
 != 0

0xd521750

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x2)

FunctionInvocation (calling-line=regs.rax = printf (/*"Usage: program <command codes>
"*/ (const char *) 0x400d70);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x2)

0x1733180

FunctionInvocation (calling-line=regs.rax = printf (/*"second condition; else part
"*/ (const char *) 0xde5);)

0x48a4de0

0x0
 == 0

0x4edcab0

0xe425440

((((n_v_argv_1 & 0xffffffffffffff) | (n_v_argv_1 & 0xff00000000000000)) - 0x7fffffffe5b1) & 0xffffffffffffffff)
 == 0

0x1d5daf20; Aborted

((((n_v_argv_1 & 0xffffffffffffff) | (n_v_argv_1 & 0xff00000000000000)) - 0x7fffffffe5b1) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = printf (/*"second condition; then part
"*/ (const char *) 0x400dc8);)

0x9fa1e70

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x35)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_2) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x35)

(logicalShiftToRight (m7fffffffe25e_0_8, UINT128 (0x0, 0x0, 0x0, 0x8)) & 0xff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"first condition; else part
"*/ (const char *) 0x400dac);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_0) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x38)

0x20047e10

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_0) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x38)

FunctionInvocation (calling-line=regs.rax = printf (/*"first condition; then part
"*/ (const char *) 0x400d90);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x33)

FunctionInvocation (calling-line=regs.rax = printf (/*"first condition; else part
"*/ (const char *) 0x400dac);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_1_1) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x33)

(b) P1 ETG

Execution Trace Graph

0

0x8c2a80

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 == 0

0x1ab4eb50; Aborted

((rsp_0 - 0x7fffffffe248) & 0xffffffffffffffff)
 != 0

0x8bbee0

0x843b6e0

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x3)

FunctionInvocation (calling-line=regs.rax = printf (/*"Usage: program <command codes>
"*/ (const char *) 0x400e60);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x3)

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 == 0

0x1f862a60; Aborted

((rsi_0 - 0x7fffffffe328) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = printf (/*"unknown option!
"*/ (const char *) 0x400e89);)

0x51add10

0x36edf30

0x0
 == 0

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--wrongopt"*/ (const char *) n_v_argv_1 /*0x7fffffffe55c*/, /*"--option"*/ (const char *) 0x400e80);)

(logicalShiftToRight (m7fffffffe1fe_0_8, UINT128 (0x0, 0x0, 0x0, 0x8)) & 0xff)
 == 0x0

0xa5f96d0

(rax_1 & 0xffffffff)
 != 0x0

FunctionInvocation (calling-line=regs.rax = strcmp (/*"wrongvalue"*/ (const char *) ((((n_v_argv_2 & 0xffffffff0000) | (n_v_argv_2 & 0xffff)) | ((n_v_argv_2 | UINT128 (0x0, 0x400e9a, 0x0, 0x0)) & 0xffff000000000000)) & 0xffffffffffffffff) /*0xffffe567*/, /*"optvalue"*/ (const char *) 0x400e9a);)

(rax_1 & 0xffffffff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid value!
"*/ (const char *) 0xea3);)

FunctionInvocation (calling-line=regs.rax = printf (/*"correct option/value pair is given!
"*/ (const char *) 0x400eb8);)

0x14dc9330

(rax_2 & 0xffffffff)
 != 0x0

(rax_2 & 0xffffffff)
 == 0x0

(c) P2 ETG

Execution Trace Graph

0

0xe21090

((rsp_0 - 0x7fffffffe238) & 0xffffffffffffffff)
 == 0

0x1174b5a10

((rsp_0 - 0x7fffffffe238) & 0xffffffffffffffff)
 != 0

0xe074d0

0x11837d90

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x5)

FunctionInvocation (calling-line=regs.rax = printf (/*"Usage: program --left <num1> --right <num2>
"*/ (const char *) 0x400fe8);)

signExtend_0x80_0x20 ((rdi_0 & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x5)

((rsi_0 - 0x7fffffffe318) & 0xffffffffffffffff)
 == 0

0x117ed1650; Aborted

((rsi_0 - 0x7fffffffe318) & 0xffffffffffffffff)
 != 0

FunctionInvocation (calling-line=regs.rax = printf (/*"last line!
"*/ (const char *) 0x1110);)

0x33b5f500

0x27f0600

0xc6c4120

(rax_2 & 0xffffffff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"right option is missing!
"*/ (const char *) 0x401052);)

(rax_2 & 0xffffffff)
 != 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"sum of two numbers is NOT more than 15
"*/ (const char *) 0x4010e8);)

0x28216ce0

0x87fbc90

0x2d059090

(rax_1 & 0xffffffff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"left option is missing!
"*/ (const char *) 0x40101c);)

