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Abstract. Statistical Process Control (SPC) techniques are commonly used to monitor
process performance. Control charting technique is the most sophisticated tool of SPC
and is categorized as memory-less and memory-type control charts. Shewhart-type control
charts are of low e�ciency in detecting small changes in the process parameters and are
named as memory-less control charts. Memory-type control charts (e.g., Cumulative Sum
(CUSUM) and Exponentially Weighted Moving Average (EWMA) charts) are very sensitive
to small persistent shifts. In connection with enhancing the performance of CUSUM and
EWMA charts, an e�cient variant of memory-type charts for the location parameter is
developed based on mixing the Double Exponentially Weighted Moving Average (DEWMA)
chart and CUSUM chart by performing exponential smoothing twice. Performance of the
proposed e�cient variant is compared with existing counterparts under normal and non-
normal (heavy tails and skewed) environments. This study also provides an industrial
application related to the monitoring of weights of quarters made by mint machine placed
into service at U.S. Mint. From theoretical and numerical studies, it is revealed that the
proposed variant of memory-type charts outperforms the counterparts in detecting shifts
of small and moderate magnitudes.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Control charts, one of the key tools of Statistical
Process Control (SPC), are categorized into two main
types: memory-less and memory control charts. She-
whart charts, called memory-less control charts, are
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quite e�cient in detecting larger shifts in the process
location or dispersion. However, their e�ciencies are
under consideration in detecting small and moderate
shifts in the process parameters. On the other hand,
the memory control charts such as Cumulative Sum
(CUSUM) control charts introduced by Page [1] and
Exponentially Weighted Moving Average (EWMA)
control charts suggested by Roberts [2] are more
e�ective in detecting the small process shifts because
they make use of the current as well as past sample
information.

The most signi�cant and commonly used measure
to assess the performance of control charts is Average
Run Length (ARL), which is simply the mean of the
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random variable Run Length (RL). The RL is the
number of samples and out-of-control signal is detected
�rst. Some researchers have discouraged the only
use of ARL due to the skewed behavior of its RL
distribution (cf. [3{7]). Therefore, in order to explain
the run length distribution further, it is better to report
di�erent important characteristics of the RL such as
the Standard Deviation (SDRL) and some percentile
points. When the process is in-control, the ARL is
indicated by ARL0 and is expected to be large; if the
process is out-of-control, the ARL is represented by
ARL1 and is anticipated as small as possible.

To enhance the performance of CUSUM and
EWMA charts, several amendments have been made
(cf., [8{14]). Shamma and Shamma [15] proposed a
control chart for evaluating the smaller and moderate
shifts in the process mean using the method of Double
Exponentially Weighted Moving Average (DEWMA)
by performing exponential smoothing twice. Riaz et
al. [16] improved the performance of CUSUM scheme
in detecting small to large shifts employing the concept
of runs rules scheme. Abbas et al. [17] proposed
the implementation of di�erent run rules for EWMA
schemes. Abbas et al. [18] improved the design
structure of EWMA and CUSUM control charts such
that EWMA statistic would serve as the input for the
CUSUM structure and be called as Mixed EWMA-
CUSUM (MEC) chart. Zaman et al. [19] proposed a
reverse version of the said MEC chart such that the
CUSUM statistic would use the input for the EWMA
structure and hereafter, named as Mixed CUSUM-
EWMA (MCE) chart. On the further development
of the control charts using di�erent approaches, the
interested reader can see the work of Nazir et al. [20],
Ahmad et al. [21], Riaz and Ali [22], Abujiya et al. [23],
Abbasi et al. [24], Ajadi and Riaz [25], and Hussain et
al. [26].

With the quality becoming more and more vital
in today's industry and quality standards becoming
higher and higher, a natural question that pops into
mind is: \Is there a method to make the existing
EWMA and CUSUM charts more sensitive to very
small shifts in a process location parameter?" In
this study, following Abbas et al. [18] and Zaman et
al. [19], we explore such a possibility by combining
features of the structures of CUSUM and DEWMA
charts and propose an e�cient chart by mixing the
structures of CUSUM and DEWMA charts for the
location parameter of the process. The control charts,
designed under the assumption of normality, do not
perform well under the violation of this assumption.
Non-normal processes are more common in practice;
hence, it is indispensable to develop the structure of
the control charts under non-normality. Thus, the
performance of the proposed control chart is under
consideration in case of non-normal environments.

The rest of the paper is organized as follows:
Section 2 presents the basic design structures of the
CUSUM and DEWMA control charts and the proposed
E�cient Variant (EV) scheme. Section 3 consists of
design structure and derivation of the control limits of
the proposed chart. Section 4 presents performance
comparisons of the proposed scheme with its coun-
terparts. Section 5 gives an industrial application of
the proposed chart. At the end, Section 6 ends with
conclusions.

2. Description of CUSUM, DEWMA and the
proposed charts

Quality characteristic of interest, say X, is an inde-
pendent sequence of observations fXtg(t = 1; 2; 3; � � � )
following the normal distribution with mean �0 + ��0
and variance �2

0 , i.e., Xt�N(�0 + ��0; �2
0), where �0

and �2
0 are the mean and variance of the process,

respectively. The value of � = 0 shows that the process
is in-control; if not, the process mean shifts and the
objective of the process monitoring is to detect the
mean shift �0 + ��0 as early as possible following its
occurrence. Without loss of generality, we assume that
�0 = 0 and �0 = 1. Thus, we assume the phase-
II application of control charts with the in-control
values of the parameters to be known. The following
subsection contains details of the memory-type control
charts.

