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Abstract. Transmuted distributions are skewed distributions that have recently attracted
the attention of researchers due to their applications in reliability and statistics. In this
article, the main focus is on the Bayesian estimation of a two-component mixture of the
Transmuted Weibull Distribution (TWD) under a type-I right censored sampling scheme.
In order to estimate the unknown parameters, non-informative and informative priors under
Squared Error Loss Function (SELF), Precautionary Loss Function (PLF) and Quadratic
Loss Function (QLF) are assumed when computing the posterior estimations. In addition,
the Bayesian Credible Intervals (BCI) are also constructed. A Markov Chain Monte Carlo
(MCMC) technique is adopted to generate samples from the posterior distributions and, in
turn, to compute di�erent posterior summaries, including Bayes Estimates (BEs), Posterior
Risks (PRs) and BCI. As an illustration, comparison of these Bayes estimators is made
through simulation under di�erent loss functions in terms of their respective PRs, assuming
di�erent sample sizes and censoring rates. Two real-life examples, the �rst being the
survival times of hepatitis B & C patients, while the second being a hole diameter of
12 mm and a sheet thickness of 3.15 mm, are also discussed to illustrate the potential
application of the proposed methodology.
© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Shaw and Buckley [1] introduced a technique to con-
struct skewed distributions by using the Quadratic
Rank Transmutation Map (QRTM) to generate a
exible family of probability distributions. The authors
considered the extreme value distribution as the base
line distribution and used a transmuted parameter to
enhance their exibility [2]. Currently, transmuted
distributions are applied in many diverse �elds such
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as reliability studies, lifetime analysis, engineering,
economics, medicine, insurance and environmental sci-
ences [3].

A random variable X is said to follow a trans-
muted distribution if its Probability Density Function
(PDF) and Cumulative Distribution Function (CDF)
can be written as:

f(x) = g(x) f1 + �� 2�G(x)g ; (1)

F (x) = (1 + �)G(x)� �G2(x); (2)

where x > 0 and j�j � 1 is the transmuted parameter,
and g(x) and G(x) are the PDF and CDF of the
baseline distribution, respectively.

The Weibull distribution is a popular continuous
probability distribution introduced by Swedish physi-
cist Waloddi Weibull in 1939 in order to describe the
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behavior of the breaking strength of materials [4]. Since
its inception, the Weibull distribution has proved to be
a versatile lifetime distribution and many other distri-
butions are its special cases based on the di�erent val-
ues of the shape parameter. The Weibull distribution
has been extensively used for analyzing lifetime data in
reliability engineering, astronomy, medicine, psychol-
ogy, botany, zoology, agriculture, �sheries, aerospace,
and electronics [5]. However, to generalize the Weibull
distribution for a non-monotonic hazard rate, several
distributions have been introduced in the literature.
The �rst generalization of the Weibull distribution with
application to survival data is given by Mudholkar
et al. [6]. Later, Aryal and Tsokos [7] introduced
the Transmuted Weibull Distribution (TWD) which
is a generalization of Weibull probability distribution.
Khan and King [8] introduced the transmuted modi�ed
Weibull distribution which is more exible than the
TWD. The new modi�ed distribution reduces to the
TWD by setting the scale parameter equal to zero.
Merovci et al. [9] proposed the transmuted generalized
inverse Weibull distribution and discussed some of its
mathematical properties. The authors also estimated
the parameters using the method of maximum likeli-
hood. Khan et al. [5] introduced transmuted gener-
alized Weibull distribution using the QRTM technique
and explored its mathematical properties including the
expressions for the quantile function, moments, en-
tropies, mean deviation, Bonferroni and Lorenz curves
and moments of the order statistics. The authors also
estimated the model parameters using the method of
maximum likelihood. This distribution is an important
competitive model that contains twenty three lifetime
distributions as special cases. More recently, Abdur-
rahman [10] used the method of maximum likelihood
and the method of moment estimators to estimate
its parameters. Similarly, Nofal and El Gebaly [11]
proposed a generalized TWD based on a generalized
transmuted-G family and derived its properties. The
main feature of this distribution is that two additional
parameters are inducted in the PDF and CDF of
Weibull distribution to provide greater exibility for
the generated distribution and contains eleven lifetime
distributions as special cases. The generalized TWD
can be reduced into a Transmuted Class (TC) studied
by Shaw and Buckley [1], by equating two additional
parameters equal to one.

Finite mixture models provide a exible frame-
work to handle heterogeneous data with a �nite num-
ber of unobserved subpopulations and also have been
widely applied to classi�cation, clustering, and pattern
identi�cation problems. The mixture models have
received a great deal of attention in the recent era due
to their exibility. A �nite mixture of probability dis-
tributions is suitable to study a population categorized
in a number of subpopulations mixed in an unknown

proportion. The concept of the �nite mixture distri-
bution was pioneered by Newcomb [12] for modeling
outliers. The mixture models can be used even when
available data are generated from a mixture of two or
more distributions. This was the authors' motivation
behind mixing two or more statistical models to get a
new mixture model. The analysis of mixture models
under the Bayesian framework has gained signi�cant
interest among statisticians. Most researchers have
worked on two-component mixture models using both
classical and Bayesian analysis. Feroze and Aslam [13]
presented the Bayesian analysis of doubly censored
lifetime data using a two-component mixture of the
Weibull distribution. Sindhu et al. [14] studied the
two-component mixture of inverse Weibull distribu-
tions under a doubly censored sample using various loss
functions. Aslam et al. [15,16] and Tahir et al. [17]
studied the properties of a three-component mixture
of Rayleigh distributions, while Ateya [18] discussed
the mixture of generalized exponential distribution.
Similarly, Benaicha and Chaker [19] also studied the
mixture of the Weibull distribution. These contribu-
tions to the mixture models are great motivators for
recent studies.

Motivated by the popularity of the mixture mod-
els, this study considers the Bayesian parameter es-
timation of a two-component mixture of the TWD.
Bayesian estimation is done assuming di�erent non-
informative (uniform) and informative (gamma and
inverse gamma) priors, and three loss functions are
used to obtain the posterior summaries. Censoring
is an important aspect of lifetime data because most
times it is not possible to continue the experiment until
the last observation, in order to obtain a complete
data set. A censored data set contains at least one
observation about which only partial information on
the exact failure time is available. There are three types
of censored observation, the left, the interval and the
right censored observations. Due to the nonavailability
of the true lifetime of certain objects, type-I right
censoring is used by taking some pre-speci�ed test
termination time [20{22], e.g., if a patient survives until
the end of a study, the patient's time of death is right-
censored. Since the marginal posterior distributions are
not in closed forms, we proposed a new Markov Chain
Monte Carlo (MCMC) algorithm in order to obtain
Bayes Estimates (BEs), Posterior Risks (PRs) and 95%
credible intervals.

The remainder of the article is structured as
follows: The transmuted Weibull mixture model, sam-
pling scheme, likelihood function, expressions of poste-
rior distributions using noninformative and informative
priors, and marginal posterior densities for censored
data are discussed in Section 2. The expressions for
the Bayes Estimators (BEs) and their respective PRs
under di�erent loss functions are presented in Section
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3. To obtain the posterior summaries, an MCMC
algorithm is presented in Section 3. The results of
BEs and their PRs based on a simulation study are
tabulated in Section 4. In Section 5, the Bayesian
Credible Intervals (BCI) are discussed mathematically
and numerically. Two real-life data sets are presented
in Section 6, while some concluding remarks are given
in Section 7.

2. The mixture of transmuted Weibull model

In this section, we introduce the likelihood function for
a two-component mixture of TWD.

A random variable X is said to follow a �nite
mixture distribution with m-components and unknown
mixing proportion (p), if the PDF of X can be written
as:

f(xj�) =
mX
i=1

pif(xj�i)

where pi > 0; i = 1; 2; :::;m and
mP
i=1

pi = 1.

The parameter pi is the mixing proportion of the
ith component, whereas fi(x) denotes the density of
the ith component parameterized by �i.

A �nite two-component mixture model of TWD
with unknown mixing proportions p1 and p2 has the
following form:

f(x; 
) = p1f1(x; 
1) + (1� p1)f2(x; 
2)

p2 � 1� p1;

where 
 = (�1; �2; �1; �2; �1; �2; p1), 
i = (�i; �i; �i),
i = 1; 2, and fi(x; 
i) denote the PDF of the ith
component that can be written as:

fi(x; 
i) = pi
�i
�i
xi�i�1 exp

�
�xi�i

�i

�
�

1� �i + 2�i exp
�
�xi�i

�i

��
;

xi � 0; �i; �i > 0; and j�ij � 1; i = 1; 2: (3)

Further, the CDF of a two-component mixture of TWD
is:

F (x; 
) = p1F1(x; 
1) + (1� p1)F2(x; 
2);

where the CDF of the ith component is given by:

Fi(x; 
i) = pi exp
�
�x�i
�i

�
�

1� �i + �i exp
�
�x�i
�i

��
xi � 0; �i;�i > 0; j�ij � 1 and i = 1; 2: (4)

Special cases

� If � = 0 and p1 = 1 then the two-component mixture
of the TWD is reduced to the Weibull distribution;

� If � = 1 and p1 = 1 then transmuted exponential
distribution occurs. In addition, the exponential
distribution is obtained by assuming � = 0;

� If � = � = 1 and p1 = 1, then the resulting
distribution is the transmuted standard exponential
distribution;

� If � = 2 and p1 = 1, then the transmuted Rayleigh
distribution is obtained. Further, if � = 0, then the
ordinary Rayleigh distribution is obtained.

2.1. Sampling scheme
Suppose that n units are put on a life testing exper-
iment with a �xed termination time t. At the end of
the experiment, it is found that r units out of n objects
have failed and n � r objects are still functioning.
As noted by Mendenhall and Hader [23], in many
real-life situations, only the failed units can easily be
categorized into either a member of subpopulation-I or
subpopulation-II. For example, an engineer can identify
whether a failed electronic object is a member of the
�rst or the second subpopulation based on the cause
of its failure. Thus, out of r failures, r1 and r2 fail-
ures belong to subpopulation-I and subpopulation-II,
respectively. However, r = r1 + r2 denotes the number
of observed observations while n � r observations are
censored. Now, xlj , 0 < xlj < t is de�ned as the
failure time of the jth object belonging to the lth sub-
population, where l = 1; 2 and j = 1; 2; :::; rl.

2.2. The likelihood function
For a 2-component mixture model, the likelihood func-
tion is:

L(x; 
) =

8<: r1Y
j=1

p1f1(x1j)

9=;
8<: r2Y
j=1

p2f2(x2j)

9=;
f1� F (T )gn�r;

where:


 = (�1; �2; �1; �2; �1; �2; p1;

x = (x11; x12; :::x1r1 ; x21; x22; :::x2r2);

and F (T ) denote the CDF at time (T ).
For the TWD, the likelihood expression can be

written as:

L(x; 
) =
� r1Y
j=1

p1
�1

�1
x1j

�1�1 exp
�
�x1j

�1

�1

�
�

1� �1 + 2�1 exp
�
�x

�1
1j

�1

���
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� r21Y
j=1

(1� p1)
�2

�2
x2j

�2�1 exp
�
�x2j

�2

�2

�
�

1� �2 + 2�2 exp
�
�x

�2
2j

�2

���
�
1� p1 exp

�
�T�1

�1

�
�

1� �1 + 2�1 exp
�
�T�1

�1

��
�(1� p1) exp

�
�T�2

�2

�
�

1� �2� + 2�2 exp
�
�T�2

�2

���n�r
;

which can be simpli�ed as:

L(x; 
) / pE11�1
1 (1� p1)E12�1�E11�1

1 exp (��1F11)

�E12�1
2 exp (��2F12)

1
�E21+1

1
exp

�
�G11

�1

�
1

�E22+1
2

exp
�
�G12

�2

�
exp (H11) exp (H12) In�r;

(5)

where:

E11 = r1 + 1; E12 = r2 + 1 ;

F11 =
r1X
j=1

log
�

1
x1j

�
; F12 =

r2X
j=1

log
�

1
x2j

�
;

E21 = r1 � 1; E22 = r2 � 1;

G11 =
r1X
j=1

x�2
1j ; G12 =

r1X
j=1

x�2
2j ;

H11 =
r1X
j=i

log
�

1� �1 + 2�1 exp
�
�x

�1
1j

�1

��

H12 = exp

24 r2X
j=i

log
�

1��2+2�2exp
�
�x

�2
2j

�2

��35 ;
I=1�p1 exp

�
�T�1

�1

��
1��1+2�1 exp

�
�T�1

�1

��
�(1�p1) exp

�
�T�2

�2

��
1��2+�2exp

�
�T�2

�2

��
:

In the next section, posterior distribution is discussed
assuming di�erent priors.