(rax_1 & 0xffffffff)
 != 0x0

0x89fde70; Aborted

((((((n_v_argv_4 + 0x1) & 0xffffffff0000) | ((n_v_argv_4 + 0x1) & 0xffff)) | (((n_v_argv_4 + 0x1) | UINT128 (0x600, 0x2, 0x0, 0x0)) & UINT128 (0x600, 0x2, 0xffff0000, 0x0))) - 0x7fffffffe573) & 0xffffffffffffffff)
 != 0

0x25691390

((((((n_v_argv_4 + 0x1) & 0xffffffff0000) | ((n_v_argv_4 + 0x1) & 0xffff)) | (((n_v_argv_4 + 0x1) | UINT128 (0x600, 0x2, 0x0, 0x0)) & UINT128 (0x600, 0x2, 0xffff0000, 0x0))) - 0x7fffffffe573) & 0xffffffffffffffff)
 == 0

0xd7f1770

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_4_0) + signExtend_0x20_0x8 (n_v_argv_2_0)) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x6f)

FunctionInvocation (calling-line=regs.rax = printf (/*"sum of two numbers is more than 15
"*/ (const char *) 0x10c0);)

signExtend_0x80_0x20 (((signExtend_0x20_0x8 (n_v_argv_4_0) + signExtend_0x20_0x8 (n_v_argv_2_0)) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x6f)

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--left"*/ (const char *) n_v_argv_1 /*0x7fffffffe561*/, /*"--left"*/ (const char *) 0x401015);)

(logicalShiftToRight (m7fffffffe1ee_0_8, UINT128 (0x0, 0x0, 0x0, 0x8)) & 0xff)
 == 0x0

0x1850b550

0x1bd6fe40

0x3d323640

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x30)

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid right value!
"*/ (const char *) 0x6c);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x30)

0x21efaf60

0x405b4a80

(signExtend_0x20_0x8 (n_v_argv_2_1) & 0xffffffff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid left value!
"*/ (const char *) 0x401035);)

(signExtend_0x20_0x8 (n_v_argv_2_1) & 0xffffffff)
 != 0x0

(signExtend_0x20_0x8 (n_v_argv_4_1) & 0xffffffff)
 == 0x0

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid right value!
"*/ (const char *) 0x6c);)

(signExtend_0x20_0x8 (n_v_argv_4_1) & 0xffffffff)
 != 0x0

0x0
 == 0

((((((n_v_argv_2 + 0x1) & 0xffffffff00) | ((n_v_argv_2 + 0x1) & 0xff)) | (((n_v_argv_2 + 0x1) | UINT128 (0x0, 0x2, 0x0, 0x0)) & UINT128 (0x0, 0x2, 0xffffff00, 0x0))) - 0x7fffffffe569) & 0xffffffffffffffff)
 == 0

0xa05f3910; Aborted

((((((n_v_argv_2 + 0x1) & 0xffffffff00) | ((n_v_argv_2 + 0x1) & 0xff)) | (((n_v_argv_2 + 0x1) | UINT128 (0x0, 0x2, 0x0, 0x0)) & UINT128 (0x0, 0x2, 0xffffff00, 0x0))) - 0x7fffffffe569) & 0xffffffffffffffff)
 != 0

0x303cbd40

FunctionInvocation (calling-line=regs.rax = printf (/*"num1 is smaller than num2
"*/ (const char *) 0x401082);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 < signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))

FunctionInvocation (calling-line=regs.rax = printf (/*"num1 is NOT smaller than num2
"*/ (const char *) 0x4010a0);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 >= signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))

0x0
 == 0

0x3aa99840

FunctionInvocation (calling-line=regs.rax = strcmp (/*"--right"*/ (const char *) (((n_v_argv_3 & 0xff) | ((n_v_argv_3 | UINT128 (0x0, 0x4a, 0x0, 0x0)) & 0xffffffffffffff00)) & 0xffffffffffffffff) /*0x6a*/, /*"--right"*/ (const char *) 0x40104a);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x39)

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid left value!
"*/ (const char *) 0x401035);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x39)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))
 <= UINT128 (0x0, 0x0, 0x0, 0x39)

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid right value!
"*/ (const char *) 0x40106c);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_4_0) & 0xffffffff))
 > UINT128 (0x0, 0x0, 0x0, 0x39)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 >= UINT128 (0x0, 0x0, 0x0, 0x30)

FunctionInvocation (calling-line=regs.rax = printf (/*"invalid left value!
"*/ (const char *) 0x401035);)

signExtend_0x80_0x20 ((signExtend_0x20_0x8 (n_v_argv_2_0) & 0xffffffff))
 < UINT128 (0x0, 0x0, 0x0, 0x30)

(d) P3 ETG

Figure 12. Execution trace graphs of output binaries

which were VO-protected.

for the valid option value. The CFG of this code

is depicted in Figure 13(b), which corresponds to its

ETG shown in Figure 12(c). Looking at the CFG

in Figure 13(b) from top to bottom, the �rst node

corresponds to the condition of line 7, comparing

rdi 0 with number three. If there are less than

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3503

1 int main (int argc, char *argv[]) {

2 struct RegistersSet regs;