2.1. Cumulative Sum (CUSUM) chart
Page [1] introduced the CUSUM chart employing the
method of accumulating the positive and negative
deviations from �0 into two statistics C+

i and C�i ,
respectively. These two statistics are de�ned as follows:

C+
t = max[0; (Xt � �0)�K + C+

t�1];

C�t = max[0;�(Xt � �0)�K + C�t�1]; (1)

where t is the sample number, �0 is the target value,
and K is the reference or slack value which is commonly
selected equal to half of the shift (in standard deviation
unit) to be detected. The starting values of C+

i and
C�0 are generally chosen equal to zero or the process
location �0, that is C+

0 = C�0 = �0, although it may
be speci�ed otherwise for a fast initial response (cf.,
[9]). The statistics C+

i and C�i are plotted against
the decision interval or control limit H and the chart
signals if either one of the statistics (C+

0 or C�i ) exceeds
the decision interval H. K and H are two parameters
of the CUSUM chart that are de�ned as follows:

K = k � �0; H = h� �0: (2)

Here, k and h are the constants that are selected to
ful�ll a pre-de�ned ARL0 or according to the desired
design conditions.
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2.2. Double Exponentially Weighted Moving
Average (DEWMA) chart

Shamma and Shamma [15] proposed the DEWMA
chart by performing exponential smoothing twice. The
main disadvantage of EWMA statistic is that it always
assigns strictly decreasing weights to historical data;
however, this does not happen in case of DEWMA
statistic (cf., [27]). The DEWMA statistic Zt is written
as follows:

Yt = �1Xt + (1� �2)Yt�1
Zt = �3Yt + (1� �4)Zt�1

�
; (3)

where �1 + �2 = 1, �3 + �4 = 1 , and �1 and �3 2
(0; 1] are the smoothing parameters of the DEWMA
chart. Also, as demonstrated by Zhang and Chen [27],
the DEWMA statistic in Eq. (3) may be expressed as
follows:

Zt =�1�3

tX
j=1

(
�t�j2

t�jX
k=0

�
�4

�2

�k)
Xt

+ �3

t�1X
j=0

�t�j2 �j4Y0 + �t4Z0; t � 1: (4)

If �1 = �3, then:

Zt = �2
1

tX
j=1

(t� j + 1)�t�j2 Xt + t�1�t2Y0 + �t2Z0: (5)

Eq. (4) can be rewritten in the following if �1 6= �3:

Zt = �1�3

tX
j=1

1� (�4=�2)t�j+1

1� (�4=�2)
�t�j2 Xt

+�2�3
�t2 � �t4
�2 � �4

Y0 + �t4Z0: (6)

The starting values of Yt and Zt are generally taken
equal to the target values, i.e., Y0 = Z0 = �0. The
chart, DEWMA, signals if the statistic Zt falls beyond
the following limits:

LCLt = �0 � L�Zt ;
CL = �0;

UCLt = �0 + L�Zt ; (7)

where if �1 = �3, then: �zt is obtained by Eq. (8),
shown in Box I, and if �1 6= �3, then: �zt is obtained by
Eq. (9), shown in Box II. The constant L in Eq. (7) is
the control limit coe�cient and can carefully be chosen
to satisfy the pre-speci�ed ARL0 or, according to the
design conditions, together with �1 and �3, control the
performance of DEWMA chart.

2.3. Proposed DEWMA-CUSUM chart
To improve the design structure of EWMA and
CUSUM control charts, Abbas et al. [18] and Zaman
et al. [19] suggested the mixed versions of EWMA and
CUSUM charts. The proposed chart is based on mixing
the features of DEWMA and CUSUM charts by using
the concept of double exponential smoothing, which
makes the proposed chart sensitive to very small shifts
in the process location parameter. The proposed mixed
DEWMA-CUSUM chart, hereafter, is named as EV
chart. The charting statistics (EV +

t and EV �t ) for this
proposed EV chart are given as:

EV +
t = max

�
0; (Zt � �0)� Pt + EV +

t�1
�

EV �t = max
�
0;� (Zt � �0)� Pt + EV �t�1

�� ; (10)

where Zt is de�ned as in Eq. (3) and Pt is the reference
value. The initial values for the statistics EV +

0 and
EV �0 are generally put equal to zero or the target
value, �0, i.e., EV +

0 = EV �0 = �0, although the
initial values may be speci�ed according to the desired
design conditions. The statistics (given in Eq. (10))
are plotted alongside the control limit Qt and if either
one of these statistics (EV +

t or EV �t ) goes outside
the control limit Qt, then the process is considered
to be out-of-control; otherwise, it will be in-control.
The standardized versions of Pt and Qt are given as if
�1 = �3, then Pt is obtained by Eq. (11), shown in

�Zt =

s
�2

0�4
1

1 + �2
2 � (t2 + 2t+ 1)�2t

2 + (2t2 + 2t� 1)�2t+2
2 � t2�2t+4

2

(1� �2
2)3 : (8)

Box I

�Zt =

s
�2

0
�2

1�2
3

(�4 � �2)2

�
�2

4 (1� �2t
4 )

1� �2
4

+
�2

2 (1� �2t
2 )

1� �2
2
� 2

�2�4(1� (�2�4)t)
1� �2�4

�
: (9)

Box II
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Pt = p�
s
�2

0�4
1

1 + �2
2 � (t2 + 2t+ 1)�2t

2 + (2t2 + 2t� 1)�2t+2
2 � t2�2t+4

2

(1� �2
2)3 : (11)

Box III

Pt = p�
vuut�2

0
�2

1�2
3

(�4 � �2)2

(
�2

4 (1� �2t
4 )

1� �2
4

+
�2

2 (1� �2t
2 )

1� �2
2
� 2

�2�4(1� (�2�4)t)
1� �2�4

)
: (12)

Box IV

Box III, and if �1 6= �3, then Pt is obtained by Eq.
(12) shown in Box IV.