2.3. The posterior distribution using Uniform
Prior (UP)

The main di�erence between the Bayesian and classical
inference is prior information. The prior distribution
uses past information about a phenomenon under in-
vestigation. Selecting an appropriate prior is de�nitely
the most important task of the Bayesian analysis
[24,25], because posterior distribution depends heavily
on prior information. There are situations where
su�cient prior information regarding the parameter
of interest is available. An important noninformative
prior, proposed by Laplace [26], is the uniform prior,
which has been applied to many problems, and mostly
provides satisfactory results. The noninformative uni-
form prior for �1; �2; �1; �2;�1; �2 and p1 is de�ned as:

�1 � Uniform(0;1) �2 � Uniform(0;1)

�1 � Uniform(0;1) �2 � Uniform(0;1):

Furthermore, the UP over the interval (0, 1) is assumed
for mixing proportion p1, i.e., p1 � Uniform(0; 1),
while the priors for transmuted parameters �1 and �2
are UP (�1; 1). In this study, it is assumed that the
prior distributions of �1; �2; �1; �2;�1; �2 and p1 are
independent [27,28]. The joint prior distribution of
parameters �1; �2; �1; �2;�1; �2 and p1 is:

�UP (
) / 1; �1; �2 > 0; �1; �2 > 0;

�1 < �1; �2 < 1; 0 < p1 < 1;

By the Bayes theorem:

g(
 jx ) =
L(x; 
)�(
)

1R


L(x; 
)�(
d
)

;

where �(
) denotes the joint prior distribution of:


 = (�1; �2; �1; �2; �1; �2; p1);

x = (x11; x12; :::x1r1 ; x21; x22; :::x2r2):

L(x; 
) denotes the likelihood function and g(
jx)
is the joint posterior distribution; the joint posterior
distribution is calculated by Eq. (6) as shown in
Box I.

The marginal posterior density of each parameter
can be obtained by integrating the joint posterior
distribution with respect to the nuisance parameter.
For example:

gUP (�1jx) =
1Z

0

1Z
0

1Z
0

1Z
�1

1Z
�1

1Z
0

gUP (
 jx)

dp1d�1d�2d�1d�2d�2:
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gUP (
jx) =

pE11
1 (1�p1)E12�1�E11�1

1 exp(��1F11)�E12�1
2 exp(��2F12) 1

�E21+1
1

exp
��G11

�1

�
1

�E22+1
2

exp(��2G12) exp (H11) exp (H12) (K)n�r

1R
0

1R
0

1R
0

1R
0

1R
�1

1R
�1

pE11
1 (1�p1)E12�1�E11�1

1 exp(��1F11)�E12�1
2 exp(��2F12) 1

�E21+1
1

exp
��G11

�1

�
1

�E22+1
2

exp(��2G12)

exp (H11) exp (H12) (K)n�rdp1d�1d�2d�1d�2d�1d�2

: (6)

Box I

2.4. The posterior distribution using
Informative Prior (IP)

If some speci�c and de�nite information about the
values of the parameters is available, it is quanti�ed
as an informative prior and must be included in the
analysis. For the mixture of TWD, di�erent prior
distributions are assumed, such as gamma, inverse
gamma, uniform, and beta for �1; �2; �1; �2;�1; �2 and
p1. To this end, let �1 � gamma(a1; b1), �2 �
gamma(a2; b2), �1 � inverse � gamma(c1; d1); �2 �
inverse � gamma(c2; d2) �1 � Uniform(l1; l2), �2 �
Uniform(m1;m2) and p1 � beta(e1; e2). These priors
are selected by keeping in mind the range of the param-
eters [29]. Assuming independence, one has joint prior
distribution of the parameters �1; �2; �1; �2;�1; �2,
and p1:

�IP (
) / �a1�1
1 e�b1�1�a2�1

2 e�b2�2
1

�c1+1
1

e�
d1
�1

1
�c2+1

2
e�

d2
�2 pe1�1

1 (1� p1)e2�1:

The joint posterior distribution of parameters �1; �2;
�1; �2;�1; �2, and p1 given data x is calculated by
Eq. (7) as shown in Box II. where:

E21 = e1 + r1; E22 = e2 + r2;

F21 = a1 + r1; F22 = b1 +
r1X
j=1

log
�

1
x1j

�
;

G21 = a2 + r2; G22 = b2 +
r2X
j=1

log
�

1
x2j

�
;

H21 = c1 + r1; H21 = d1 +
r1X
j=1

x�2
1j ;

I21 = c2 + r2; I22 = d2 +
r1X
j=1

x�2
2j ;

J21 =
r1X
j=i

log
�

1� �1 + 2�1 exp
�
�x

�1
1j

�1

��
;

J22 = exp

24 r2X
j=i

log
�

1� �2 + 2�2 exp
�
�x

�2
2j

�2

��35 ;
K = 1� p1 exp

�
�T�1

�1

��
1��1+2�1 exp

�
�T�1

�1

��
�(1� p1) exp

�
�T�2

�2

�
�
1� �2 + �2 exp

�
�T�2

�2

��
:

The marginal posterior densities can be obtained by
integrating out the nuisance parameters, for example,
to derive the marginal density of parameter /1, one
proceeds as follows:

g2(�1 jx ) =
1Z

0

1Z
0

1Z
0

1Z
�1

1Z
�1

1Z
0

g2(
 jx)

dp1d�1d�2d�1d�2d�2

and vice versa.

gIP (
jx) =

pE21
1 (1� p1)E22�1�F21�1

1 exp(��1F22)�G21�1
2 exp(��2G22) 1

�H21+1
1

exp
��H22

�1

�
1

�I21+1
2

exp(��2I22)

exp (J21) exp (J22) (K)n�r

1R
0

1R
0

1R
0

1R
0

1R
�1

1R
�1

pE21
1 (1� p1)E22�1�F21�1

1 exp(��1F22)�G21�1
2 exp(��2G22) 1

�H21+1
1

exp
��H22

�1

�
1

�I21+1
2

exp(��2I22)

exp (J21) exp (J22) (K)n�rdp1d�1d�2d�1d�2d�1d�2

: (7)

Box II



1716 R. Yousaf et al./Scientia Iranica, Transactions E: Industrial Engineering 28 (2021) 1711{1735

3. Bayes estimators and PRs under di�erent
loss functions

In this section, derivation of the Bayes estimators and
PRs under di�erent loss functions are the main focus.
The choice of a suitable loss function, i.e., symmetric or
asymmetric, depends on the problem at hand, as there
is no rule to select an appropriate loss function [30]. To
estimate the unknown parameter in Bayesian, one must
specify a loss function. A loss function L(�; d) � 0 is
a function which enables one to estimate the unknown
parameter by an estimator d̂. The Bayes estimator is a
posterior estimator which minimizes the posterior risk.
The worth of a decision is measured by the expected
loss, which is known as the posterior risk. If d̂ is a
Bayes estimator, then �(d̂) is called the posterior risk
[31], de�ned as:

�(d̂) = E�jx
n
L(� ; d̂)

o
=
Z
L(�; d̂)p(�jx)d�: (8)

One of the aims of this study is to suggest a
suitable loss function for the parameter estimation of
the TWD. To this end, three di�erent loss functions,
namely, the Squared Error Loss Function (SELF),
Precautionary Loss Function (PLF) and Quadratic
Loss Function (QLF), are used in this study. A loss
function that yields the minimum posterior risk will
be selected as the appropriate loss function. A brief
discussion of these loss functions is given below.

The �rst loss function is the square error loss
function, which is a symmetric loss function proposed
by Gauss [32] and used by Legendre [33] to develop
the least square theory. Further, it is also used in
estimation problems. In fact, it is a quadratic deviation
from the true parameter value. Mathematically, it is
de�ned as:

L(�; d) = (� � d)2; (9)

where d is a decision that a statistician has to make
in order to approximate an unknown �. This so
called parameter is often used to summarize a posterior
distribution.

The Bayes estimator and the posterior risk under
SELF are:

d̂ = E�jx (�) and

�(d̂) = E(�2 jx )� fE(� jx)g2 = V ar(� jx) :

The PLF suggested by Norstrom [34] is an asym-
metric loss function and de�ned as:

L(�; d) =
(� � d)2

d
:

The Bayes estimator and the posterior risk under PLF
are:

d̂=
�
E(�2 jx	 1

2 and �(d̂)=2
�
E(�2 jx	 1

2�2E(� jx):

The third loss function is the QLF, which is another
asymmetric loss function and de�ned as:

L(�; d) =
�
� � d
�

�2

:

The Bayes estimator and posterior risk for this loss
function are:

d̂ =
E(��1 jx)
E(��2 jx)

and �(d̂) = 1�
�
E(��1 jx)

	2

E(��2 jx)
:

The details about these loss functions can be seen in
[35,36].

3.1. Posterior summaries by MCMC technique
In the previous section, it is observed that the ex-
pressions of the posterior densities are in intractable
form and cannot be solved directly. Thus, a numerical
technique is adopted in order to �nd the posterior
summaries, such as the mean and the quantiles. To
this end, a MCMC technique is used, similar to Ali [36].
In particular, the Gibbs sampling [37] with metropolis
hasting step [38,39] is implemented. To obtain the
posterior summaries using the MCMC approach, the
posterior densities assuming the uniform and the infor-
mative priors can be written as:

gUP (
 jx ) / f�1

0@r1 + 1;
r1X
j=1

log
�

1
x1j

�1A
�f�2

0@r2 + 1;
r2X
j=1

log
�

1
x2j

�1A
�f�1j1�1

 
r1 � 1;

r1X
i=1

(x�1i
1i + (n� r)T�1i

!
�f�2j�2

 
r2 � 1;

r2X
i=1

(x�2
2i + (n� r)T�2i

!
�f�1

 
exp

" r1X
i=1

log
�

1��1+2�1 exp
�
�x�11j

�1

��#!
�f�2

 
exp

" r2X
i=1i

log
�

1��2+2�2 exp
�
�x

�2
2j

�2

��#!
;

gIP (
 jx ) / f�1

0@a1 + r1 + 1; b1 +
r1X
j=1

log
�

1
x1j

�1A
�f�2

0@a2 + r2 + 1; b2 +
r2X
j=1

log
�

1
x2j

�1A
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�f�1j1�1

 
c1 + r1; d1 +

r1X
i=1

(x�1
1i + (n� r)T�1

!
�f�2j�2

 
c2 + r2d2 +

r2X
i=1

(x�2
2i + (n� r)T�2i

!

�f�1

0@exp

24 r1X
j=i

log
�

1��1+2�1 exp
�
�x

�1
1i
�1

��35 1A
�f�2

0@exp

24 r2X
j=i

log
�

1��2+2�2 exp
�
�x

�2
2j

�2

��351A ;

where f�1 and f�1j�1 denote the PDFs of gamma and
inverse gamma distributions while f�1 is the PDFs of �
for the �rst component. Similarly f�2 , f�2j�2 and f�2

represent the PDFs of a gamma, inverse gamma and �
for the second component. In order to obtain the BEs
and their respective PRs, one proceeds as follows.

Random numbers from the TWD are generated
by using the inverse integral transformation, i.e.:

ui =
�

1� e� x�i�i ��1� �i + �ie
� x�i�i

�
;

where i = 1; 2 and ui � uniform (0, 1). After
simpli�cation:

xi =

8><>:��iln
0B@1 + �i �

q
(1 + �i)

2 � 4�
i
ui

2�i

1CA
9>=>;

1
�i

;

is obtained.
Thus, one can obtain the desired random sample

by providing the required parameters. To generate the
right censored data, one needs to �x T and record
units that are less than equal to the censoring time.
The number of units that are greater than censoring
time would be considered censored observations. To
generate data from the mixture model, �x p and
generate uniform (0, 1). If the generated uniform
random number is smaller than p, generate X1 from
TWD(�1; �1; �1), otherwise, from TWD(�2; �2; �2).