3 SAVE_REGISTERS (regs);

4 const UINT64 rax_0 = regs.rax, rbx_0 = regs.rbx, ...;

5 const UINT128 xmm0_0 = UINT128 (regs.xmm0), ...;

6 const UINT64 m7fffffffe1a0_0_64 = *((UINT64 *) 0x7fffffffe1a0);

7 if ((signExtend_0x80_0x20 ((UINT64 (rdi_0) & 0xffffffff)) >= UINT128 (0x0, 0x0, 0x0, 0x3))) {

8 /*Memory Changes*/

9 *((UINT64 *) 0x400ee8) = UINT64 (0x10000000302ffff);

10 *((UINT64 *) 0x602180) = UINT64 (0xffffff020000000f);

11 *((UINT64 *) 0x7fffffffe210) = UINT64 (((rsp_0 - 0x8) & 0xffffffffffffffff) /*0x7fffffffe240*/);

12 *((UINT64 *) 0x7fffffffe228) = UINT64 ((((rdi_0 & 0xffffffff) << 0x20) | m7fffffffe228_0_32));

13 /*Registers Changes*/

14 regs.rcx = UINT64 (0x14);

15 regs.rax = strcmp (/*"--wrongopt"*/ (const char *) argv[1], /*"--option"*/ (const char *) 0x400e80);

16 const UINT64 rax_1 = regs.rax, rbx_1 = regs.rbx, ...;

17 const UINT128 xmm0_1 = UINT128 (regs.xmm0), ...;

18 const UINT64 m7fffffffe1a0_1_64 = *((UINT64 *) 0x7fffffffe1a0);

19 const UINT32 m7fffffffe1b0_1_32 = *((UINT32 *) 0x7fffffffe1b0);

20 if (((UINT64 (rax_1) & 0xffffffff) /*0x8*/ != 0)) {

21 regs.rax = printf (/*"unknown option!\n"*/ (const char *) 0x400e89);

22 } else {

23 regs.rax = strcmp (/*"wrongvalue"*/ (const char *) argv[2], /*"optvalue"*/ (const char *) 0x400e9a);

24 const UINT64 rax_2 = regs.rax, rbx_2 = regs.rbx, ...;

25 const UINT128 xmm0_2 = UINT128 (regs.xmm0), ...;

26 if (((UINT64 (rax_2) & 0xffffffff) /*0x8*/ != 0)) {

27 *((UINT64 *) 0x7fffffffe240) = UINT64 (rbp_0 /*0x0*/);

28 regs.rax = printf (/*"invalid value!\n"*/ (const char *) 0xea3);

29 } else {

30 regs.rax = printf (/*"correct option/value pair is given!\n"*/ (const char *) 0x400eb8);

31 const UINT64 rax_3 = regs.rax, ...;

32 const UINT128 xmm0_3 = UINT128 (regs.xmm0), ...;

33 }

34 }

35 } else {

36 regs.rax = printf (/*"Usage: program <command codes>\n"*/ (const char *) 0x400e60);

37 }

38 }

(a) Main part of twincode generated by analyzing the VO protected version of P2

CFG for ’main’ function

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

l1

T F

(b) Corresponding CFG

Figure 13. Sample twincode and its corresponding CFG.

three arguments, the right-most path of CFG will be

followed, which leads to the execution of line 36 and

printing the program usage message. Otherwise, the

second node, which corresponds to the operations of

lines 15-20, will be invoked. This portion compares

argv[1] with the hard-coded string of \--option" (the

concrete value of argv[1] is also given in the comment

as a hint). If the name of a wrong option has been

used, the left-most path of CFG will be followed and

hence, line 21 prints the corresponding error message.

The last condition, which is located at the center of

Figure 13(b), corresponds to the check in lines 23-

26, comparing argv[2] with the \optvalue" string and

selecting one between line 28 (error case, right branch

in CFG) and line 30 (target case, left branch in CFG) to

execute. Except for the arrangement of nodes, the CFG

in Figure 13(b) has a main execution path (in which all

conditions are evaluated to be true) from which three

exceptional paths deviate, similar to the original CFG

of P2 depicted in Figure 9(c).

The input/output ETGs can be compared pair-

wise according to De�nition 7 in order to assign a

similarity measure to each pair. Table 3 aggregates

these calculated similarities. The diagonal entries in

Table 3 are all relatively higher than non-diagonal

entries. The diagonal entries with values close to one

indicate high restoration of the initial ETG �gures.

Also, the similarity of unmatched graphs is reduced

quickly as each graph becomes more complicated.

For small programs, pre/post-obfuscation graphs are

separated by the similarity value of 0.7. For larger

programs, the similarity drops to below 0.5 while all

diagonal entries stay higher than the similarity value

of 0.88.