Unlike the usual CUSUM chart, the EV chart has
time-varying reference values Pt that result from the
variance of DEWMA statistic in Eq. (8) and Eq. (9)
and are functions of �1 and �3. The threshold control
limit Qt is: if �1 = �3, then Qt is obtained by Eq.
(13), shown in Box V, and when �1 6= �3, then Qt is
obtained by Eq. (14), shown in Box VI, where p and q
are constants similar to k and h in Eq. (2), respectively,
and can carefully be chosen to satisfy the pre-speci�ed
ARL0 or according to the design conditions. The 
ow
chart of the proposed chart is provided in Figure 1.

2.4. Derivation of the limits of the proposed
scheme

The construction of Phase-II control limits in Eqs. (13)
and (14) of the proposed EV chart depends on the
choice of the smoothing parameters, �1 and �3, the
reference value, Pt, and the decision interval, Qt.
These parameters need to be chosen with care as these
parameters control the performance of the proposed
scheme. q in Eqs. (13) and (14) is determined to
obtain the desired ARL0 by setting p = 0:5 as an

optimal constant to detect a shift of size � = 1, with
di�erent choices of �1 and �3, taking inspiration from
Lucas [8], Shamma and Shamma [15], Abbas et al.
[18], and Zaman et al. [19]. The values of q to satisfy
ARL0 = 168; 200; 370; and 500 are evaluated when
�1 = �3 and are given in Table 1; in addition, when
�1 6= �3, values of q to satisfy ARL0 = 168 are provided
in Table 2 with their in-control SDRL values. The in-
control SDRL is also reported in Table 3 when �1 = �3.
Numerically, these values are hard to �nd and, hence,
are determined using Monte Carlo simulation.

For a �xed in-control ARL (ARL0), the values
of q increase as the smoothing parameters (�1 and �3)
tend to zero, and when �1 = �3 approaches to one, this
phenomenon occurs inversely (cf., Table 1). However,
when a too small value of �1 = �3 is used, the in-
control SDRL often becomes very large (cf., Table 3);
on the contrary, when the values of �1 and �3 have the
tendency to one, the in-control variability in the RL is
small (cf., Table 2).

3. Performance of the charts

To evaluate the performance of the proposed EV chart,

Qt = q �
s
�2

0�4
1

1 + �2
2 � (t2 + 2t+ 1)�2t

2 + (2t2 + 2t� 1)�2t+2
2 � t2�2t+4

2

(1� �2
2)3 : (13)

Box V

Qt = q �
vuut�2

0
�2

1�2
3

(�4 � �2)2

(
�2

4 (1� �2t
4 )

1� �2
4

+
�2

2 (1� �2t
2 )

1� �2
2
� 2

�2�4(1� (�2�4)t)
1� �2�4

)
: (14)

Box VI
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Figure 1. Flowchart of the proposed charts.

Table 1. q Values of the E�cient Variant (EV ) chart for given ARL0 and �1 = �3 with p = 0:5.

ARL0
�1 = �3

0.01 0.05 0.1 0.25 0.5 0.75 1
168 116.04 51.34 39 23.91 13.1 7.4 4
200 124 58.04 43.99 26 14 7.8 4.18
370 165 84.6 60 32.8 17 9.24 4.78
500 193.6 100.4 68.84 36.74 18.6 9.95 5.08

Table 2. q values of the E�cient Varient (EV) chart for ARL0 �= 168 and �1 6= �3 with p = 0:5.

�1 0.01 0.01 0.01 0.05 0.05 0.05 0.1 0.1 0.1
�3 0.05 0.1 0.25 0.01 0.1 0.25 0.01 0.05 0.25
q 38.28 30.06 25.89 150.84 38.28 30.3 169.4 55.9 28
ARL 169.79 168.33 167.09 168.46 168.90 169.70 169.31 169.07 169.04
SDRL 181.85 161.34 154.45 187.88 146.48 142.79 174.04 145.27 145.53
�1 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75
�3 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
q 193 61.26 39.8 209.7 66 40.68 218.6 68 41.5
ARL 168.61 168.35 169.66 169.31 167.88 169.10 168.55 168.17 168.88
SDRL 167.59 143.32 146.80 165.11 139.62 145.74 167.70 141.28 146.05
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Table 3. Standard Deviation of Run Length (SDRL) of the E�cient Varient (EV) chart for given ARL0 and �1 = �3 with
p = 0:5.

ARL0
�1 = �3

0.01 0.05 0.1 0.25 0.5 0.75 1

168 252.46 149.18 143.49 148.73 154.85 159.21 161.73
200 291.57 176.35 171.60 180.99 185.76 195.13 198.40
370 417.52 317.56 324.32 336.72 351.91 359.34 371.45
500 509.96 430.64 437.63 466.81 475.50 491.99 500.54

Table 4. ARL1 and Standard Deviation of Run Length (SDRL) of E�cient Varient (EV) chart when �1 = �3 with
ARL0 �= 168.

�

�1 = 0:01
�3 = 0:01

�1 = 0:05
�3 = 0:05

�1 = 0:1
�3 = 0:1

�1 = 0:25
�3 = 0:25

�1 = 0:5
�3 = 0:5

�1 = 0:75
�3 = 0:75

�1 = 1
�3 = 1

ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.05 136.1 198 151 129.5 149.5 125.3 154.3 133.8 156.1 143.1 159.2 150.9 162.1 155.9
0.1 86.4 114.9 112.5 91.38 114.9 91.72 120.5 102.1 125 111.2 131.4 121.5 140.3 138.6
0.2 43.75 50.19 63.83 44.34 65.86 44.65 68.23 50.67 71.92 59.35 78.74 70.17 92.75 86.43
0.25 32.98 34.9 50.27 32.39 52.01 32.34 53.44 37.42 55.65 43.88 61.11 52.59 74.97 69.93
0.5 13.35 11.7 23.61 12.13 25.52 10.84 24.15 11.37 22.77 13.03 23.13 15.83 26.74 21.43
0.75 7.81 5.44 14.76 6.73 17.04 5.93 15.77 5.49 13.74 6.05 12.75 6.9 13.34 9.02