Next, to implement the MCMC for �nding the
posterior summaries, the following steps are pro-
posed:

Algorithm 1

At the ith step, repeat the following steps:

1. Generate:

�1i � f�1 = Gamma

0@r1 + 1;
r1X
j=1

log
�

1
x1j

�1A ;

�1i � f�1j�1(i�1) = Inverse�Gamma

 
r1 � 1;

r1X
i=1

(x�1i
1i + (n� r)T�1i

!
;

�2i � f�2 = Gamma

0@r2 + 1;
r2X
j=1

log
�

1
x2j

�1A
�2i � f�2j�1(i�1) = Inverse�Gamma(r2 � 1;

r2X
i=1

(x�2
2i + (n� r)T�2i):

2. Take Y1i � Uniform(0; 1) and Y2i � Uniform
(0; 1).

3. Generate U � Uniform(0; 1) and, ��1i and ��2i from
Uniform ({1, 1).

4. Let:

f (i)
1 = exp

� r1X
i=1

�
log
�

1� ��(i�1)
1 + 2��(i�1)

1

exp
�
�x�(i)

1
1 =�(i)

1

����
;

f (i)
2 = exp

� r1X
i=1

�
log
�

1� Y (i)
1 + 2Y (i)

1

exp
�
�x�(i)

1
1 =�(i)

1

����
;

f (i)
3 = exp

� r2X
i=1

�
log
�

1� ��(i�1)
2 + 2��(i�1)

2

exp
�
�x�(i)

2
2 =�(i)

2

����
;

f (i)
4 = exp

� r2X
i=1

�
log
�

1 + Y (i)
2 � 2Y (i)

2

exp
�
�x�(i)

2
2 =�(i)

2

����
;

�(i)
1 = min

241;
f (i)

1

n
dunif

�
��(i�1)

1 ; 0; 1
�o

f (i)
2

n
dunif

�
��(i�1)

1 ; 0; 1
�o35

�(i)
2 = min

241;
f (i)

3

n
dunif

�
��(i�1)

2 ; 0; 1
�o

f (i)
4

n
dunif

�
��(i�1)

2 ; 0; 1
�o35 :

5. Select,

�(i)
1 = ��(i)1

(
��(i)1 = ��(i�1)

1 if �(i)
1 > U (i)

��(i)1 = Y �(i�1)
1 otherwise
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�(i)
2 = ��(i)2

(
��(i)2 = ��(i�1)

2 if �(i)
2 > U (i)

��(i)2 = Y �(i�1)
2 otherwise

6. Repeat steps 1{6, N -times to obtain (�1; �1; �1);
(�2; �2; �2); :::(�N ; �N ; �N ) and discard �rst M ob-
servations as the burn-in period.

7. The approximate values of �̂1; �̂2; �̂1, �̂2, �̂1, and
�̂2 are:

�̂1 =

NP
i=M+1

�1ik(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
;

�̂1 =

NP
i=M+1

�1ik(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
;

�̂1 =

NP
i=M+1

�(i)
1 k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
;

�̂2 =

NP
i=M+1

�2ik(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
;

�̂2 =

NP
i=M+1

�2ik(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
;

�̂2 =

NP
i=M+1

�(i)
2 k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)

NP
i=M+1

k(�1i; �2i; �1i; �2i; �1i; �2i; p1i)
:

In the next section, the performance of Bayes
estimators is evaluated on the basis of PR for the in-
formative and the noninformative priors under di�erent
loss functions.

4. A simulation study and some comparisons

In this section, a comprehensive simulation study has
been carried out to assess the performance of the Bayes
estimators assuming di�erent loss functions, sample
sizes, mixing weights, parameter values, and censoring
rates using non-informative and informative priors in
terms of PRs. Samples of sizes n = 20, 40, 60, and
100 have been generated by the inverse transformation

methods from the two-component mixture of the TWD
with parameters �1; �2; �1; �2; �1 and �2, such that
(1.5, 2, 2, 1.4, 0.4, 0.5), (2.5, 3, 1.6, 1.3, 0.3, 0.4),
(2, 1.5, 1.4, 1.3, 0.4, 0.6) and probabilistic mixing
weights p1 2 f(0:3; 0:5; 0:7)g. The p1n observations
were generated randomly from the �rst component
density f1(x1;�1; �1; �1) and the remaining (1 � p1)n
were generated from the second component density
f2(x2;�2; �2; �2), respectively. For a �xed sample size,
test termination time, the aforementioned algorithm
was used, and the BEs and PRs were computed using
the UP and the IP under the SELF, PLF and QLF. It is
worth mentioning that right censoring was considered;
all observations greater than �xed censoring time T
were considered censored. In each case, only failure
items can be identi�ed to be a member of either
subpopulation-I or subpopulation-II of the mixture. In
this study, di�erent censoring rates were considered,
for example, 20% and 40%, to evaluate their impact on
the Bayes estimators. For each of the combinations of
parameters, di�erent sample sizes and censoring rates,
the steps of the algorithm are repeated N = 10; 000
times using R software, R [40]. The simulated results
are then averaged by considering M = 2000 as the
burn-in period. The simulated BEs and the PRs
using the UP and IP under SELF, PLF and QLF are
tabulated in Tables 1, A.1 and A.2 (Tables A.1 and
A.2 given in Appendix A), where the PRs have been
presented in parentheses below the BEs.

The simulation study indicates that the estimated
values of each parameter converge to the true value
by increasing the sample size and magnitude of the
corresponding PRs decreases at a �xed test termination
time. This pattern is not restricted to any speci�c loss
function or prior but observed for all the considered loss
functions. The simulation study gives some interesting
features of the BEs. By comparing the results of 20%
and 40% censored rates, one can easily observe that the
PRs for 20% censoring are smaller than 40% censoring,
as shown in Tables 1, A.1 and A.2. The reason for this
is the availability of more information for 20% censored
data than 40% censored data; and due to this, PRs
of 20% are smaller than those of 40%. Furthermore,
a direct e�ect of censoring rate on the posterior risk
was observed, i.e., the posterior risk increased as the
censoring rate increased. From Tables 1, A.1 and A.2,
it is noticed that the IP is more accurate than the UP.
Also, the convergence of BEs to the nominal value was
observed to be faster in the case of IP than the UP for
all assumed loss functions.

Next, the performance of di�erent loss functions
is compared. From Table 1, it can be observed that
the BEs are found to be more e�cient for the �rst
set of parameter values under the IP as compared
to the UP under SELF than PLF and QLF. In the
case of 20% censoring rate and assuming IP, the
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Table 1. Bayes Estimates (BEs) of mixture for two components of Transmuted Weibull Distribution (TWD) along with
Posterior Risks (PRs) (in parentheses) under Uniform Prior (UP) and Informative Prior (IP).

20% censoring

UP IP

LF n �1=1:5 �1=2:0 �1=0:4 p1=0:3 �2=2 �2=1:4 �2=0:5 �1=1:5 �1=2:0 �1=0:4 p1=0:3 �2=2 �2=1:4 �2=0:5

SELF

20 1.6473
(0.3747)

1.8156
(0.4174)

0.2861
(0.0410)

0.3884
(0.0122)

1.8353
(0.2400)

1.6098
(0.0145)

0.4798
(0.0530)

1.6192
(0.2045)

1.6201
(0.1376)

0.3413
(0.0518)

0.3339
(0.0107)

2.3074
(0.2883)

1.6918
(0.0214)

0.4792
(0.0078)

40 1.6435
(0.2239)

1.9977
(0.2278)

0.3601
(0.0323)

0.3527
(0.0064)

1.9369
(0.1750)

1.5917
(0.0097)

0.4893
(0.0444)

1.5749
(0.1942)

1.8646
(0.1156)

0.3520
(0.0204)

0.3282
(0.0065)

2.2123
(0.2010)

1.5321
(0.0078)

0.4860
(0.0061)

60 1.5239
(0.1232)

2.0064
(0.0726)

0.3897
(0.0308)

0.3220
(0.0043)

2.0087
(0.1174)

1.4557
(0.0049)

0.4979
(0.0416)

1.5238
(0.1201)

1.9773
(0.0834)

0.3878
(0.0107)

0.3205
(0.0041)

2.1283
(0.1232)

1.4452
(0.0045)

0.4890
(0.0047)

100 1.5016
(0.0781)

2.0549
(0.0201)

0.4183
(0.0236)

0.3011
(0.0028)

2.0605
(0.0787)

1.4260
(0.0030)

0.5144
(0.0342)

1.5069
(0.0903)

1.9913
(0.0756)

0.4000
(0.0095)

0.3016
(0.0027)

2.0569
(0.1130)

1.4000
(0.0027)

0.5230
(0.0015)

PLF

20 1.7573
(0.2201)

1.9736
(0.2160)

0.2879
(0.0936)

0.4038
(0.0308)

1.7071
(0.1436)

1.7604
(0.1011)

0.5131
(0.0666)

1.7396
(0.1409)

1.6607
(0.1812)

0.3439
(0.0053)

0.3496
(0.0313)

2.3901
(0.1653)

1.6037
(0.0239)

0.4772
(0.0161)

40 1.7103
(0.1335)

1.9881
(0.1140)

0.3625
(0.0849)

0.3616
(0.0179)

1.9815
(0.1393)

1.5979
(0.0123)

0.5054
(0.0621)

1.6354
(0.1210)

1.8798
(0.1030)

0.3542
(0.0042)

0.3612
(0.0181)

2.2572
(0.0893)

1.5368
(0.0093)

0.4823
(0.0127)

60 1.5702
(0.0926)

2.0132
(0.0669)

0.3912
(0.0830)

0.3286
(0.0134)

2.0377
(0.0580)

1.4883
(0.0062)

0.5052
(0.0545)

1.5654
(0.0831)

1.9553
(0.0761)

0.3891
(0.0037)

0.3270
(0.0129)

2.1570
(0.0575)

1.4581
(0.0057)

0.4900
(0.0118)

100 1.5274
(0.0516)

2.0256
(0.0209)

0.4050
(0.0535)

0.3049
(0.0076)

2.0795
(0.0380)

1.4279
(0.0038)

0.5060
(0.0276)

1.5443
(0.0660)

1.9850
(0.0513)

0.4000
(0.0003)

0.3056
(0.0080)

2.0944
(0.0350)

1.4017
(0.0034)

0.5245
(0.0029)

QLF

20 1.5756
(0.1625)

1.7411
(0.0650)

0.4757
(0.0686)

0.3128
(0.1107)

2.1202
(0.0975)

1.8968
(0.0210)

0.5093
(0.0948)

1.6255
(0.1626)

1.8763
(0.0789)

0.3329
(0.0152)

0.3607
(0.0968)

2.4133
(0.0858)

1.4906
(0.0250)

0.5911
(0.0516)

40 1.5551
(0.0879)

1.9277
(0.0408)

0.4727
(0.0647)

0.3112
(0.0605)

2.1694
(0.0486)

1.6863
(0.0099)

0.5077
(0.0916)

1.5510
(0.0806)

1.9490
(0.0345)

0.3571
(0.0059)

0.3437
(0.0516)

2.2156
(0.0446)

1.4672
(0.0099)

0.5646
(0.0491)

60 1.5333
(0.0630)

1.9893
(0.0307)

0.4648
(0.0622)

0.3110
(0.0452)

2.0915
(0.0304)

1.4795
(0.0069)

0.5069
(0.0846)

1.5062
(0.0560)

1.9664
(0.0255)

0.3881
(0.0034)

0.3310
(0.0395)

2.1353
(0.0310)

1.4244
(0.0066)

0.5460
(0.0466)

100 1.5542
(0.0360)

1.9629
(0.0155)

0.4321
(0.0242)

0.3391
(0.0236)

2.0757
(0.0184)

1.3936
(0.0040)

0.5604
(0.0363)

1.4862
(0.0390)

2.0375
(0.0213)

0.4076
(0.0021)

0.3119
(0.0256)

2.0933
(0.0274)

1.4049
(0.0038)

0.5110
(0.0382)

40% censoring

UP IP

LF n �1=1:5 �1=2:0 �1=0:4 p1=0:3 �2=2 �2=1:4 �2=0:5 �1=1:5 �1=2:0 �1=0:4 p1=0:3 �2=2 �2=1:4 �2=0:5

SELF

20 1.4002
(0.3757)

1.6544
(0.4189)

0.4554
(0.0527)

0.3514
(0.0165)

2.1488
(0.2722)

1.3244
(0.0923)

0.5371
(0.0576)

1.2608
(0.2052)

2.2982
(0.1584)

0.3121
(0.0652)

0.4839
(0.0151)

1.5685
(0.2947)

1.2502
(0.0495)

0.4263
(0.0137)

40 1.4778
(0.2384)

1.7801
(0.2854)

0.4378
(0.0458)

0.3434
(0.0084)

2.1245
(0.2019)

1.3602
(0.0634)

0.5225
(0.0569)

1.3159
(0.1949)

1.6476
(0.1248)

0.3495
(0.0212)

0.4194
(0.0087)

1.9599
(0.2252)

1.3401
(0.0356)

0.4417
(0.0107)

60 1.4877
(0.1429)

1.8890
(0.1056)

0.4350
(0.0360)