As this proof of concept implementation can be

extended to analyze any other application only by

supporting its possibly di�erent assembly instructions

for recognizing and formulating the calculated sym-

bolic expressions, it can be deduced that VO can be

automatically reversed on other protected programs

similar to the mentioned example. It is worthy to note

that this framework does not make any assumptions

about the structure of the used virtual machine to

produce the twincode. For example, the VM can

eliminate the ptr (i.e., VPC) and connect di�erent

pieces of the virtualized program directly together

Table 3. Similarity degree of pre/post-obfuscation ETG �gures.

VO-protected / Pre-obfuscation P0 P1 P2 P3

P0

0

0.96 0.56 0.47 0.5

P1

0

0.61 0.90 0.63 0.44

P2

0

0.5 0.70 0.88 0.39

P3

0

0.52 0.41 0.37 0.95

3504 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

Table 4. Execution times and relative overheads for SPEC programs analysis.

Program Native

a

(ms) Count

b

(s) IAO

c

(x) Twintool

d

(s) TAO

e

(x)

astar 3.602 2.496 691.8 5.999 1.4

bzip2 2.961 2.514 848.2 3.768 0.5

gcc 8.328 25.312 3038.4 89.03 2.5

gnugo 48.816 23.863 487.8 41.64 0.7

grover 2.39 2.222 928.7 10.968 3.9

hmmer 5.135 3.828 744.5 11.015 1.9

jm-h264ref 84.939 8.977 104.7 136.287 14.2

omnetpp 36.468 45.752 1253.6 1543.674 32.7

perl 5.221 28.234 5406.8 28.793 0.02

sjeng 85.513 3.814 43.6 50.094 12.1

xalan 6.058 15.2 2508.1 70.982 3.7

a

Native: The execution times in milliseconds without any instrumentation.

b

Count: The execution times in seconds when an instruction counting pintool is used.

c

IAO: The Instruction-counting Added Overhead as a factor of native execution times.

d

Twintool: The measured times when the Twintool pintool is used to instrument each SPEC test program.

e

TAO: The Twintool-added overhead as a factor of instruction counting pintool execution times.

(e.g., similar to what is done in the jump oriented

programming [30]) without causing any change in its

corresponding twincode.

The generated twincode can be used in static

analysis instead of the obfuscated code to directly ob-

tain results about the original program. For example,

the CFG in Figure 13(b) is drawn by static analysis

of the corresponding code in Figure 13(a) using the

LLVM [31] -dot-cfg pass.

5.2. Performance

In order to measure the execution time overhead of the

twintool analysis runs, a set of complicated programs

is selected based on the SPEC cpu test to obtain a

real-world estimate of the average implied overhead.

Latest versions of these programs, which are released

for the Ubuntu server 14.04, are used for performance

tests. The used evaluation scripts and program inputs

are available on the evaluation branch of the Twin-

ner git repository. Moreover, all experiments have

been executed in di�erent scenarios including a non-

instrumented run for native programs, an instrumented

run with instruction counting analysis routines (to

�nd out about the minimum possible instrumentation

overhead), and a run with twintool instrumentation to

observe the relative overheads.

Experiments were performed on a single-core

QEMU/KVM virtual machine with 8GB RAM running

Ubuntu server 14.04 with kernel 3.19.0-25-generic x86

64 hosted on a quad-core Intel i7-6700HQ machine.

Each experiment scenario has been repeated as many

times as required according to the central limit theo-

rem [32] in order to limit the maximum error of the

reported mean execution time to at most 0.5% with

con�dence level of 95%.

The obtained results are aggregated in Table 4 of

which the second column reports the native execution

time, the third and fourth columns indicate the baseline

overhead caused by using the Pin dynamic binary

instrumentation framework, and the last two columns

indicate the overhead caused by the twintool itself. As

indicated in the fourth and sixth columns of Table 4,

the Pin framework slows down the overall execution

time by an order of thousand times, but the twintool-

added overhead (relative to the instruction counting

instrumentation) stays relatively small even for very

complicated programs such as the gcc.

6. Discussion

Given the evaluation results in the previous section,

in the following, the possible deobfuscation challenges

are discussed; how they are mitigated in the Twinner

framework is expressed; and an objective comparison

with previous works is presented.

One of the hardest scenarios for SMTS is an

opaque predicate (i.e., an always true/false condition),

which is so complicated that SMTS cannot reason

about its negated constraint within a short time span.

For always-true constraints, the logic of the code

is captured in the �rst trace containing it. Also,

its negated constraint is assumed to be unsatis�able,

which is the case. For always-false constraints, the

code is never executed and the SMTS cannot �nd

any concrete input to drive the program through it.