1 5.61 3.21 10.53 4.41 12.8 4.02 12.03 3.42 9.97 3.53 8.73 3.87 8.36 4.74
1.5 3.76 1.51 6.69 2.27 8.6 2.29 8.52 1.84 6.75 1.71 5.51 1.77 4.75 2.01
2 3.02 0.9 5.01 1.37 6.5 1.49 6.74 1.23 5.29 1.07 4.14 1.05 3.35 1.18

2.5 2.59 0.65 4.08 0.93 5.24 1.06 5.62 0.93 4.43 0.77 3.39 0.72 2.61 0.78
3 2.33 0.51 3.53 0.69 4.48 0.81 4.89 0.74 3.88 0.62 2.94 0.58 2.19 0.58
4 2.07 0.25 2.95 0.44 3.54 0.57 3.94 0.54 3.15 0.41 2.3 0.46 1.71 0.49
5 2.01 0.07 2.54 0.5 3.06 0.31 3.29 0.46 2.8 0.41 2.02 0.16 1.31 0.46

Table 5. ARL1 and Standard Deviation of Run Length (SDRL) of E�cient Varient (EV) chart when �1 = �3 with
ARL0 �= 200.

�

�1 = 0:01
�3 = 0:01

�1 = 0:05
�3 = 0:05

�1 = 0:1
�3 = 0:1

�1 = 0:25
�3 = 0:25

�1 = 0:5
�3 = 0:5

�1 = 0:75
�3 = 0:75

�1 = 1
�3 = 1

ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.05 151.7 209.9 178.4 153.6 180.4 153.4 184.8 162.8 185 170.6 185.9 174.4 189.3 184.2
0.1 100.6 124.7 130.1 102.6 133.1 105.4 141.5 122.5 145.9 132.7 154.6 147.1 166.5 161.6
0.2 47.98 50.92 70.8 46.38 72.91 48.37 74.72 55.6 79.3 65.58 87.41 78.2 108 103.9
0.25 36.99 38.4 56.02 34.62 57.18 34.34 58.14 39.48 61.05 47.08 68.04 59.75 83.71 78.99
0.5 14.29 12.02 26.59 12.61 27.93 11.23 25.55 11.99 24.07 13.9 24.27 16.72 28.47 23.07
0.75 8.4 5.88 16.55 7.07 18.75 6.1 16.62 5.63 14.62 6.44 13.23 6.94 13.97 9.41

1 5.92 3.38 11.88 4.6 14.16 4.13 12.73 3.47 10.46 3.6 9.09 3.96 8.65 4.79
1.5 3.95 1.55 7.49 2.4 9.55 2.38 9.02 1.88 7.04 1.74 5.7 1.82 4.95 2.04
2 3.12 0.92 5.56 1.48 7.22 1.57 7.14 1.24 5.51 1.09 4.28 1.09 3.47 1.21

2.5 2.69 0.68 4.49 1.02 5.81 1.13 5.97 0.93 4.63 0.78 3.51 0.76 2.72 0.81
3 2.41 0.54 3.84 0.76 4.95 0.86 5.18 0.76 4.03 0.63 3.03 0.58 2.27 0.59
4 2.09 0.29 3.14 0.44 3.88 0.59 4.16 0.53 3.27 0.46 2.39 0.5 1.77 0.47
5 2.01 0.1 2.8 0.42 3.25 0.44 3.52 0.51 2.92 0.31 2.04 0.21 1.37 0.48

the ARL is used as a performance measure. Monte
Carlo simulation is conducted to �nd ARL0 and ARL1
of the process. The simulation details are as follows:
We have generated 105 random observations from the
distributions given in Section 2. The control limits
of the EV chart are established using the expressions
given in Eqs. (13) and (14) and the values of design
parameters are given in Tables 1{3. Then, we noted
the number of sample points at which the plotting

statistics (EV +
t or EV �t ) breach the control limits. At

the end, we repeated this procedure 105 times to get the
distribution of the RL. The structure of the proposed
scheme can easily be implemented in any statistical
software. In this study, R language is utilized for the
implementation to evaluate the properties of the charts.

ARL1 and SDRL of EV chart for �1 = �3 with
�xed ARL0 = 168; 200; 370; 500 are given in Tables 4{7
and when �1 6= �3, ARL1 of the proposed chart with
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Table 6. ARL1 and Standard Deviation of Run Length (SDRL) of E�cient Varient (EV) chart when �1 = �3 with
ARL0 �= 370.

�

�1 = 0:01
�3 = 0:01

�1 = 0:05
�3 = 0:05

�1 = 0:1
�3 = 0:1

�1 = 0:25
�3 = 0:25

�1 = 0:5
�3 = 0:5

�1 = 0:75
�3 = 0:75

�1 = 1
�3 = 1

ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.05 270.7 293.6 296.5 245.4 300.6 258 305.9 276.4 323.3 304.9 332.7 321.2 348.7 346.1
0.1 157.1 152.4 192 144.2 196.4 156.6 208 177.5 228.9 208.6 252.6 240.9 283.5 276.3
0.2 73.07 63.57 95.2 55.09 94.57 59.02 97.22 70.77 107.9 89.3 126.7 116.2 164.1 160.1
0.25 53.93 45.04 74.81 38.36 73.35 40.56 73.08 48.73 78.7 61.37 92.52 81.4 123.2 117.5
0.5 20.2 15.05 36.64 13.49 35.14 12.4 30.86 13.35 28.64 15.39 28.74 18.86 35.28 28.92
0.75 11.29 7.13 23.94 7.77 23.86 6.53 19.88 6.31 16.91 6.89 15.65 7.98 16.34 10.66