0.3386
(0.0057)

2.0539
(0.1229)

1.3847
(0.0263)

0.5179
(0.0544)

1.5022
(0.1392)

1.7568
(0.1071)

0.3845
(0.0123)

0.3186
(0.0050)

2.0118
(0.1426)

1.3831
(0.0102)

0.4801
(0.0076)

100 1.5120
(0.0873)

1.9624
(0.0979)

0.4215
(0.0245)

0.3115
(0.0038)

2.0466
(0.0933)

1.4042
(0.0104)

0.5092
(0.0428)

1.5098
(0.0974)

2.0073
(0.0960)

0.3996
(0.0108)

0.3012
(0.0032)

2.0602
(0.1292)

1.4227
(0.0098)

0.4927
(0.0053)

PLF

20 1.5955
(0.2404)

1.8577
(0.3787)

0.5002
(0.0595)

0.3776
(0.0325)

2.1160
(0.2776)

1.4592
(0.1249)

0.5584
(0.1025)

1.3397
(0.1578)

1.8077
(0.2189)

0.3123
(0.0098)

0.4993
(0.0338)

1.6568
(0.1766)

1.5207
(0.0410)

0.4267
(0.0286)

40 1.5664
(0.1571)

1.9850
(0.3558)

0.4664
(0.0978)

0.3554
(0.0341)

2.1014
(0.1827)

1.4321
(0.0637)

0.5549
(0.0648)

1.3698
(0.1379)

1.9848
(0.1744)

0.3497
(0.0075)

0.4296
(0.0205)

2.0166
(0.1133)

1.4771
(0.0349)

0.4418
(0.0225)

60 1.5448
(0.1141)

2.0347
(0.0912)

0.4439
(0.0860)

0.3470
(0.0268)

2.0957
(0.0834)

1.4290
(0.0286)

0.5301
(0.0644)

1.5067
(0.0917)

1.9957
(0.0568)

0.3805
(0.0061)

0.3263
(0.0193)

2.0469
(0.0702)

1.4486
(0.0110)

0.4811
(0.0214)

100 1.5003
(0.0766)

2.0854
(0.0460)

0.4285
(0.0840)

0.3156
(0.0190)

2.0693
(0.0454)

1.4010
(0.0115)

0.5104
(0.0424)

1.5320
(0.0843)

2.0017
(0.0453)

0.4065
(0.0045)

0.3040
(0.0155)

2.0770
(0.0335)

1.4244
(0.0073)

0.5027
(0.0185)

QLF

20 1.3838
(0.1998)

2.1261
(0.1244)

0.4754
(0.0806)

0.3295
(0.1416)

1.7859
(0.1477)

1.6830
(0.0736)

0.5106
(0.0985)

1.2541
(0.1778)

1.6349
(0.1201)

0.3648
(0.0155)

0.3404
(0.1098)

1.6409
(0.1258)

1.5981
(0.0702)

0.5510
(0.0576)

40 1.4899
(0.1128)

2.1082
(0.0851)

0.4654
(0.0691)

0.3157
(0.0718)

1.9479
(0.0679)

1.5769
(0.0301)

0.5017
(0.0960)

1.3518
(0.0942)

1.8474
(0.0735)

0.3829
(0.0080)

0.3336
(0.0670)

1.9199
(0.0597)

1.4741
(0.0353)

0.5376
(0.0538)

60 1.5064
(0.0788)

2.0813
(0.0731)

0.4616
(0.0645)

0.3043
(0.0599)

1.9745
(0.0414)

1.4599
(0.0218)

0.5005
(0.0927)

1.4299
(0.0770)

1.9676
(0.0611)

0.3954
(0.0041)

0.3326
(0.0457)

2.0044
(0.0444)

1.4471
(0.0244)

0.5288
(0.0514)

100 1.5091
(0.0528)

2.0045
(0.0578)

0.4564
(0.0516)

0.2905
(0.0349)

2.0760
(0.0280)

1.4063
(0.0103)

0.4991
(0.0792)

1.4896
(0.0452)

1.9934
(0.0516)

0.4085
(0.0035)

0.3017
(0.0331)

2.0804
(0.0246)

1.4226
(0.0176)

0.5084
(0.0404)
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transmuted parameters (�1; �2) of both components
are over estimated under the assumed loss functions. It
is clear from Table A.1 that if �1 < �2, the estimated
values of the shape and the transmuted parameters
are over-estimated under the considered loss functions
for 20% and 40% censoring rates. It is also noticed
that IP gives us more precise estimates using the SELF
for the second set of parametric values by considering
20% censoring rate than the PLF and the QLF. From
Table A.2, it is clear that IP produced more accurate
estimates for all parameters under QLF when 40%
censoring was considered. Also, for the third set of
parameters, if �1 > �2 the estimated values of the
shape and the scale parameters are overestimated for
the �rst component, while under-estimated for the
second component under SELF. Among all sets of
parametric values, the QLF is the most suitable for
both 20% and 40% censoring rates (cf. Tables 1,
A.1 and A.2). In the case of 20% censoring rate,
to estimate the mixing component parameter p1, the
SELF is observed to be more superior than the other
two loss functions.

5. Bayesian Credible Intervals (BCI)

The goal of this section is to obtain the BCI for
the unknown parameters. The BCI are obtained
by utilizing the marginal posterior densities of the
parameter of interest. A 95% Bayesian credible interval
(sometimes also known as the posterior interval) is
analogous to the familiar 95% frequentist con�dence
interval which provides a range of likely values for a
parameter [41].

Given the data, the 95% credibility interval
(�L; �U ) includes the true � with probability 95%,
whereas the frequentist intervals may include it or
not, i.e., its inclusion probability is either zero or
one. According to Eberly and Casella [42], the 100
(1-k) % credible intervals can be obtained by solving
the following equation:Z L

0
g(�jx)d� =

k
2

=
Z 1
U

g(�jx)d�;

where g(�jx) is the posterior distribution of � given
data, L and U denote the lower and upper limits of the
credible interval, respectively, and k is the signi�cance
level.

In the case of interval estimation (Tables 2 and
A.3-A.4), it is observed that the width of 95% credible
intervals reduces as the sample size increases. Also,
all the credible intervals contain the nominal value of
the respective unknown parameters. The least widths
for BCI has been observed for the 20% censoring rate
rather than the 40%. The reason for this is that there
is more information in the case of a small censoring
rate rather than for the large one.

6. Real life application

In this section, two real-life data sets are analyzed
in order to illustrate the practicality of the mixture
distribution in practice. For the sake of space, the
results of the �rst data set are presented here, whereas
the second data set is discussed in Appendix A.

6.1. Real data Set-I: Hepatitis analysis
A real data set was analyzed to illustrate the method-
ology discussed in the previous section. The data
set has been collected from the Combined Military
Hospital (CMH) Rawalpindi, Pakistan. In order to
show the usefulness of the proposed mixture distri-
bution, Bayesian analysis was performed on the life
time data of hepatitis B & C patients to estimate
the unknown parameters, assuming UP and IP under
SELF, PLF and QLF. This data set consists of 80
values regarding recovery time period (in days) of
hepatitis (B & C) patients treated with antiviral
medications such as lamivudine for hepatitis B or
ribavirin (trade name Copegus, Rebetol, Ribasphere)
for hepatitis C. For the sake of privacy, admission
date, discharge date and number of recovery days
from 2016 to 2017 are reported. Since the patients
have two di�erent types of hepatitis, the data can
easily be divided into two subpopulations. In Table
3, the hepatitis B patients have been classi�ed into
subpopulation-1, while the hepatitis C patients into
subpopulation 2. The appropriateness of the two-
component mixture of the TWD is tested against the
Weibull and transmuted Weibull by using �2 - statistic
and the P -value is 0.4559. Thus, it is evident that
the mixture distribution is a good �t against the other
assumed models.

For the analysis, the data (Table 3) was catego-
rized into two groups with probability mixing weight
p1 = 0:5 and T = 30. The reason for considering
T = 30 is that if a patient does not recover within one
month then he is referred to the CMH Lahore. The
summary of the data is as follows:

n1 =40; r1 =40; r2 =8; p1 =0:5;
r1X
j=1

x1j =680;

r1X
j=1

log(1=x1j) = �112:88;

n2 = 40; r2 = 19;
r2X
j=1

x2j = 523;

r2X
j=1

log(1=x2j) = �62:96:

The BEs, the PRs (in parenthesis) and interval
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Table 2. 95% Bayesian credible intervals of mixture for two components of Transmuted Weibull Distribution (TWD)
using Uniform Prior (UP) and Informative Prior (IP) with hyperparameters are a1 = 0:5, a2 = 1:5, b1 = 1, b2 = 1,
c1 = 0:5, c2 = 1, d1 = 1, d2 = 2, e1 = 0:5, e2 = 1, l1 = 0:1, and l2 = 0:2.

Censoring
rate

Size Parameters UP IP

Lower limit Upper limit Lower limit Upper limit

20%

20

�1 = 1:5 1.0193 10.8590 1.5076 6.8866
�2 = 2:0 1.0457 9.9829 1.4628 6.0349
�1 = 2:0 0.6648 6.4781 0.8483 3.0799
�2 = 1:4 0.6321 4.8065 0.6979 2.6335
�1 = 0:4 0.3482 0.9361 0.3451 0.4481
�2 = 0:5 0.4184 0.9681 0.4165 0.6683
p1 = 0:3 0.2273 3.0082 0.2031 1.8047

40%

�1 = 1:5 1.0237 10.9073 1.5085 7.7015
�2 = 2:0 1.0469 10.5421 1.4895 7.9162
�1 = 2:0 0.7477 6.8479 0.8618 8.2817
�2 = 1:4 0.6688 6.0649 0.7412 2.8065
�1 = 0:4 0.3513 0.9430 0.3541 0.4507
�2 = 0:5 0.4283 0.9804 0.4254 0.6784
p1 = 0:3 0.2489 3.0695 0.2667 2.2364

20%

40

�1 = 1:5 0.9370 8.1197 0.9224 6.7606
�2 = 2:0 1.0357 9.6256 0.9959 5.4217
�1 = 2:0 0.5157 6.4623 0.5905 2.8047
�2 = 1:4 0.4350 4.5378 0.4692 2.2673
�1 = 0:4 0.3396 0.8948 0.3046 0.4225
�2 = 0:5 0.4034 0.9466 0.4207 0.6655
p1 = 0:3 0.1524 2.3285 0.1541 1.0640

40%

�1 = 1:5 0.9497 9.3651 0.9588 6.6882
�2 = 2:0 1.0404 10.2397 0.9995 6.6487
�1 = 2:0 0.5951 6.4667 0.6371 3.7396
�2 = 1:4 0.4452 4.9274 0.4770 2.3125
�1 = 0:4 0.3443 0.9032 0.3059 0.4412
�2 = 0:5 0.3976 0.9474 0.4217 0.6717
p1 = 0:3 0.1660 2.6785 0.1799 2.0907

20%

60

�1 = 1:5 0.6360 7.7392 0.5754 6.5649
�2 = 2:0 0.6404 8.8064 0.7967 5.1786
�1 = 2:0 0.3972 5.8619 0.4299 2.5934
�2 = 1:4 0.3200 3.8016 0.3524 1.9025
�1 = 0:4 0.3315 0.8822 0.3023 0.4146
�2 = 0:5 0.3923 0.9396 0.4139 0.5786
p1 = 0:3 0.1135 2.3008 0.1326 1.0598

40%

�1 = 1:5 0.7982 8.8417 0.5820 6.5996
�2 = 2:0 0.6982 9.5806 0.8052 5.7471
�1 = 2:0 0.4086 6.3806 0.4332 3.5954
�2 = 1:4 0.3983 4.5960 0.3614 2.2963
�1 = 0:4 0.3360 0.8923 0.3053 0.4411
�2 = 0:5 0.3966 0.9426 0.4192 0.5992
p1 = 0:3 0.1291 2.6386 0.1457 1.8416
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Table 2. 95% Bayesian credible intervals of mixture for two components of Transmuted Weibull Distribution (TWD)
using Uniform Prior (UP) and Informative Prior (IP) with hyperparameters are a1 = 0:5, a2 = 1:5, b1 = 1, b2 = 1,
c1 = 0:5, c2 = 1, d1 = 1, d2 = 2, e1 = 0:5, e2 = 1, l1 = 0:1, and l2 = 0:2 (continued).