Thus, this path is assumed to be deadcode, which is

the case as well. However, when SMTS cannot �nd

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3505

an answer for the queried constraints (such as a one-

way hashing function) within the provided deadline,

the corresponding path is marked as deadcode and

remains unexplored. Although it is possible to enforce

the execution through that possible deadcode by tem-

porarily modifying the program assembly instructions

in the memory, this makes the concrete state of the

program invalid and increases the number of paths to

be analyzed. One strategy, which can be inspected

in the future research, is to prioritize the execution

paths, giving lower priority to the suspected paths

and allocating available resources for their analysis

according to their priorities. This may lead to a more

balanced answer for the trade-o� between full analysis

of all possible branches and minimizing the analysis

time for reachable code paths.

Nevertheless, the current approach to focusing on

the constraints, which are solvable within the given

time limits as described in the following example, is

applicable to most practical scenarios. Consider a bot

which tries to retrieve a command from its C&C server

and perform the corresponding order (e.g., a denial

of service attack). The bot may download new code

modules and execute them. In that case, the executed

code is not available at the analysis time, i.e., before

contacting a real C&C server. But, for command codes

which lead to execution of existing malware modules,

it is possible to extract, analyze, and generate the

corresponding twincode only by communicating with

an arbitrary network server, not necessarily the real

C&C server. This is in contrast to methods such

as [33] that analyze a real tra�c trace for modeling

and simulating the C&C server for the bot.

The bot program needs cooperation of the OS

for receiving the Protocol Data Unit (PDU) from

the corresponding socket (e.g., using \recv" function).

When control returns to the user-space, the bot can

be noti�ed about syscall operations by reading its own

memory (e.g., the bu�er passed to \recv") and/or

looking at registers (e.g., the return value depicting

the number of read bytes). By instrumenting all

assembly instructions (including those which are gen-

erated dynamically by the malware), it is possible

to preempt when an address is read for the �rst

time. Instantiated symbols can be written at other

addresses (copied) or undergo arithmetical (e.g., addq

$4, -16(%rbp)) and logical operations (e.g., cmpl $0,

-4(%rbp)) while their expected concrete values are

being inspected by every operation. At each memory

address or register, a symbolic formula is being kept

in addition to its normal concrete value. When all

executed instructions are instrumented, the acquired

symbolic expressions for all addresses have to match

with their concrete values. However, syscall, executed

in the kernel-space, is out of the instrumentation scope.

Therefore, concrete/symbolic values can mismatch af-

ter a syscall. When this occurs (e.g., contents of a

�le are read in a bu�er), new symbols are required to

capture the changed concrete values. Thus, all bytes

of the bot-C&C communication PDU are controlled by

symbols and can be manipulated by twintool at symbol

instantiation time.

For example, an arbitrary network server sends

command code 0xB to the bot. The bot checks the code

and terminates, because it expects a 4 bytes long PDU.

This constraint is captured by twintool symbolically

and solved to obtain a four bytes long input for use

in the next analysis round. Then, the network server

sends the 0xB code again, but the bu�er is modi�ed

by twintool on the
y to be seen as the calculated

four bytes value. The bot continues execution and

tries to invoke a function based on the read code.

Although the network server program does not know

about the format of the message, which is expected by

the bot, twintool can automatically deduce it from the

program itself iteratively. Possible calling targets can

be determined similarly.

Another notable challenge is the high number of

assembly instructions and how they can be instru-

mented correctly and e�ciently. For this purpose,

the ldmbl [26] architecture is used, which abstracts

the APIs provided by Pin [11] in two layers. In

one layer (GIL), it minimizes the instrumentation

calls and in another layer (GARL), it minimizes the

number of required analysis routines through a series

of proxy classes. These abstractions help twintool to be

implemented in fewer lines of code while maintaining

its e�ciency as evaluated in Section 5.2. Pin Dynamic

Binary Instrumentation (DBI) framework uses a Just-

In-Time (JIT) compilation mechanism internally for

transferring visited instructions to a code cache region

before execution, Therefore, the instructions cannot

a�ect the instrumentation without being monitored by

some prior instrumentation. Consequently, di�erent

obfuscations of a program cannot a�ect the instrumen-

tation except by exploiting some vulnerability in the

instrumentation framework. Although it is impossible

to guarantee the absence of vulnerabilities in Pin DBI

framework, like other software/hardware components,

such a vulnerability (if any) should be addressed in

the underlying DBI framework and it is out of the

adversarial model of twintool.

Table 5 summarizes a comparison of the men-

tioned related studies and the Twinner framework.

Each cell is marked with

p

if the solution mentioned in

the respective row is able to outperform the obfuscation

technique noted in its column. If it cannot reverse the

transformation, the cell is marked with �. On the

other hand, if it cannot be reversed completely, but it is

partially considered in the solution, the mark is used.

The � mark indicates that the mentioned feature is

inapplicable to the solution.