1 7.74 4.17 17.4 5.32 18.27 4.38 15.03 3.81 12.11 3.96 10.46 4.3 9.9 5.23
1.5 4.89 1.92 11.03 2.97 12.53 2.58 10.62 2 8.1 1.91 6.49 1.94 5.52 2.18
2 3.78 1.09 8.02 1.86 9.53 1.74 8.43 1.32 6.3 1.17 4.83 1.16 3.86 1.26

2.5 3.18 0.74 6.28 1.29 7.65 1.29 7.04 0.99 5.24 0.83 3.94 0.8 3 0.85
3 2.83 0.6 5.27 0.97 6.47 1 6.13 0.79 4.59 0.66 3.38 0.6 2.48 0.63
4 2.35 0.48 4.07 0.62 4.97 0.68 4.91 0.59 3.73 0.52 2.73 0.48 1.96 0.4
5 2.08 0.27 3.38 0.5 4.12 0.48 4.14 0.42 3.14 0.35 2.2 0.4 1.61 0.49

Table 7. ARL1 and Standard Deviation of Run Length (SDRL) of E�cient Varient (EV) chart when �1 = �3 with
ARL0 �= 500.

�

�1 = 0:01
�3 = 0:01

�1 = 0:05
�3 = 0:05

�1 = 0:1
�3 = 0:1

�1 = 0:25
�3 = 0:25

�1 = 0:5
�3 = 0:5

�1 = 0:75
�3 = 0:75

�1 = 1
�3 = 1

ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL ARL1 SDRL

0.05 349.7 335.3 378.4 312 384.2 330.4 405.2 369.5 430.3 410.7 444.3 430 461.3 455.8
0.1 195.1 165.9 228.6 169.3 233.9 185.4 258.3 223.5 288.1 268.6 315.1 307.2 374 376.3
0.2 89.08 67.7 109.3 61.59 106.8 65.55 112 82.12 125 104.3 150 136.2 199.2 188.4
0.25 66.05 48.95 85.54 41.27 82.09 43.82 81.69 52.68 89.02 69.04 105.2 91.68 145.8 137.3
0.5 24.64 16.64 41.97 13.89 38.87 13 33.57 14.23 31.09 16.37 31.37 20.26 38.91 31.43
0.75 13.59 8.03 28.16 8.12 26.47 6.75 21.72 6.7 18.22 7.23 16.6 8.28 17.35 11.26

1 9.16 4.74 20.61 5.53 20.38 4.51 16.31 3.97 13 4.15 11.13 4.47 10.53 5.57
1.5 5.64 2.16 13.14 3.18 14.1 2.65 11.46 2.07 8.64 1.99 6.9 2.03 5.86 2.27
2 4.24 1.24 9.52 2.06 10.77 1.81 9.1 1.36 6.7 1.21 5.13 1.21 4.08 1.3

2.5 3.51 0.8 7.47 1.45 8.66 1.35 7.65 1.02 5.56 0.86 4.14 0.83 3.14 0.88
3 3.11 0.6 6.16 1.08 7.31 1.05 6.63 0.82 4.86 0.68 3.56 0.64 2.61 0.66
4 2.6 0.51 4.68 0.69 5.58 0.72 5.31 0.59 3.96 0.47 2.88 0.44 2.03 0.39
5 2.22 0.41 3.89 0.5 4.58 0.56 4.47 0.52 3.32 0.47 2.35 0.48 1.72 0.45

�xed ARL0 = 168 is provided in Table 8. The following
observations can be made in Tables 4{8:

i. The detection ability of the proposed chart for
small shifts is greater for small values of smoothing
parameters than the large choices of �1 and �3.
To detect the shift of size � = 0:25, the average
run length is much lower for �1 = �3 = 0:01 than
any other choices of the smoothing parameter (cf.,
Table 4);

ii. The performance of the EV chart is substantial at
smaller values of �1 = �3;

iii. With the moderate value of �1 = �3 = 0:10, the
shift of size � = 0:50 can be identi�ed with smaller
variability in the run length distribution;

iv. When �1 6= �3, the e�cient choices of �1 and �3
for quickly detecting � = 0:50 are to use �1 = 0:05
and �3 = 0:01 along with the choices of �1 = 0:1
and �3 = 0:01;

v. The proposed chart works e�ciently in �nding
an undesirable process level with �1 = �3, as
compared to the chart with �1 6= �3;

vi. The recommendation is to use 0 < �1 = �3 < 0:25
for quick detection of shifts of magnitude, i.e., � =
0:50 (cf., Tables 4{7), and in case of �1 6= �3 to
better select 0:05 � �1 � 0:1 and �3 = 0:01.

4. Comparisons with other mixed charts under
normal environment

The objective here is to provide an e�cient chart
from the existing mixed charts, e.g., MEC and MCE
charts. To this end, we compare the performance of
the EV chart, only, with those of MEC and MCE charts
because the papers that have already investigated MEC
and MCE charts provide detailed comparisons with
some other charts. For valid comparisons, the EV,
MEC, and MCE charts have been given the same in-
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Table 8. ARL1 of E�cient Varient (EV) chart when �1 6= �3 with ARL0 �= 168.