Censoring
rate

Size Parameters UP IP

Lower limit Upper limit Lower limit Upper limit

20%

100

�1 = 1:5 0.2180 5.9429 0.3957 5.9407

�2 = 2:0 0.2834 8.0151 0.5317 5.1241

�1 = 2:0 0.2475 5.5634 0.3043 2.2083

�2 = 1:4 0.1861 3.7751 0.2424 1.9010

�1 = 0:4 0.3280 0.8779 0.3013 0.4110

�2 = 0:5 0.3918 0.9318 0.4120 0.5763

p1 = 0:3 0.0698 1.8032 0.0960 1.0038

40%

�1 = 1:5 0.2792 5.9633 0.4002 5.9556

�2 = 2:0 0.2931 8.2385 0.5459 5.5638

�1 = 2:0 0.2506 6.3151 0.3174 3.0312

�2 = 1:4 0.2186 4.5808 0.2532 2.1005

�1 = 0:4 0.3314 0.8806 0.3018 0.4286

�2 = 0:5 0.3981 0.9417 0.4130 0.5898

p1 = 0:3 0.0702 2.0866 0.1086 1.5733

estimates for the parameters of the subject distribution
are obtained assuming UP and IP under SELF, PLF
and QLF.

Tables 4 and 5 contain the Bayesian estimation of
parameters of the mixture of the TWD. Examination
of the results con�rms the previous conclusion that
the BEs and credible intervals based on IP under
SELF provide comparatively better results than the
UP for estimating component parameters. Further, it
is noticed that the estimates have a minimum amount
of PRs for 20% censoring rate rather than for the 40%
for both priors and under assumed loss functions.

7. Conclusion

In this article, a two-component mixture of the Trans-
muted Weibull Distribution (TWD) was introduced
and its parameters were estimated using the Bayesian
method. An extensive simulation study is conducted
to compare and highlight some important and inter-
esting properties of the Bayes estimators of the two-
component mixture of the TWD using noninforma-
tive (uniform) and informative (gamma) priors under
Squared Error Loss Function (SELF), Percautionary
Loss Function (PLF), and Quadratic Loss Function
(QLF). First, the expression for posterior densities was
derived and it was noticed that the densities were not
in closed forms. Thus, a Markov Chain Monte Carlo
(MCMC) technique was proposed to obtain the poste-

rior summaries. The second objective of this study was
the choice of an appropriate loss function and prior for
the estimation of the mixture's parameters assuming
type-I right censored data with di�erent sample sizes
and test termination times. To this end, di�erent
posterior summaries were obtained, like Bayes esti-
mates and their respective posterior risk, and Bayesian
credible intervals assuming di�erent sample sizes and
test termination times. Two di�erent censoring rates,
i.e., 20% and 40%, were considered. From Tables 1, A.1
and A.2, it is clear that the estimated values become
very close to the nominal value of the parameters and
the Posterior Risks (PRs) decreased with the increase
of sample size. Thus, simulated results follow the
consistency property. It is also observed that the 40%
censoring rate has a larger amount of PRs than the
20% censored data. Furthermore, the results obtained
from the real-life data sets showed the same pattern,
which con�rmed that the proposed MCMC algorithm
performed well to estimate the unknown parameters
in the Bayesian framework. The PLF was observed
the most preferable choice for the estimation of mixing
component (proportion) than the SELF and the QLF.
Also, the IP is a more e�cient prior for estimating
the shape and the scale parameters. To show the
application of the proposed model, two real life data
sets have been analyzed, and its appropriateness was
tested through �2 - statistic. In the future, a truncated
mixture can be studied.
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Table 3. Real life data of the survival time (in days) of hepatitis (B & C) Patients.

Disease (hepatitis B) Disease (hepatitis C)

Admit date Discharge date No of recovery
days

Admit date Discharge date No of recovery
days

02-01-2016 16-01-2016 15 02-01-2016 30-01-2016 29

03-02-2016 18-02-2016 16 06-01-2016 04-02-2016 30

03-03-2016 19-03-2016 17 03-02-2016 01-03-2016 28

04-03-2016 18-03-2016 15 06-04-2016 04-05-2016 29

05-04-2016 21-04-2016 17 16-04-2016 16-05-2016 31

08-05-2016 24-05-2016 17 02-05-2016 31-05-2016 30

10-05-2016 30-05-2016 21 08-06-2016 10-07-2016 33

12-06-2016 30-06-2016 19 15-06-2016 16-06-2016 32

03-07-2016 19-07-2016 17 21-07-2016 20-08-2016 30

06-07-2016 19-07-2016 14 22-07-2016 18-08-2016 27

01-08-2016 16-08-2016 15 18-08-2016 16-09-2016 30

22-08-2016 07-09-2016 17 28-08-2016 24-09-2016 28

09-09-2016 28-09-2016 20 28-08-2016 26-09-2016 30

15-09-2016 02-10-2016 18 02-09-2016 02-10-2016 31

04-10-2016 20-10-2016 17 10-09-2016 12-10-2016 33

28-10-2016 16-11-2016 20 25-09-2016 22-10-2016 28

16-11-2016 03-12-2016 19 15-10-2016 16-11-2016 33

25-11-2016 16-12-2016 23 22-10-2016 23-11-2016 33

12-12-2016 26-12-2016 14 28-10-2016 24-11-2016 27

09-01-2017 18-01-2017 10 07-11-2016 04-12-2016 28

13-02-2017 28-02-2017 16 15-12-2016 16-12-2016 32

18-03-2017 29-03-2017 12 24-12-2016 21-01-2017 29

24-03-2017 08-04-2017 16 02-01-2017 30-01-2017 29

05-04-2017 21-04-2017 17 08-01-2017 06-02-2017 30

08-05-2017 24-05-2017 17 04-02-2017 01-03-2017 24

12-05-2017 30-05-2017 19 16-04-2017 10-05-2017 25

14-06-2017 30-06-2017 17 18-04-2017 16-05-2017 29

03-07-2017 18-07-2017 16 01-05-2017 31-05-2017 31

08-07-2017 22-07-2017 15 05-06-2017 08-07-2016 34

01-08-2017 16-08-2017 16 15-06-2017 13-07-2017 29

24-08-2017 11-09-2017 19 20-07-2017 14-08-2017 26

19-09-2017 04-10-2017 16 21-07-2017 15-08-2017 25

23-09-2017 12-10-2017 20 18-08-2017 16-09-2017 30

04-10-2017 20-10-2017 16 26-08-2017 24-09-2017 30

28-10-2017 16-11-2017 20 27-08-2017 22-09-2017 27

26-11-2017 13-12-2017 19 04-09-2017 02-10-2017 29

28-11-2017 16-12-2017 20 11-09-2017 11-10-2017 31

02-12-2017 18-12-2017 17 23-09-2017 19-10-2017 27

08-12-2017 21-12-2017 14 10-10-2017 08-11-2017 30

14-02-2017 30-12-2017 17 21-11-2017 23-12-2017 33
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Table 4. Bayes Estimates (BEs) of mixture for two components of Transmuted Weibull Distribution (TWD) along with
Posterior Risks (PRs) (in with PRs (in parentheses) under Uniform Prior (UP) and Informative Prior (IP).

20% censoring

UP IP

LF �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF 2.4705
(0.0032)

1.5832
(0.0927)

0.3384
(0.0384)

0.4829
(0.0036)

3.0773
(0.0016)

1.2740
(0.0151)

0.3820
(0.0405)

2.4956
(0.0034)

1.6223
(0.0893)

0.3024
(0.0174)

0.4827
(0.0037)

3.0216
(0.0049)

1.2907
(0.2454)

0.4136
(0.0201)

PLF 2.4748
(0.0086)

1.5944
(0.0525)

0.2910
(0.1052)

0.4756
(0.0054)

3.0818
(0.0089)

1.2799
(0.0118)

0.4055
(0.1070)

2.4801
(0.0090)

1.6177
(0.0509)

0.3483
(0.0518)

0.4754
(0.0055)

3.0290
(0.0149)

1.3258
(0.1296)

0.4357
(0.0442)

QLF 2.4534
(0.0235)

1.6289
(0.0229)

0.2992
(0.1087)

0.4815
(0.0087)

3.0594
(0.0533)

1.2533
(0.0078)

0.3957
(0.1093)

2.4891
(0.0228)

1.6059
(0.0218)

0.3263
(0.0886)

0.4812
(0.0850)

3.0927
(0.0493)

1.3091
(0.0401)

0.4459
(0.0572)

40% censoring

UP IP

LF �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF 2.4658
(0.0038)

1.5938
(0.1138)

0.2947
(0.0486)

0.5212
(0.0043)

3.0780
(0.0009)

1.3103
(0.0164)

0.4022
(0.0496)

2.4932
(0.0042)

1.6006
(0.0992)

0.2968
(0.0180)

0.5166
(0.0056)

3.0468
(0.0119)

1.3220
(0.2576)

0.4146
(0.0204)

PLF 2.4702
(0.0092)

1.6253
(0.0629)

0.3397
(0.1201)

0.5226
(0.0098)

3.0860
(0.0112)

1.3155
(0.0123)

0.4277
(0.1190)

2.4774
(0.0104)

1.6279
(0.0547)

0.3202
(0.0648)

0.5182
(0.0062)

3.0636
(0.0334)

1.3259
(0.1357)

0.4220
(0.0447)

QLF 2.4799
(0.0217)

1.6379
(0.0249)

0.2891
(0.1184)

0.5150
(0.0039)

3.0463
(0.0667)

1.2922
(0.0082)

0.4227
(0.1234)

2.4561
(0.0234)

1.6106
(0.0245)

0.3066
(0.916)

0.5010
(0.0041)

3.0816
(0.1021)

1.3106
(0.0423)

0.4484
(0.1182)

Table 5. 95% Bayesian credible intervals of mixture of the two components of Transmuted Weibull Distribution (TWD)
using Uniform Prior (UP) and Informative Prior (IP).

Censoring rate Parameters UP IP

Lower limit Upper limit Lower limit Upper limit

20%

�1 = 2:5 0.0587 2.8914 0.0695 2.8940

�2 = 3:0 0.0286 3.7778 0.0599 3.0195

�1 = 1:6 0.2986 1.7778 0.3563 1.6008

�2 = 1:3 0.2184 1.6721 0.3549 1.8350

�1 = 0:3 0.1696 0.6763 0.2144 0.5770

�2 = 0:4 0.1797 0.6833 0.3210 0.6832

p1 = 0:5 0.1125 3.3063 0.1304 3.5657

40%

�1 = 2:5 0.0655 2.7424 0.1035 3.6075

�2 = 3:0 0.0338 4.5974 0.0945 3.9551

�1 = 1:6 0.3038 2.1947 0.3697 1.6238

�2 = 1:3 0.2290 3.7483 0.3920 1.9520

�1 = 0:3 0.1774 0.6814 0.2158 0.5875

�2 = 0:4 0.1832 0.6875 0.3227 0.6857

p1 = 0:5 0.1289 4.9770 0.1455 4.5908
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Appendix A

For f(x; 
) = p1f1(x; 
1) + p2f2(x; 
2) and p1 + p2 �
1, some algebraic manipulations yields the following
likelihood form:
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Figure A.1 shows graphs of the marginal posterior

densities of parameters (�1; �2; �1; �2; �1�2; p1) assum-
ing the UP and the 1P and the hepatitis data. From
Figure A.1a and A.1b and A.1e & A.1f, it is noted
that the plots of marginal posterior densities for the
scale and the shape component for the scale and the
shape parameters (�2; �2) tend to be more peaked for
20% censoring than for the 40%. This is because more
information was lost in the case of a high censoring rate
(Figure A.1c and A.1d & A.1g and A.1h). Also, the
graphs of marginal posterior densities for transmuted
parameters (�1; �2) are also symmetrical, as shown in
Figures A.1i to A.1l, and the same is true for the
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Figure A.1a. Posterior density of �1 using Uniform Prior
(UP).

Figure A.1b. Posterior density of �1 using Informative
Prior (IP).

Figure A.1c. Posterior density of �2 using Uniform Prior
(UP).

Figure A.1d. Posterior density of �2 using Informative
Prior (IP).

Figure A.1e. Posterior density of �1 using Uniform Prior
(UP).

Figure A.1f. Posterior density of �1 using Informative
Prior (IP).
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Figure A.1g. Posterior density of �2 using Uniform Prior
(UP).

Figure A.1h. Posterior density of �2 using Informative
Prior (IP).

Figure A.1i. Posterior density of �1 using Uniform Prior
(UP).

Figure A.1j. Posterior density of �1 using Informative
Prior (IP).

Figure A.1k. Posterior density of �2 using Uniform Prior
(UP).

Figure A.1l. Posterior density of �2 using Informative
Prior (IP).
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Figure A.1m. Posterior density of p1 using Uniform
Prior (UP).