3506 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

Table 5. Comparison of analysis and deobfuscation solutions.

p

shows that the mentioned solution can overcome the

obfuscation technique, � represents an unsupported feature, - indicates inapplicable features, and � is for obfuscation

features that cannot be reversed completely, but are partially considered.

Feature/solution

X-Force

[16]

Yadegari

et al. [5]

ROPMEMU

[17]

Rolles

[3]

Rotalume

[6]

Coogan

[10]

Kinder

[4]

Twinner

Code packing

p p

�

p p p p p

Constant obfuscation �

p

�

p

� � �

p

Logical obfuscation � � �

p

� � �

p

Branch obfuscation �

p p p

�

p

�

p

Analysis type: Static (S), D D D D D D S B

Dynamic (D), or Both (B)

Source code presentation � � � � � � �

p

Deadcode elimination � � � � � � �

p

VO-protection �

p

�

p p p p p

VO's VM language independence -

p

- �

p p p p

VO's VM metamodel independence -

p

- � �

p

�

p

Coverage/completeness

p

� � � � � �

p

Loader analysis

p p

� � �

p

�

p

Multi-thread programs � � � � � � � �

Anti-disassembly

p p p p

�

p

�

p

Anti-debugging

p

� � � � �

p p

All solutions support packing, except ROP-

MEMU [17], which starts its work with a memory

dump assuming that ROP chains exist in that dump.

Three solutions [5,3,10] consider arithmetical and logi-

cal obfuscations by means of compiler transformations

and/or symbolic expression equivalence tests. The next

technique is branch obfuscation, which uses emulated

jumps and function calls or complicates the CFG with

opaque backward branches. Most dynamic solutions

can bypass this technique by sacri�cing the analysis

completeness. A counter-example is X-Force [16],

which exhibits exponential execution time by forcing

analysis of deadcode portions.

Except Twinner and the Rolles [3] method, which

�nd a correspondence between the used binary portions

and the previously reverse-engineered VM parts, all the

solutions consent to learn some model, such as CFG,

and do not provide a source code representation that

can be used as input to other analysis tools. Among

the solutions that support the VO-protection scheme,

Rolles [3] requires priori knowledge of the used VM.

This knowledge needs to be updated per VM language

instance. Sharif et al. [6] and Kinder [4] need a speci�c

VM metamodel to detect as a binary pattern, and

extract VM and the protected codes based on it. Yade-

gari et al. [5] and Coogan et al. [10] focused on some

given execution traces and did not have a systematic

approach to maximizing the code analysis coverage.

The other feature is related to the analysis of the

program loader. Malware can hide with techniques

such as ELF weird machines [19] out of the common

executable area and run before beginning of the actual

program. X-Force [16] and Twinner support program

analysis from the entry point and hence, can detect

such tricks. Also, Yadegari et al. [5] and Coogan et

al. [10] employed Ether [34] low-level instruction traces

and hence, could observe loader-encoded behavior.

Other solutions require a previously recognized code

region (e.g., ROP chains or VM interpretor routines)

to start their analysis. A common shortcoming in

all solutions is related to the analysis of multi-thread

programs. Except X-Force [16], which serializes all

threads by replacing thread creation API with a direct

call to the thread entry function, all solutions follow

the OS scheduler decisions about the order of threads.

Finally, the last two columns of Table 5 indicate

resistance of the solutions against anti-assembly

and anti- debugging techniques. Kinder [4], as a

static analysis method, su�ers more from the anti-

disassembly, which stops it from beginning the analysis

in the �rst step, while anti-debugging techniques

can guide the analysis e�orts of all solutions, except

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3507

Twinner, X-Force [16], and Kinder [4], to the benign
code portions due to the lack of a code coverage
maximization strategy.

7. Conclusion

This manuscript presented a framework for software
deobfuscation, namely Twinner, which could dynami-
cally analyze an arbitrary Windows/Linux executable
program. The presented framework mapped the de-
obfuscation problem onto three components. The �rst
component was a Concolic Execution Engine (CEE),
which instrumented the given binary and captured its
runtime behavior in a series of symbolic expressions
and constraints. The second one was a Path Search
Strategy (PSS), which learnt a behavioral model of
the program by running it through di�erent execution
paths iteratively. In each run, an independent instance
of CEE was employed to run the binary along a speci�c
path and produce its corresponding trace object. The
third component was a library for solving symbolic
constraints (SMTS) used by PSS to �nd out candidate
concrete values for symbols in order to guide CEE runs
along the following unexplored paths.

Also, a proof of concept implementation of the
proposed framework was presented and evaluated to
measure the deobfuscation e�ectiveness and perfor-
mance using di�erent real-world programs. The pro-
posed method was not dependent on any obfuscation
process or structure of the obfuscated program. CEE,
which was realized as twintool library, was imple-
mented using the ldmbl architecture based on the
Intel Pin. By instrumenting assembly instructions, it
found out about memory symbols before their �rst
use and hence, it could guide the program along a
speci�c execution path by modifying their concrete
values. PSS, which was realized as twinner, provided a
command line interface for con�guring the deobfusca-
tion parameters and combined the traces received from
twintool to update an Execution Trace Graph (ETG).
In each round, the twinner selected the next execution
path by DFS searching the ETG and obtained a list of
constraints for satisfying all branches along the selected
path. The CVC4 SMT solver was used to �nd a
concrete solution to those constraints and feed the
twintool.