� �1 = 0:01 �1 = 0:05 �1 = 0:10
�3 = 0:05 �3 = 0:10 �3 = 0:25 �3 = 0:01 �3 = 0:10 �3 = 0:25 �3 = 0:01 �3 = 0:05 �3 = 0:25

0.05 143.7 147.1 147.9 144.9 151.2 151.3 146.5 148.7 150.4
0.1 103.6 108.9 110.5 100.8 113.9 114.5 105.9 114.6 117.6
0.2 57.24 61.29 63.53 53.71 65.64 66.36 56.62 65.1 66.47
0.25 44.15 48.97 51.39 40.65 52.19 52.82 43.69 51.78 52.9
0.5 19.37 23.49 26.6 16.7 26.26 27.55 17.9 24.07 25.76
0.75 11.84 15.34 18.69 9.75 17.59 19.46 10.67 15.39 18

1 8.2 11.11 14.45 6.86 13.16 15.35 7.39 10.96 14.02
1.5 5.27 7.25 10.24 4.47 8.75 11.09 4.78 7.01 10.1
2 4.04 5.44 8.03 3.5 6.58 8.79 3.72 5.24 8.02

2.5 3.38 4.43 6.65 2.98 5.29 7.29 3.16 4.28 6.71
3 2.98 3.79 5.7 2.65 4.51 6.31 2.81 3.67 5.79
4 2.45 3.09 4.5 2.23 3.55 5 2.33 3.04 4.61
5 2.11 2.7 3.79 2.04 3.06 4.18 2.07 2.68 3.9

� �1 = 0:25 �1 = 0:50 �1 = 0:75
�3 = 0:01 �3 = 0:05 �3 = 0:10 �3 = 0:01 �3 = 0:05 �3 = 0:25 �3 = 0:01 �3 = 0:05 �3 = 0:25

0.05 145.6 146.9 148.5 149.8 153.9 153.5 148.2 152.2 155
0.1 107 114.3 117 108.1 118 118.7 106.8 117.4 120
0.2 58.05 66.27 67.3 58.34 67.63 67.98 57.97 67.54 68.87
0.25 45.1 52.75 53.34 44.87 53.58 53.72 44.62 53.56 54.29
0.5 18.55 24.3 24.8 18.67 24.96 24.91 18.52 25.05 25.15
0.75 10.9 15.27 16.16 10.89 15.55 15.93 10.77 15.6 16.03

1 7.68 10.98 12.02 7.64 11.08 11.69 7.51 11.07 11.67
1.5 5.03 7.12 8.12 4.93 7.05 7.71 4.8 6.96 7.61
2 3.87 5.33 6.16 3.82 5.25 5.83 3.7 5.12 5.68

2.5 3.3 4.36 5.04 3.22 4.25 4.73 3.1 4.11 4.56
3 2.92 3.75 4.31 2.87 3.67 4.08 2.75 3.53 3.91
4 2.44 3.09 3.44 2.39 3.04 3.27 2.3 2.93 3.15
5 2.11 2.75 3.02 2.09 2.69 2.92 2.06 2.52 2.8

Table 9. ARLs of Mixed EWMA-CUSUM (MEC), and Mixed CUSUM-EWMA (MCE) charts with ARL0 �= 168.

� MEC chart MCE chart
� = 0:1 � = 0:25 � = 0:5 � = 0:75 � = 0:1 � = 0:25 � = 0:5 � = 0:75

0 168.04 168.07 169.88 171.04 168.30 169.39 168.36 170.28
0.25 52.64 54.18 59.78 68.15 67.79 70.42 72.90 73.45
0.5 24.86 22.41 22.55 24.13 25.61 24.94 25.61 25.43
0.75 17.02 14.02 12.86 12.61 13.52 12.77 12.64 12.43

1 13.33 10.48 8.96 8.27 9.34 8.39 7.78 7.54
1.5 9.74 7.33 5.79 5.00 5.87 5.05 4.42 4.09
2 7.91 5.82 4.43 3.74 4.41 3.73 3.14 2.79

control average run length (ARL0) and then, their
respective out-of-control average run lengths (ARL1)
are compared. For the aforesaid purpose, the ARLs
of the MEC and MCE charts are simulated. Some
representative results are provided in Table 9.

According to Tables 4 and 9, EV chart is slightly
pro�cient than the MEC chart, but outperforms MCE
chart in detecting small to moderate changes in the
process location parameter when the smoothing pa-
rameters of EV chart are equal, i.e., �1 = �3. The
performance of the proposed chart is more obvious and
substantial at larger values of �1 = �3.

According to the comparison of the results of EV
chart shown in Table 4 having �1 6= �3 with those of
the MEC and MCE charts shown in Table 9, it can
be observed that the EV chart is even more sensitive
to small shifts. The above discussion is made when
ARL0 �= 168, but this is generally true when other in-
control ARLs are considered.

According to Section 2, the only use of ARL has
been criticized by many researchers due to its skewed
behavior. Therefore, to facilitate a better understand-
ing of the RL distribution of EV, MEC, and MCE
charts, some other measures such as SDRL and di�er-



1744 H.Z. Nazir et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1736{1749

Table 10. Characteristics of in-control run length for E�cient Variant (EV), Mixed EWMA-CUSUM (MEC), and Mixed
CUSUM-EWMA (MCE) charts with ARL0 �= 168.

Characteristics EV
(�1 = �3 = 0:1)

EV
(�1 = 0:1, �3 = 0:01)

MEC
(� = 0:1)

MCE
(� = 0:1)

Min 5 2 9 3
P1 17 4 18 8
P5 38 7 36 25
P10 47 13 45 35
P25 66 41 64 55
P50 125 116 125 122
P75 222 239 229 234
P90 356 399 368 382
P95 457 521 470 494
P99 688 792 699 741
Max 1746 1879 2282 1796
ARL 167.67 169.24 170.60 170.40

SDRL 143.72 174.73 149.58 161.94

ent percentiles (Pi, ith percentile) along with the small-
est and largest RL of the in-control process are reported
in Table 10 and these measures help study the short
run and long run behaviors of the RL distribution. For
instance, the 5% percentiles of the RL distribution of
the EV, MEC, and MCE charts are on average about
17, 4, 18, and 8 observations (cf., Table 10).

To get a deeper insight into the out-of-control
RL distribution, Figure 2 presents the RL distribution
curves of all the charts considering the value of smooth-
ing parameter equal to 0.10 with � = 0:25 under a
normal environment. The curves give the cumulative
probability of detecting an out-of-control situation. A
higher curve shows the superiority of a chart in terms
of its quick detection of shifts in the process parameter.