Figure A.1n. Posterior density of p1 using Informative
Prior (IP).

posterior density of the mixing weight (Figures A.1m
and A.1n).

Real data set-II

The second data set consists of 50 observations (in
millimeters), the hole diameter is 12 mm and the sheet
thickness is 3.15 mm, as reported by Dasgupta [43].
The data are: 0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22,
0.12, 0.08, 0.26, 0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32,
0.28, 0.14, 0.16, 0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16,
0.14, 0.08, 0.16, 0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16,

0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.06, 0.04,
0.14, 0.26, 0.18, 0.16. Dasgupta analyzed the Burr
distribution by using the same data set and compared
the process stability by bootstrapping the distribution
of coe�cient of variation under an extreme value
model. He concludes that an extreme value distribution
may explain the data well. Recently, Bakouch et al.
[44] used this data set to evaluate the performance of
the Transmuted General (TG) family of distributions
by �tting four sub-models, namely; Transmuted Burr
(TB) distribution, Transmuted Weibull (TW) distri-
bution, Transmuted Gamma (TGa) distribution, and
Transmuted Gompterz (TGz) distribution. In order
to perform the Bayesian analysis assuming the two-
component mixture of TWD, the data was randomly
assembled into two subpopulations using probabilistic
mixing weight p1 = 0:5 and T = 0:24. The summary
of results are as follows:

n1 = 25; r1 = 18; p1 = 0:5;

r1X
j=1

x1j = 2:22;

r1X
j=1

logx1j = �40:51;

n2 = 25; r2 = 19;

r2X
j=1

x2j = 2:48

r2X
j=1

logx2j = �41:53:

The goodness of �t for the distribution is tested
by using the �2-statistic against the Weibull and
transmuted Weibull distributions and the obtained P-
value is 0.2290 at the 5% level of signi�cance. Thus, it is
safe to conclude that the proposed distribution provides
the best �t for the data set. The two-component
mixture of TWD was applied to the data set given
in Table A.5 by adopting the methodology discussed
previously. More speci�cally, the Bayesian analysis
was performed to estimate the unknown parameters
assuming UP and IP under SELF, PLF and QLF. The
results of the BEs, the PRs (in parenthesis) and interval
estimates for the parameters have been summarized in
tables intervals (Tables A.6 and A.7). The BEs and
the credible intervals (Tables A.6 and A.7) based on
IP are more e�cient than the UP prior. For both
priors, the SELF provided more e�cient estimates
for transmuted parameters (�1; �2) and proportion
parameter (p1).
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Table A.1. Bayes Estimates (BEs) of mixture for two components of Transmuted Weibull Distribution (TWD) along
with Posterior Risks (PRs) (in parentheses) under Uniform Prior (UP) and Informative Prior (IP).

20% censoring

UP IP

LF n �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF

20 1.8925
(0.2593)

1.5085
(0.1023)

0.3769
(0.0339)

0.3894
(0.0124)

2.5369
(0.2827)

1.4061
(0.0306)

0.4595
(0.0442)

2.7200
(0.2309)

1.4753
(0.2420)

0.3621
(0.0052)

0.4479
(0.0116)

3.4721
(0.2860)

1.3678
(0.1676)

0.4669
(0.0338)

40 2.1738
(0.1817)

1.5511
(0.0248)

0.3480
(0.0309)

0.4408
(0.0070)

2.8638
(0.1358)

1.3640
(0.0082)

0.4464
(0.0396)

2.5753
(0.2002)

1.5673
(0.2195)

0.3287
(0.0009)

0.4443
(0.0069)

3.0435
(0.1649)

1.3837
(0.1372)

0.4291
(0.0277)

60 2.3918
(0.1094)

1.5815
(0.0102)

0.3412
(0.0306)

0.4581
(0.0047)

3.0648
(0.1026)

1.3499
(0.0047)

0.4402
(0.0392)

2.5371
(0.1136)

1.5871
(0.1280)

0.3262
(0.0007)

0.4792
(0.0047)

3.0657
(0.1084)

1.3491
(0.1048)

0.4161
(0.0205)

100 2.5919
(0.0948)

1.6008
(0.0036)

0.3339
(0.0290)

0.4999
(0.0030)

3.0679
(0.0988)

1.3186
(0.0029)

0.4305
(0.0378)

2.4842
(0.0931)

1.6046
(0.0937)

0.30000
(0.0002)

0.4997
(0.0030)

3.0024
(0.0946)

1.3125
(0.0827)

0.4190
(0.0183)

PLF

20 2.0225
(0.2602)

1.5933
(0.0468)

0.4194
(0.1050)

0.4051
(0.0313)

2.8609
(0.2147)

1.4032
(0.0304)

0.5053
(0.0915)

2.3992
(0.2662)

1.4577
(0.2471)

0.3591
(0.0053)

0.4129
(0.0280)

3.3125
(0.2708)

1.3847
(0.0160)

0.4479
(0.0365)

40 2.2444
(0.1411)

1.6023
(0.0244)

0.3899
(0.0937)

0.4488
(0.0160)

2.9389
(0.1502)

1.3983
(0.0087)

0.4795
(0.0863)

2.6519
(0.1531)

1.5748
(0.1683)

0.3301
(0.0027)

0.4520
(0.0153)

3.1490
(0.1748)

1.3420
(0.0072)

0.4201
(0.0318)

60 2.4434
(0.1032)

1.6103
(0.0099)

0.3835
(0.0846)

0.4632
(0.0102)

3.1186
(0.1076)

1.3623
(0.0048)

0.4526
(0.0849)

2.5866
(0.1290)

1.5811
(0.1082)

0.3272
(0.0021)

0.4841
(0.0098)

3.1236
(0.1023)

1.3215
(0.0049)

0.4167
(0.0241)

100 2.5216
(0.0594)

1.6195
(0.0037)

0.3747
(0.0817)

0.5030
(0.0061)

3.1034
(0.0709)

1.3201
(0.0029)

0.4223
(0.0836)

2.5129
(0.0973)

1.6065
(0.0839)

0.3000
(0.0018)

0.5027
(0.0060)

3.0379
(0.0910)

1.3040
(0.0028)

0.4191
(0.0163)

QLF

20 2.4997
(0.1213)

1.5489
(0.0202)

0.3665
(0.1092)

0.4378
(0.0708)

2.6539
(0.1224)

1.3978
(0.0185)

0.3905
(0.1485)

2.2865
(0.1128)

1.5296
(0.0234)

0.3493
(0.0244)

0.4431
(0.0647)

2.6142
(0.1157)

1.4586
(0.0160)

0.4503
(0.0071)

40 2.5161
(0.0609)

1.5609
(0.0101)

0.3586
(0.0963)

0.4687
(0.0312)

2.8030
(0.0609)

1.3423
(0.0078)

0.3912
(0.1229)

2.5871
(0.0635)

1.5487
(0.0102)

0.3221
(0.0167)

0.4628
(0.0384)

2.8986
(0.0522)

1.3841
(0.0060)

0.4458
(0.0044)

60 2.5395
(0.0389)

1.5878
(0.0059)

0.3518
(0.0423)

0.5006
(0.0202)

3.0402
(0.0421)

1.3264
(0.0047)

0.3979
(0.1090)

2.4498
(0.0426)

1.5673
(0.0069)

0.3172
(0.0145)

0.4802
(0.0244)

2.9842
(0.0377)

1.3498
(0.0041)

0.4261
(0.0033)

100 2.5488
(0.0235)

1.6028
(0.0036)

0.3132
(0.0049)

0.5049
(0.0127)

3.0721
(0.0247)

1.3150
(0.0018)

0.4020
(0.0907)

2.4861
(0.0243)

1.5896
(0.0030)

0.3063
(0.0070)

0.5084
(0.0119)

3.0612
(0.0246)

1.3180
(0.0024)

0.4071
(0.0021)

40% censoring

UP IP

LF n �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF

20 2.8919
(0.2990)

1.7084
(0.1237)

0.3585
(0.0438)

0.4312
(0.0162)

3.2158
(0.2994)

1.3584
(0.0637)

0.4557
(0.0591)

2.6422
(0.2512)

1.5230
(0.2754)

0.2521
(0.0091)

0.4366
(0.0142)

2.8254
(0.2998)

1.3882
(0.1736)

0.3519
(0.0412)

40 2.7424
(0.2300)

1.6936
(0.0392)

0.3470
(0.0402)

0.4617
(0.0093)

3.0766
(0.1581)

1.3605
(0.0337)

0.4424
(0.0457)

2.5942
(0.2153)

1.5418
(0.2425)

0.2976
(0.0045)

0.4680
(0.0084)

2.8824
(0.1759)

1.3467
(0.1465)

0.3831
(0.0296)

60 2.5540
(0.1157)

1.6632
(0.0248)

0.3407
(0.0387)

0.4624
(0.0070)

3.1220
(0.1046)

1.3777
(0.0236)

0.4274
(0.0439)

2.5626
(0.1267)

1.5961
(0.1378)

0.2993
(0.0033)

0.4748
(0.0061)

2.9157
(0.1182)

1.3145
(0.1284)

0.3997
(0.0233)

100 2.4784
(0.0987)

1.6082
(0.0046)

0.3336
(0.0310)

0.5248
(0.0035)

3.0180
(0.0998)

1.4043
(0.0177)

0.4249
(0.0388)

2.5245
(0.0969)

1.6004
(0.0985)

0.3089
(0.0024)

0.4874
(0.0049)

3.0146
(0.0972)

1.3024
(0.0870)

0.4003
(0.0181)

PLF

20 2.9072
(0.3305)

1.6869
(0.0634)

0.3987
(0.1280)

0.4496
(0.0368)

3.4031
(0.3745)

1.4914
(0.1344)

0.4865
(0.1017)

2.7303
(0.2461)

1.4959
(0.2559)

0.2539
(0.0236)

0.4526
(0.0320)

2.8574
(0.2811)

1.3819
(0.0465)

0.3535
(0.0418)

40 2.8549
(0.2251)

1.6304
(0.0436)

0.3881
(0.1123)

0.4718
(0.0299)

3.1817
(0.2103)

1.4564
(0.1156)

0.4706
(0.0964)

2.6861
(0.1538)

1.5535
(0.1743)

0.3081
(0.0112)

0.4770
(0.0170)

2.9753
(0.1859)

1.3683
(0.0232)

0.3898
(0.0325)

60 2.6322
(0.1564)

1.6223
(0.0183)

0.3806
(0.0998)

0.4699
(0.0215)

3.1799
(0.1157)

1.4429
(0.0130)

0.4546
(0.0884)

2.5477
(0.1142)

1.5844
(0.1186)

0.3068
(0.0110)

0.5065
(0.0119)

2.9829
(0.1062)

1.3417
(0.0142)

0.3992
(0.0287)

100 2.4877
(0.0970)

1.6424
(0.0106)

0.3724
(0.0835)

0.4856
(0.0074)

3.0696
(0.0865)

1.4003
(0.0082)

0.4459
(0.0864)

2.5032
(0.0856)

1.6088
(0.0865)

0.3040
(0.0103)

0.5002
(0.0098)

3.0453
(0.0923)

1.3149
(0.0080)

0.4039
(0.0179)

QLF

20 2.3005
(0.1631)

1.5041
(0.0346)

0.3630
(0.1098)

0.4143
(0.1036)

2.8977
(0.1747)

1.1013
(0.0346)

0.3922
(0.1490)

2.2507
(0.1410)

1.5285
(0.0377)

0.3165
(0.0340)

0.4293
(0.0797)

3.1282
(0.1591)

1.4260
(0.0191)

0.4435
(0.0152)

40 2.3472
(0.0816)

1.5464
(0.0264)

0.3536
(0.1048)

0.4640
(0.0420)

2.9048
(0.0820)

1.2741
(0.0187)

0.3935
(0.1449)

2.3767
(0.0742)

1.5409
(0.0171)

0.3120
(0.0235)

0.4611
(0.0418)

3.0614
(0.0907)

1.3857
(0.0121)

0.4354
(0.0143)

60 2.4336
(0.0554)

1.5816
(0.0114)

0.3498
(0.0633)

0.4974
(0.0255)

3.0568
(0.0601)

1.2936
(0.0173)

0.3981
(0.1118)

2.4887
(0.0458)

1.5690
(0.0092)

0.3010
(0.0110)

0.5011
(0.0259)

3.0440
(0.0679)

1.3450
(0.0096)

0.4281
(0.0075)

100 2.5018
(0.0380)

1.6086
(0.0037)

0.3134
(0.0066)

0.5043
(0.0131)

3.0078
(0.0328)

1.3017
(0.0078)

0.4001
(0.0943)

2.5355
(0.0327)

1.5910
(0.0051)

0.3000
(0.0097)

0.5197
(0.0196)

3.0152
(0.0512)

1.3257
(0.0058)

0.4065
(0.0040)
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Table A.2. Bayes Estimates (BEs) of mixture for two components of Transmuted Weibull Distribution (TWD) along
with Posterior Risks (PRs) (in parentheses) under Uniform Prior (UP) and Informative Prior (IP).