As the code was analyzed concolically along all
paths, anti-debugging techniques were not an obstacle
and as the behavior was tracked symbolically, the
complete functionality of the program was captured
in the generated twincode. The concepts used, e.g.,
trace and guided executions, were formally de�ned and
used to prove properties of the deobfuscation process.
To evaluate their e�ectiveness, several programs were
protected with VO and then, used as test inputs.
ETG graphs of the analyzed programs were drawn and

compared with each other to see how much details
of the original programs were restored after deobfus-
cation. A graph similarity measure was de�ned for
this purpose, which showed that the obtained ETGs
after deobfuscation were considerably similar to the
original CFGs and could distinguish test inputs with
at least 18% margin. ETGs matched CFGs of the
original programs, except for rearrangement of graph
nodes, and were encoded as twincode in C language,
which could be used for further analysis. To evaluate
the performance of the deobfuscation process, the
SPEC test programs were used. Analysis of complex
programs such as gcc demonstrated that the additional
overhead of twintool was in the order of 10 times, which
was considerably lower than the additional overhead of
Pin being in the order of 1000 times.

The presented deobfuscation framework can be
used for di�erent use cases, such as understanding
the internal logic of a malware, e.g., DNG algorithm
of a bot, which is impossible without deobfuscation;
generation of comprehensive behavioral signatures for
categorizing malware in related families; debugging the
obfuscated benign software to examine correctness of
the used obfuscation transformation; and analysis of
close sourced and obfuscated software for the presence
of possible backdoors.

References

1. Global Research & Analysis Team (GReAT), \Equa-
tion group: Questions and answers", Kaspersky Labs,
https://securelist.com/�les/2015/02/Equation
group questions and answers.pdf Online. Retrieved on
25th Feb 2015.

2. sKyWIper Analysis Team \skywiper: A complex mal-
ware for targeted attacks", Tech. Rep., Laboratory
of Cryptography and System Security (CrySyS Lab),
Budapest University of Technology and Economics
(2012).

3. Rolles, R. \Unpacking virtualization obfuscators",
3rd USENIX Conference on O�ensive Technologies,
USENIX Association, pp. 1-1 (2009).

4. Kinder, J. \Towards static analysis of virtualization-
obfuscated binaries", 19th Working Conference on Re-
verse Engineering (WCRE), IEEE, pp. 61-70 (2012).

5. Yadegari, B., Johannesmeyer, B., Whitely, B., et al.
\A generic approach to automatic deobfuscation of
executable code", 2015 IEEE Symposium on Security
and Privacy, IEEE, pp. 674-691 (2015).

6. Sharif, M., Lanzi, A., Gi�n, J., et al. \Automatic
reverse engineering of malware emulators", 30th IEEE
Symposium on Security and Privacy, IEEE, pp. 94-109
(2009).

7. Newsome, J., Karp, B., and Song, D. \Polygraph:
Automatically generating signatures for polymorphic
worms", IEEE Symposium on Security and Privacy,
IEEE, pp. 226-241 (2005).

3508 B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509

8. Kang, M.G., Poosankam, P., and Yin, H. \Renovo: A

hidden code extractor for packed executables", 2007

ACM Workshop on Recurring Malcode, ACM, pp. 46-

53 (2007).

9. Raber, J. and Laspe, E. \Deobfuscator: An automated

approach to the identi�cation and removal of code

obfuscation", 14th Working Conference on Reverse

Engineering, WCRE'07, IEEE Computer Society, pp.

275-276 (2007).

10. Coogan, K., Lu, G., and Debray, S. \Deobfuscation of

virtualization-obfuscated software: a semantics-based

approach", 18th ACM Conference on Computer and

Communications Security, ACM, pp. 275-284 (2011).

11. Luk, C.K., Cohn, R., Muth, R., et al. \Pin: Building

customized program analysis tools with dynamic in-

strumentation", ACM SIGPLAN Notices, 40(6), pp.

190-200 (2005).

12. Sen, K. \Concolic testing", 22nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering,

ACM, pp. 571-572 (2007).

13. Sen, K. \Concolic testing: a decade later (keynote)",

13th International Workshop on Dynamic Analysis,

ACM, pp. 1-1 (2015).

14. Brumley, D., Jager, I., Avgerinos, T., et al. \BAP: A

binary analysis platform", Computer Aided Veri�ca-

tion, Springer, pp. 463-469 (2011).