According to Figure 2, EV chart has higher
probabilities for small RL to detect the shift than that

Figure 2. Run length curves of E�cient Variant (EV),
Mixed EWMA-CUSUM (MEC), and Mixed
CUSUM-EWMA (MCE) charts with � = 0:25 and
ARL0 �= 168.

of other memory charts. To detect a shift of magnitude
� = 0:25 at a RL equal to 30, the practitioner needs to
spend a shorter span of time with the mixed EV chart
than MEC and MCE charts.

Overall, the smaller values of smoothing param-
eters of the proposed EV chart pointed to its better
performance in spotting smaller changes in the process
location parameter.

4.1. Evaluation under non-normal
environments

Design and implementation of the proposed EV chart
discussed in the preceding subsection are based on the
assumptions that process measurements are indepen-
dent and identically distributed, both the in-control
and out-of-control distributions are normal, and the
process parameters of the in-control distribution are
known. However, there are many practical situations
where these assumptions can be invalid. The next
section discusses e�ects on the performance of the
proposed EV chart of the case when the process mea-
surements collected in di�erent time periods are from
non-normal environments. For the sake of comparisons,
the counterpart charts of MEC and MCE are also
considered.

4.1.1. Limits based on normality
In this sub-section, the impact of non-normal observa-
tions on EV, MEC, and MCE charts with control limits
based on normality is evaluated. Consider the following
scenario: When process measurements follow a non-
normal distribution, i.e., t distribution with 4 degrees of
freedom (t4) having heavy tails and being 
atter than
that of normal distribution. According to Table 11, it
can be observed that the proposed EV and MEC charts
are insensitive to changes in the environment (i.e., t4)
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Table 11. Characteristics of run length distribution of mixed charts under uncorrected limits with ARL0 �= 168.

Chart Smoothing
parameter

Reference
value

Limit � ARL SDRL Min P5 P25 P50 P75 P95 Max

EV 0.1 0.5 39

0 173.4 151.33 2 28 68 129 230 470 1542

0.05 153.55 130.5 2 27 62 115 205 410 1655

0.1 117.94 94.52 2 25 51 90 155 302 959

0.2 66.45 44.93 3 19 35 54 85 156 455

0.25 52.65 32.39 2 18 30 44 67 116 317

0.5 25.33 10.5 2 12 18 24 31 45 91

0.75 16.95 5.81 2 9 13 16 20 28 63

1 12.78 3.92 2 7 10 12 15 20 38

1.5 8.54 2.22 2 5 7 8 10 12 26

2 6.45 1.43 2 4 6 6 7 9 15

2.5 5.26 1.04 2 4 5 5 6 7 12

3 4.49 0.8 2 3 4 4 5 6 11

4 3.54 0.59 2 3 3 4 4 4 9

5 3.05 0.32 2 3 3 3 3 4 7

MCE 0.1 0.5 5.96

0 154.49 149.85 1 12 47 109 214 448 1397

0.05 145.05 137.97 1 13 46 103 199 422 1329

0.1 131.27 127.7 1 12 42 92 178 382 1391

0.2 93.43 85.78 1 10 32 67 129 271 829

0.25 74.17 67.38 1 9 26 54 100 211 751

0.5 27.18 20.48 1 7 13 21 35 67 226

0.75 13.7 7.69 1 5 8 12 17 29 78

1 9.09 4.04 1 4 6 8 11 17 37

1.5 5.48 1.88 1 3 4 5 6 9 18

2 3.99 1.17 1 2 3 4 5 6 11

2.5 3.16 0.86 1 2 3 3 4 5 8

3 2.6 0.7 1 2 2 3 3 4 6

4 1.95 0.46 1 1 2 2 2 3 5

5 1.47 0.52 1 1 1 1 2 2 4

MEC 0.1 0.5 21.3

0 176.3 157.46 3 26.95 65 128 239 490 1710

0.05 156.94 136.55 5 25 59 115 210 430 1209

0.1 119.03 98.59 3 23 49 90 157 315 931

0.2 66.77 48.04 3 19 33 53 85 161 470

0.25 52.63 34.81 5 17 28 43 66 123 335

0.5 24.75 10.14 4 13 18 22 29 44 107

0.75 17.06 5.18 3 11 14 16 20 27 55

1 13.39 3.17 1 9 11 13 15 19 37

1.5 9.78 1.76 3 7 9 10 11 13 24

2 7.9 1.19 4 6 7 8 9 10 17

2.5 6.72 0.88 3 6 6 7 7 8 14

3 5.92 0.7 3 5 5 6 6 7 11

4 4.85 0.52 2 4 5 5 5 6 9

5 4.09 0.35 2 4 4 4 4 5 7
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in the Phase-II data, keeping the in-control properties
nearly the same as those in a normal environment,
whereas the MCE chart is susceptible to changes in
distribution. The EV and MEC charts are found
robust under symmetric non-normal distributions. The
standard deviation of RL of EV is smaller than the
SDRL of MEC and MCE charts under in-control and
out-of-control conditions.

4.1.2. Limits based on non-normality
The distributions of many quality characteristics (ca-
pacitance, insulation resistance and surface �nish,
roundness, mold dimensions and customer waiting
times, impurity levels in semiconductor process chemi-
cals and in nuclear reactions, and the interval between
beta particle emissions) of di�erent processes follow a
non-normal distribution. Hence, the performance of
the proposed EV and its competitors MEC and MCE
is evaluated under di�erent non-normal environments

when the control limits are set in the same environ-
ment, unlike the previous cases. For this purpose,
t, Laplace and Logistic from the symmetric family
of distributions and Gamma and Lognormal from the
skewed family of distributions are considered. Without
loss of generality, parameters of the distributions are
set to having mean zero and variance one for valid
comparisons. The results for symmetric distributions
are given in Table 12, and Table 13 contains ARL for
skewed distributions.