20% censoring

UP IP

LF n �1=2 �1=1:4 �1=0:4 p1=0:7 �2=1:5 �2=1:3 �2=0:6 �1=2 �1=1:4 �1=0:4 p1=0:7 �2=1:5 �2=1:3 �2=0:6

SELF

20 1.7365
(0.2696)

1.3246
(0.0466)

0.4419
(0.0177)

0.6094
(0.0126)

1.4573
(0.3051)

1.2451
(0.1226)

0.6276
(0.0355)

1.6826
(0.2285)

1.5461
(0.1369)

0.3212
(0.0431)

0.6412
(0.0110)

1.2515
(0.2241)

1.2084
(0.1559)

0.5034
(0.0338)

40 1.8127
(0.1534)

1.3542
(0.0110)

0.4320
(0.0086)

0.6166
(0.0068)

1.4633
(0.1583)

1.2452
(0.1210)

0.6090
(0.0317)

1.7881
(0.1334)

1.4882
(0.0965)

0.3667
(0.0168)

0.6617
(0.0061)

1.3838
(0.1566)

1.2464
(0.1230)

0.5516
(0.0214)

60 1.9367
(0.1103)

1.3875
(0.0049)

0.4200
(0.0072)

0.6595
(0.0044)

1.4840
(0.1184)

1.2769
(0.0536)

0.6063
(0.0303)

1.9234
(0.1011)

1.4599
(0.0472)

0.3694
(0.0161)

0.6901
(0.0040)

1.4654
(0.1144)

1.2652
(0.1036)

0.5681
(0.0208)

100 2.0420
(0.0729)

1.4087
(0.0023)

0.4143
(0.0056)

0.6812
(0.0026)

1.5068
(0.0838)

1.2948
(0.0320)

0.5925
(0.0276)

2.0459
(0.0715)

1.4277
(0.0216)

0.4074
(0.0135)

0.7125
(0.0025)

1.4918
(0.0829)

1.2982
(0.0929)

0.5998
(0.0132)

PLF

20 1.8125
(0.1519)

1.4775
(0.0612)

0.4615
(0.0391)

0.6197
(0.0205)

1.5585
(0.2024)

1.2390
(0.1590)

0.6553
(0.0554)

1.7492
(0.1332)

1.5796
(0.1436)

0.3410
(0.0696)

0.6497
(0.0170)

1.3380
(0.1731)

1.4364
(0.1266)

0.5170
(0.0571)

40 1.8545
(0.0836)

1.4615
(0.0146)

0.4532
(0.0223)

0.6221
(0.0109)

1.5479
(0.1091)

1.2556
(0.1206)

0.6341
(0.0502)

1.8250
(0.0738)

1.4951
(0.0825)

0.3890
(0.0446)

0.6663
(0.0092)

1.4393
(0.1110)

1.3556
(0.1085)

0.5706
(0.0381)

60 1.9650
(0.0565)

1.4309
(0.0067)

0.4399
(0.0199)

0.6628
(0.0067)

1.5255
(0.0831)

1.2881
(0.0838)

0.6308
(0.0489)

1.9496
(0.0522)

1.4530
(0.0562)

0.3905
(0.0423)

0.6930
(0.0058)

1.4665
(0.0825)

1.3394
(0.0983)

0.5876
(0.0374)

100 2.0598
(0.0356)

1.4130
(0.0031)

0.4142
(0.0086)

0.6831
(0.0038)

1.4951
(0.0566)

1.3014
(0.0632)

0.6153
(0.0457)

2.0633
(0.0348)

1.4291
(0.0288)

0.4129
(0.0310)

0.7042
(0.0034)

1.4905
(0.0673)

1.3116
(0.0773)

0.6108
(0.0218)

QLF

20 1.7749
(0.0917)

1.3447
(0.0287)

0.4947
(0.0882)

0.6253
(0.0335)

1.2353
(0.1956)

1.4082
(0.1210)

0.5660
(0.1108)

1.7364
(0.0795)

1.5418
(0.0229)

0.3776
(0.0871)

0.6582
(0.0272)

1.4199
(0.1969)

1.2108
(0.2121)

0.5256
(0.0557)

40 1.9107
(0.0513)

1.3768
(0.0131)

0.4799
(0.0786)

0.6436
(0.0198)

1.3125
(0.0831)

1.3579
(0.0542)

0.6073
(0.0615)

1.9821
(0.0416)

1.4887
(0.0098)

0.3914
(0.0633)

0.6713
(0.0141)

1.4426
(0.1000)

1.2547
(0.1471)

0.5422
(0.0445)

60 2.0327
(0.0303)

1.3803
(0.0068)

0.4476
(0.0206)

0.6661
(0.0105)

1.4826
(0.0653)

1.3312
(0.0433)

0.6014
(0.0592)

1.9914
(0.0299)

1.4490
(0.0068)

0.3944
(0.0547)

0.6857
(0.0115)

1.4751
(0.0605)

1.2822
(0.1097)

0.5576
(0.0387)

100 2.0252
(0.0180)

1.4071
(0.0040)

0.4244
(0.0197)

0.6917
(0.0064)

1.5158
(0.0387)

1.3113
(0.0210)

0.6001
(0.0545)

2.0301
(0.0171)

1.4150
(0.0036)

0.4068
(0.0487)

0.6919
(0.0073)

1.4950
(0.0406)

1.3062
(0.0876)

0.6086
(0.0181)

40% censoring

UP IP

LF n �1=2 �1=1:4 �1=0:4 p1=0:7 �2=1:5 �2=1:3 �2=0:6 �1=2 �1=1:4 �1=0:4 p1=0:7 �2=1:5 �2=1:3 �2=0:6

SELF

20 1.8528
(0.2949)

1.5270
(0.0533)

0.4610
(0.0278)

0.6612
(0.0174)

1.4360
(0.3355)

1.4961
(0.1396)

0.5788
(0.0449)

1.5916
(0.2658)

1.5479
(0.1511)

0.3508
(0.0514)

0.6138
(0.0144)

1.2940
(0.2794)

1.4670
(0.1598)

0.5497
(0.0377)

40 1.9251
(0.1606)

1.4812
(0.0453)

0.4422
(0.0263)

0.6515
(0.0081)

1.4654
(0.1659)

1.4054
(0.1245)

0.5812
(0.0431)

1.7675
(0.1769)

1.4867
(0.1098)

03614
(0.0234)

0.6357
(0.0085)

1.3711
(0.1673)

1.4296
(0.1286)

0.5682
(0.0235)

60 2.0264
(0.1249)

1.4491
(0.0150)

0.4305
(0.0247)

0.6840
(0.0057)

1.4987
(0.1202)

1.3519
(0.0692)

0.5605
(0.0415)

1.9690
(0.1180)

1.4462
(0.0694)

0.3809
(0.0194)

0.6684
(0.0054)

1.4404
(0.1289)

1.3572
(0.1057)

0.5803
(0.0214)

100 2.0713
(0.0959)

1.4190
(0.0087)

0.4266
(0.0153)

0.6913
(0.0031)

1.5055
(0.0957)

1.3292
(0.0345)

0.5977
(0.0394)

1.9923
(0.0848)

1.4158
(0.0475)

0.4000
(0.0149)

0.6901
(0.0035)

1.5086
(0.0973)

1.3254
(0.0963)

0.6028
(0.0154)

PLF

20 1.8451
(0.1645)

1.6202
(0.0665)

0.4902
(0.0485)

0.6743
(0.0262)

1.6117
(0.2514)

1.3651
(0.1620)

0.6164
(0.0651)

1.6730
(0.2129)

1.4663
(0.1617)

0.3529
(0.0729)

0.6254
(0.0232)

1.3978
(0.2076)

1.4782
(0.1654)

0.5567
(0.0639)

40 1.9738
(0.0974)

1.5674
(0.0323)

0.4711
(0.0378)

0.6577
(0.0124)

1.5405
(0.1503)

1.3457
(0.1306)

0.6078
(0.0533)

1.8168
(0.1187)

1.4493
(0.1257)

0.3643
(0.0584)

0.6476
(0.0140)

1.4308
(0.1194)

1.3831
(0.1222)

0.5794
(0.0420)

60 2.0667
(0.0806)

1.4476
(0.0170)

0.4584
(0.0257)

0.6881
(0.0083)

1.5209
(0.1243)

1.3298
(0.1210)

0.5964
(0.0517)

2.0037
(0.0895)

1.4234
(0.0939)

0.3818
(0.0441)

0.6724
(0.0080)

1.4609
(0.1010)

1.3402
(0.1097)

0.5958
(0.0393)

100 2.0943
(0.0460)

1.4165
(0.0102)

0.4253
(0.0174)

0.6936
(0.0045)

1.5045
(0.0979)

1.3098
(0.0989)

0.5920
(0.0486)

2.0209
(0.0572)

1.4080
(0.0685)

0.4000
(0.0326)

0.6931
(0.0061)

1.5019
(0.0867)

1.3862
(0.0916)

0.6056
(0.0256)

QLF

20 1.6962
(0.1240)

1.4883
(0.0502)

0.4739
(0.0916)

0.5816
(0.0535)

1.3819
(0.2486)

1.2254
(0.1606)

0.6018
(0.1218)

1.7812
(0.1053)

1.5001
(0.0329)

0.4286
(0.0935)

0.6263
(0.0400)

1.4380
(0.2110)

1.4387
(0.2331)

0.6254
(0.0682)

40 1.8451
(0.0625)

1.4609
(0.0210)

0.4504
(0.0827)

0.6250
(0.0240)

1.4337
(0.1223)

1.3222
(0.1228)

0.6011
(0.0668)

1.8641
(0.0584)

1.4700
(0.0188)

0.4153
(0.0811)

0.6584
(0.0242)

1.4611
(0.1127)

1.3851
(0.1573)

0.6276
(0.0581)

60 1.9819
(0.0407)

1.4214
(0.0114)

0.4356
(0.0211)

0.6702
(0.0140)

1.4974
(0.0791)

1.3259
(0.0787)

0.6005
(0.0638)

1.9186
(0.0362)

1.4363
(0.0109)

0.4132
(0.0780)

0.6817
(0.0145)

1.4842
(0.0968)

1.3429
(0.1206)

0.6179
(0.0468)

100 2.0711
(0.0219)

1.4037
(0.0056)

0.4017
(0.0203)

0.7028
(0.0076)

1.5075
(0.0533)

1.3029
(0.0511)

0.5973
(0.0578)

1.9764
(0.0227)

1.4054
(0.0072)

0.4000
(0.0506)

0.7005
(0.0080)

1.5202
(0.0462)

1.3153
(0.0987)

0.6073
(0.0255)
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Table A.3. 95% Bayesian credible intervals of mixture for two components of Transmuted Weibull Distribution (TWD)
using Uniform Prior (UP) and Informative Prior (IP) with hyperparameters are a1 =1, a2 = 0:5, b1 = 2, b2 = 1, c1 = 0:5,
c2 = 1:5, d1 = 1, d2 = 2, e1 = 1, e2 = 1, l1 = 0:1, and l2 = 0:2.