15. Shoshitaishvili, Y., Wang, R., Salls, C., et al. \Sok:

(state of) the art of war: O�ensive techniques in binary

analysis", IEEE Symposium on Security and Privacy

(SP), IEEE, pp. 138-157 (2016).

16. Peng, F., Deng, Z., Zhang, X., et al. \X-force: Force-

executing binary programs for security applications",

2014 USENIX Security Symposium, San Diego, CA,

August (2014).

17. Graziano, M., Balzarotti, D., and Zidouemba, A.

\ROPMEMU: A framework for the analysis of complex

code-reuse attacks", 11th ACM on Asia Conference on

Computer and Communications Security, ACM, pp.

47-58 (2016).

18. Vanegue, J. \The weird machines in proof-carrying

code", Security and Privacy Workshops (SPW), 2014

IEEE, IEEE, pp. 209-213 (2014).

19. Shapiro, R., Bratus, S., and Smith, S.W. \\Weird

machines", in ELF: A Spotlight on the Underappre-

ciated Metadata", WOOT'13: Presented as part of

the 7th USENIX Workshop on O�ensive Technologies,

USENIX (2013).

20. Bangert, J., Bratus, S., Shapiro, R., et al. \The

page-fault weird machine: lessons in instruction-less

computation", 7th USENIX Workshop on O�ensive

Technologies, WOOT'13, USENIX (2013).

21. Barrett, C. \SMT: Where do we go from here?", 12th

International Workshop on Satis�ability Modulo The-

ories, Available at: http://smt2014.it.uu.se/ (2014).

22. Fraser, G. and Arcuri, A. \Evosuite: automatic test

suite generation for object-oriented software", 19th

ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering,

ACM, pp. 416-419 (2011).

23. Shahamiri, S.R., Kadir, W.M.N.W., Ibrahim, S., et al.

\An automated framework for software test oracle",

Information and Software Technology, 53(7), pp. 774-

788 (2011).

24. Vanegue, J., Heelan, S., and Rolles, R. \SMT solvers

in software security", WOOT, pp. 85-96 (2012).

25. http://ce.sharif.edu/�b momeni/projects/twinner

26. Momeni, B. and Kharrazi, M. \LDMBL: An archi-

tecture for reducing code duplication in heavyweight

binary instrumentations", Software: Practice and Ex-

perience, 48(9), pp. 1642-1659 (2018).

27. Intel Corporation \Intel®64 and IA-32 architectures

software developer's manual, combined volumes 1,

2ABC, 3ABC", Intel Corporation (2013).

28. Barrett, C., Conway, C.L., Deters, M., et al. \CVC4",

Computer Aided Veri�cation, Springer, pp. 171-177

(2011).

29. SPEC \SPEC CINT2006 benchmarks", Standard Per-

formance Evaluation Corporation, https://spec.org/

cpu2006/CINT2006/ (2006).

30. Bletsch, T., Jiang, X., Freeh, V.W., et al. \Jump-

oriented programming: a new class of code-reuse

attack", 6th ACM Symposium on Information, Com-

puter and Communications Security, ACM, pp. 30-40

(2011).

31. Lattner, C. and Adve, V. \LLVM: A compilation

framework for lifelong program analysis & transforma-

tion", International Symposium on Code Generation

and Optimization, CGO, IEEE, pp. 75-86 (2004).

32. Le Cam, L. \The central limit theorem around 1935",

Statistical Science, 1(1), pp. 78-91, Institute of Math-

ematical Statistics (Feb. 1986).

33. Graziano, M., Leita, C., and Balzarotti, D. \Towards

network containment in malware analysis systems",

28th Annual Computer Security Applications Confer-

ence, ACM, pp. 339-348 (2012).

34. Dinaburg, A., Royal, P., Sharif, M., et al. \Ether: mal-

ware analysis via hardware virtualization extensions",

15th ACM Conference on Computer and Communica-

tions Security, ACM, pp. 51-62 (2008).

Biographies

Behnam Momeni received BSc and MSc degrees in

Computer Engineering and Information Technology

(with honors) from Sharif University of Technology,

Tehran, Iran, in 2010 and 2012, respectively. He

then joined the PhD program at Sharif University of

Technology. He is currently a PhD candidate in Safety

and Security in Software and Systems Laboratory

(S4Lab), Department of Computer Engineering,

Sharif University of Technology. His current research

interests include information, operating system,

B. Momeni and M. Kharrazi/Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 3485{3509 3509

and software security and techniques of software

obfuscation and deobfuscation.

Mehdi Kharrazi received the BSc degree in Electrical

Engineering from the City College of New York, New

York, in 1999, and MSc and PhD degrees in Electrical

Engineering from Polytechnic University, Brooklyn,

NY, in 2002 and 2006, respectively. He is currently an

Assistant Professor with the Department of Computer

Engineering, Sharif University of Technology, Tehran,

Iran. His current research interests include software,

network, and multimedia security.