According to Table 12, under t distribution, the
performance of MEC chart is similar to that of EV
chart for shifts of small magnitude and the EV chart
outperforms the MEC chart when � � 1:5. For small
shifts in the process location, MCE is not good, but
its detection ability is more e�cient than that of other
charts for large shifts, because when � � 1:5, ARLs for
EV, MEC, and MCE charts are 12.29, 12.52, and 7.14,
respectively. A similar type of behavior is observed for

Table 12. ARLs of mixed charts for symmetric distributions with ARL0 �= 370.

�
t4 Logistic Laplace

EV MEC MCE EV MEC MCE EV MEC MCE

0 369.47 371.42 370.31 369.64 367.95 371.58 368.62 367.68 369.8

0.25 72.32 71.12 140.78 73.04 71.97 116.48 73.11 72.36 130.12

0.5 34.37 32.06 39.54 34.91 32.16 34.67 34.94 32.22 37.31

0.75 23.4 21.88 18.02 23.69 22.01 16.85 23.7 22 17.63

1 17.95 17.14 11.63 18.17 17.29 11.09 18.17 17.32 11.47

1.5 12.29 12.52 7.14 12.47 12.61 6.83 12.47 12.71 7.04

2 9.3 10.22 5.21 9.44 10.29 4.97 9.45 10.26 5.13

3 6.32 7.66 3.44 6.44 7.71 3.27 6.44 7.72 3.38

4 4.87 6.28 2.56 4.95 6.32 2.4 4.96 6.31 2.5

5 4.05 5.35 2.04 4.11 5.39 1.96 4.1 5.4 2.02

Table 13. ARLs of mixed charts for skewed distributions with ARL0 �= 370.

�
Lognormal Gamma

EV MEC MCE EV MEC MCE

0 374.64 370.71 372.5 370.06 373.08 375.73

0.25 74.77 74.17 177.84 73.86 73.08 104.55

0.5 33.83 31.21 65 35.03 32.71 36.52

0.75 22.79 20.95 25 23.64 22.11 17.81

1 17.35 16.44 14.6 18.29 17.31 11.43

1.5 11.9 12.04 8.55 12.45 12.66 6.92

2 8.96 9.74 6.23 9.46 10.3 5.06

3 6.1 7.34 4.15 6.42 7.72 3.29

4 4.71 5.92 3.01 4.94 6.32 2.44

5 3.89 4.99 2.58 4.09 5.43 1.92
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other distributions such as Logistic and Laplace (cf.,
Table 12).

Moreover, in case of Lognormal and Gamma
distributions, the EV chart performs more e�ciently
than the MCE chart when the value of � is relatively
small which is � � 0:75 and the performance of the EV
is relatively better than that of the MEC chart when
the value of � is quite large as � � 1:5. Therefore, in
general, we can say that the EV chart outperforms the
MCE chart in detecting shifts of small magnitude and
outperforms the MEC chart in detecting the shifts of
large magnitude.

5. An industrial application

This section demonstrates how to construct the pro-
posed EV chart. The dataset was supplied by Zhang
and Chen [27] and Triola [28] with emphasis on the �rst
16 samples. In addition, each of these samples with a
size of 5 produces 80 observations on the application
of the proposed chart. The operation concerns the
monitoring of the weights of quarters made by a mint
machine, which was placed into service at U.S. Mint.
The run chart, histogram, and probability plot are
provided in Figures 3{5, respectively, for the behavior

Figure 3. Run chart of weights of quarter.

Figure 4. Histogram of weights of quarter.

Figure 5. Probability plot of weights of quarter.

Figure 6. An industrial application of the E�cient
Variant (EV) chart.

of the weights of quarters. The run chart depicts that
there is more variation in the samples (50th to 80th)
than that in other samples. Anderson-Darling test is
applied to the identi�cation of the distribution of the
weights of quarters. The test indicates that data do
not follow normal distribution as P -value is lower than
0.005. For comparisons, MEC and MCE charts are also
constructed. The smoothing parameter is set equal
to 0.10 for all the aforesaid charts and control limits
are calculated to guarantee that ARL0 �= 168. The
graphical displays of all three charts are presented in
Figures 6{8.

The proposed chart detects a signal at the 50th
sample, whereas MEC identi�es the out-of-control
point at the 52nd sample and MCE chart observes no
out-of-control point limits. The proposed EV and MEC
charts are e�cient in detecting a reduction in the value
of the process location parameter (cf., Figures 6 and
7), while the MCE chart shows the incapability to spot
such changes in the location parameter for the same
data set (cf., Figure 8).

6. Conclusions

Control charts are widely used in monitoring the
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Figure 7. An industrial application of the Mixed
EWMA-CUSUAM (MEC) chart.

Figure 8. An industrial application of the Mixed
CUSUM-EWMA (MCE) chart.

process parameters. Memory-less control charts (e.g.,
Shewhart-type charts) are of low e�ciency in de-
tecting the small changes in the process parameters
and memory-type control charts (e.g., Cumulative
Sum (CUSUM) and Exponentially Weighted Moving
Average (EWMA) charts) are very sensitive to small
persistent shifts. Upon enhancing the performance of
CUSUM and EWMA charts, an e�cient variant of
memory-type charts was developed based on a mixture
of the double exponentially weighted moving average
chart and the CUSUM chart. The performances of
the proposed e�cient variant and existing counterparts
(i.e., mixed EWMA-CUSUM and mixed CUSUM-
EWMA charts) were compared under normal and
non-normal environments. The proposed variant of
memory-type charts outperformed the counterparts in
detecting small and moderate persistent shifts. Some
features of this structure can be useful for monitoring
the dispersion parameter of the process, which may be
the topic of the next investigation.
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