Censoring rate Size Parameters UP IP
Lower limit Upper limit Lower limit Upper limit

20%

20

�1 = 2:5 1.4024 13.8814 1.9556 8.8013
�2 = 3:0 1.5739 7.6740 2.1231 14.1630
�1 = 1:6 0.7097 2.1776 0.8392 2.2626
�2 = 1:3 0.7231 2.1907 0.7660 2.2391
�1 = 0:3 0.2426 0.8693 0.3102 0.4916
�2 = 0:4 0.3099 0.9310 0.4552 0.5467
p1 = 0:5 0.2663 2.1117 0.3179 1.4747

40%

�1 = 2:5 1.4336 14.7699 1.9684 9.9844
�2 = 3:0 1.6647 8.3043 2.3110 15.4317
�1 = 1:6 0.7177 4.4872 0.8487 5.7680
�2 = 1:3 0.7352 4.3795 0.7769 4.7679
�1 = 0:3 0.2521 0.8759 0.3438 0.9665
�2 = 0:4 0.3389 0.9450 0.4561 1.0698
p1 = 0:5 0.2736 2.2102 0.3224 1.7848

20%

40

�1 = 2:5 1.4012 12.3951 1.1265 8.6167
�2 = 3:0 1.0164 6.9280 1.3375 9.9317
�1 = 1:6 0.5029 2.1642 0.5760 2.2518
�2 = 1:3 0.4676 2.1694 0.5158 2.2191
�1 = 0:3 0.2348 0.8653 0.3011 0.3737
�2 = 0:4 0.3076 0.9205 0.4086 0.5000
p1 = 0:5 0.2511 1.8660 0.2102 1.3802

40%

�1 = 2:5 1.4073 14.5029 1.3358 8.9419
�2 = 3:0 1.0631 8.2743 1.5659 13.5041
�1 = 1:6 0.5146 4.1274 0.6094 5.2276
�2 = 1:3 0.4944 4.8022 0.5269 4.5021
�1 = 0:3 0.2351 0.8660 0.3057 0.4977
�2 = 0:4 0.3332 0.9366 0.4098 0.5079
p1 = 0:5 0.2728 2.1452 0.2257 1.7002

20%

60

�1 = 2:5 0.9431 12.1943 0.6911 8.5076
�2 = 3:0 1.0106 6.2809 1.2292 9.5548
�1 = 1:6 0.3780 1.7228 0.4210 2.2097
�2 = 1:3 0.3568 1.5870 0.3834 2.1807
�1 = 0:3 0.2240 0.8355 0.3002 0.3284
�2 = 0:4 0.3099 0.9124 0.4060 0.4536
p1 = 0:5 0.1599 1.8515 0.1609 1.3089

40%

�1 = 2:5 0.9592 14.5153 0.7058 8.9087
�2 = 3:0 1.0530 8.7726 1.2757 9.9611
�1 = 1:6 0.3823 5.1488 0.4336 5.1898
�2 = 1:3 0.3708 5.5830 0.3935 4.3529
�1 = 0:3 0.2264 0.8381 0.3025 0.3951
�2 = 0:4 0.3270 0.8659 0.4095 0.4957
p1 = 0:5 0.1808 2.1218 0.1781 1.6148

20%

100

�1 = 2:5 0.4291 11.2170 0.3840 8.5019
�2 = 3:0 0.5522 5.8514 0.4947 9.0473
�1 = 1:6 0.2249 1.6703 0.2565 2.2021
�2 = 1:3 0.2105 1.5804 0.2498 2.0233
�1 = 0:3 0.2219 0.8312 0.2967 0.3240
�2 = 0:4 0.3064 0.9093 0.4042 0.4503
p1 = 0:5 0.0960 1.3365 0.1193 1.0372

40%

�1 = 2:5 0.4342 13.8626 0.3992 8.7897
�2 = 3:0 0.5631 7.9133 0.6913 9.5036
�1 = 1:6 0.2436 5.0806 0.4279 4.8949
�2 = 1:3 0.2396 5.0557 0.3829 3.0396
�1 = 0:3 0.2246 0.8325 0.3008 0.3945
�2 = 0:4 0.3104 0.8101 0.4088 0.4862
p1 = 0:5 0.0981 2.0300 0.1600 1.2988
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Table A.4. 95% Bayesian credible intervals of mixture for two components of Transmuted Weibull Distribution (TWD)
using Uniform Prior (UP) and Informative Prior (IP) with hyperparameters are a1 = 0:5, a2 = 1, b1 = 1, b2 = 2, c1 = 1:5,
c2 = 0:5, d1 = 2, d2 = 1, e1 = 0:5, e2 = 1, l1 = 0:1 and l2 = 0:2.

Censoring rate Size Parameters UP IP
Lower limit Upper limit Lower limit Upper limit

20%

20

�1 = 2:0 1.5563 7.4482 2.0609 6.5614
�2 = 1:5 1.4418 6.7518 1.2249 4.7279
�1 = 1:4 0.6353 1.5172 0.7507 2.5019
�2 = 1:3 0.6547 2.5691 0.9130 4.2485
�1 = 0:4 0.3420 0.8566 0.3548 0.9030
�2 = 0:6 0.4771 0.9727 0.4988 0.7884
p1 = 0:7 0.3908 2.4093 0.4626 2.2613

40%

�1 = 2:0 1.5583 8.1332 2.0720 6.8684
�2 = 1:5 1.4478 7.7247 1.3260 4.8073
�1 = 1:4 0.6448 3.7247 0.7602 2.5273
�2 = 1:3 0.6737 3.6482 0.9558 4.3560
�1 = 0:4 0.3445 0.8896 0.4096 0.9241
�2 = 0:6 0.4819 0.9839 0.5487 0.7950
p1 = 0:7 0.4201 3.3895 0.4709 2.2066

20%

40

�1 = 2:0 1.0541 7.3238 0.9344 5.2861
�2 = 1:5 0.9926 6.6156 0.5999 3.5661
�1 = 1:4 0.4450 1.9675 0.4947 1.7989
�2 = 1:3 0.5651 2.3371 0.7091 4.0337
�1 = 0:4 0.3366 0.8189 0.3498 0.6876
�2 = 0:6 0.4751 0.9609 0.4832 0.7790
p1 = 0:7 0.3651 2.0714 0.3771 1.8717

40%

�1 = 2:0 1.0630 8.1174 0.9506 6.2553
�2 = 1:5 1.0216 6.7656 0.6086 4.6074
�1 = 1:4 0.4511 3.5917 0.5110 2.3623
�2 = 1:3 0.5910 2.7975 0.7586 4.2187
�1 = 0:4 0.3407 0.8873 0.3500 0.6953
�2 = 0:6 0.4791 0.9613 0.4928 0.7864
p1 = 0:7 0.3780 3.2743 0.4040 2.0120

20%

60

�1 = 2:0 0.6630 6.3061 0.6099 5.0410
�2 = 1:5 0.5833 5.3553 0.4965 3.0524
�1 = 1:4 0.3403 1.8660 0.3667 1.6764
�2 = 1:3 0.4109 2.1858 0.4645 3.4177
�1 = 0:4 0.3372 0.7947 0.3361 0.6647
�2 = 0:6 0.4720 0.9520 0.4775 0.7519
p1 = 0:7 0.2763 2.0671 0.2899 1.6742

40%

�1 = 2:0 0.6735 8.4398 0.6345 5.8870
�2 = 1:5 0.5908 6.0337 0.5054 4.3055
�1 = 1:4 0.3570 3.3484 0.3775 2.2124
�2 = 1:3 0.4223 2.5866 0.4883 4.4674
�1 = 0:4 0.3384 0.8793 0.3454 0.6876
�2 = 0:6 0.4718 0.9560 0.4887 0.7739
p1 = 0:7 0.2873 3.2230 0.3058 2.0050

20%

100

�1 = 2:0 0.4331 6.2290 0.2281 4.2312
�2 = 1:5 0.3464 4.9695 0.2299 3.0495
�1 = 1:4 0.2289 1.7479 0.2064 1.5485
�2 = 1:3 0.3314 2.1521 0.2802 3.3880
�1 = 0:4 0.3355 0.7823 0.3214 0.6569
�2 = 0:6 0.4714 0.9494 0.4653 0.7478
p1 = 0:7 0.2271 2.0472 0.1776 1.5812

40%

�1 = 2:0 0.4478 7.1552 0.2498 5.1813
�2 = 1:5 0.3563 6.0243 0.2350 4.2080
�1 = 1:4 0.2312 3.3539 0.3753 2.1444
�2 = 1:3 0.3416 2.5712 0.2993 4.3073
�1 = 0:4 0.3373 0.8655 0.3321 0.6078
�2 = 0:6 0.4646 0.9557 0.4763 0.7645
p1 = 0:7 0.2305 2.2243 0.1807 1.9776
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Table A.5. Measurements of hole and sheet thickness (12 mm and 3.15 mm).

Subpopulation-I Subpopulation-II

0.04, 0.06, 0.12, 0.22, 0.08, 0.26, 0.14, 0, 0.08, 0.32

0.14, 0.16, 0.12, 0.24, 0.16, 0.08, 0.16, 0.32, 0.24, 0.22

0.24, 0.02, 0.22, 0.06, 0.14, 0.26

0.02, 0.14, 0.08, 0.12, 0.24, 0.04, 0.16, 0.26, 0.28,

0.24, 0.22, 0.18, 0.32, 0.14, 0.24, 0.16, 0.18, 0.16,

0.12, 0.06, 0.18, 0.14, 0.04, 0.18, 0.16

Table A.6. Bayes Estimates (BEs) of mixture for two components of Transmuted Weibull Distribution (TWD) along
with Posterior Risks (PRs) (in parentheses) under Uniform Prior (UP) and Informative Prior (IP).

20% censoring

UP IP

LF �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF 2.4811
(0.0121)

1.5778
(0.0213)

0.2998
(0.0132)

0.4993
(0.0062)

3.0539
(0.0129)

1.2854
(0.0222)

0.3998
(0.0134)

2.4947
(0.0109)

1.5813
(0.0179)

0.2977
(0.0002)

0.4970
(0.0062)

3.0810
(0.0112)

1.2925
(0.0181)

0.4177
(0.0075)

PLF 2.4935
(0.0248)

1.6267
(0.0258)

0.3207
(0.0428)

0.4956
(0.0126)

3.0180
(0.0252)

1.2995
(0.0280)

0.4214
(0.0431)

2.4861
(0.0227)

1.5819
(0.0211)

0.2981
(0.0007)

0.4933
(0.0126)

2.9925
(0.0230)

1.2730
(0.0211)

0.4160
(0.0166)

QLF 2.4315
(0.0540)

1.6129
(0.0468)

0.3016
(0.0883)

0.4823
(0.0289)

3.0538
(0.0540)

1.3129
(0.0526)

0.4013
(0.0894)

2.4890
(0.0519)

1.5917
(0.0320)

0.2951
(0.0052)

0.4895
(0.0297)

2.9848
(0.0501)

1.2802
(0.0324)

0.4139
(0.0388)

40% censoring

UP IP

LF �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4 �1=2:5 �1=1:6 �1=0:3 p1=0:5 �2=3:0 �2=1:3 �2=0:4

SELF 2.4636
(0.0137)

1.5911
(0.0287)

0.3013
(0.0137)

0.5129
(0.0078)

3.0274
(0.0146)

1.3116
(0.0287)

0.3989
(0.0138)

2.4911
(0.0114)

1.5914
(0.0237)

0.3196
(0.0074)

0.5148
(0.0076)

2.9915
(0.0127)

1.2990
(0.0275)

0.4086
(0.0094)

PLF 2.4781
(0.0290)

1.6272
(0.0312)

0.3222
(0.0437)

0.5205
(0.0152)

3.0408
(0.0268)

1.2855
(0.0292)

0.4205
(0.0436)

2.4636
(0.0249)

1.5974
(0.0245)

0.3201
(0.0209)

0.5221
(0.0147)

2.9654
(0.0277)

1.2821
(0.0266)

0.4567
(0.0173)

QLF 2.4546
(0.0676)

1.6337
(0.0477)

0.3043
(0.0896)

0.4884
(0.0362)

3.0721
(0.0693)

1.2721
(0.0551)

0.3996
(0.0919)

2.4002
(0.0601)

1.5905
(0.0337)

0.3057
(0.0061)

0.4823
(0.0336)

2.9577
(0.0656)

1.2955
(0.0341)

0.4149
(0.0397)

Table A.7. 95% Bayesian credible intervals of mixture of the two components of Transmuted Weibull Distribution
(TWD) using Uniform Prior (UP) and Informative Prior (IP).

Censoring rate Parameters UP IP
Lower limit Upper limit Lower limit Upper limit

20%

�1 = 2:5 0.1283 2.6787 0.1639 2.9583
�2 = 3:0 0.1342 3.3523 0.1701 3.9277
�1 = 1:6 0.2666 3.3633 0.3523 3.0044
�2 = 1:3 0.2618 3.2837 0.3397 3.1605
�1 = 0:3 0.1991 0.4885 0.1733 0.4310
�2 = 0:4 0.1996 0.4907 0.3733 0.5910
p1 = 0:5 0.1368 2.2408 0.1763 1.9733

40%

�1 = 2:5 0.1386 2.8999 0.1722 3.1662
�2 = 3:0 0.1362 3.6547 0.1745 4.1778
�1 = 1:6 0.2964 3.4257 0.3631 3.1373
�2 = 1:3 0.2712 3.7151 0.3592 3.5716
�1 = 0:3 0.2034 0.4903 0.2764 0.4933
�2 = 0:4 0.2065 0.4990 0.3746 0.5920
p1 = 0:5 0.1452 3.1401 0.1805 2.4102
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