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Abstract. The Improved Multiband-structured Subband Adaptive Filter (IMSAF)
applies the input regressors at each subband to speed up the convergence rate of Multiband-
Structure Subband Adaptive Filter (MSAF). When the projection order increases, the
convergence rate of the IMSAF algorithm improves at the cost of increased complexity. The
present research introduces two new IMSAF algorithms with low computational complexity
feature. In the �rst algorithm, the Selective Partial Update (SPU) approach is extended to
IMSAF algorithms and SPU-IMSAF is established. In SPU-IMSAF, the �lter coe�cients
are partially updated at each subband for every adaptation. In the second algorithm, the
Set-Membership (SM) strategy is utilized in IMSAF and SM-IMSAF is established. The
SM-IMSAF has a fast convergence rate, low steady-state error, and low computational
complexity features at the same time. Also, by combining SM and SPU methods, the
SM-SPU-IMSAF is introduced. Simulation results demonstrate the good performance of
the proposed algorithms.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Adaptive �lters are utilized in many applications such
as system identi�cation, system inversion, signal pre-
diction, and multisensor interference cancellation [1{
3]. In these applications, the generated signals are
processed to identify the characteristics of the unknown
system. This aim is successfully achieved using adap-
tive �lters. The adaptive �lters apply a recursive
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algorithm to design itself. The algorithm updates
the weight coe�cients through successive iterations
and, �nally, converges to the optimal Wiener-Hopf
solution when signals are statistically stationary. The
performance of an adaptive �ltering algorithm is eval-
uated by the rate of convergence, misadjustment, and
computational complexity features. The conventional
Least Mean Squares (LMS) adaptive �lter algorithm
has the advantage of being very simple and easy to
implement with very low computational complexity.
However, when the input signal is highly colored, the
LMS convergence slows down [3,4].

To improve the convergence behavior of LMS,
various adaptive algorithms such as the A�ne Pro-
jection Algorithm (APA) and Multiband-Structured
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Subband Adaptive Filter (MSAF) were proposed [5{
10]. The APA is one of the important families of
adaptive �lter algorithm. Since the interplay between
the computational complexity and the performance of
adaptive signal processing systems is important [5],
several types of APAs have been proposed. For
example, in Selective Partial Update APA (SPU-APA),
the �lter coe�cients are partially updated at each
time iteration [11{15]. This algorithm has close per-
formance to conventional APA. Also, the SPU-MSAF
was proposed in [16,17]. In SPU-MSAF algorithm,
the �lter coe�cients were partially updated rather
than the entire �lter at every adaptation. Recently,
the Sign-Regressor MSAF (SRMSAF) and sign-error
MSAF were introduced in [18,19]. In [18], the sign
of input regressors was applied in update equation.
The SR-MSAF was successfully extended to adaptive
distributed network in [20].

There is another class of adaptive �lter algorithms
featuring high convergence speed, low computational
complexity, and low steady state error at the same
time. These algorithms are established based on Set-
Membership (SM) approach [21]. The SM Normalized
LMS (SM-NLMS) was introduced in [22]. The SM-
APA and SM-MSAF were derived in [16,23], respec-
tively.

To increase the convergence speed of MSAF,
the Improved Multiband-Structured Subband Adap-
tive Filter (IMSAF) was developed [24{26]. This
algorithm utilizes multiple input regressors in each
subband during the adaptation. Therefore, the compu-
tational complexity of IMSAF increases. To reduce the
computational complexity of IMSAF, two approaches
were introduced in [27]. In the proposed algorithms,
the input regressors were optimally selected at each
subband during the adaptation. In Selective Regressor
IMSAF (SR-IMSAF), this selection was �xed and in
Dynamic SR-IMSAF (DSRIMSAF), this selection was
dynamic. This paper proposes two new solutions
to reduce the computational load of the IMSAF al-
gorithm. In the �rst approach, the SPU method
is extended to IMSAF algorithm. In SPU-IMSAF,
the �lter coe�cients are partially updated at each
subband for every adaptation. The SPU-IMSAF has
close performance to IMSAF. To have fast convergence
speed, low steady-state error, and low computational
complexity at the same time, the SM method is utilized
in IMSAF and SM-IMSAF is proposed. Finally, by
combination of SM and SPU approaches, the SM-SPU-
IMSAF is established.

This paper is organized as follows. In Section 2,
NLMS, SPU-NLMS, and SM-NLMS algorithms are
reviewed. Section 3 reviews the MSAF and IMSAF
algorithms. Section 4 introduces the SPU-IMSAF
algorithm. The SMIMSAF and SM-SPU-IMSAF algo-
rithms are presented in Section 5. The computational

complexity of the proposed algorithms is discussed
in Section 6. Finally, before concluding the paper,
we demonstrate the usefulness of the introduced algo-
rithms by presenting several experimental results.

Throughout the paper, the following notations are
used:
j:j Norm of a scalar

k:k2 Squared Euclidean norm of a vector
Tr(:) Trace of a matrix

(:)T Transpose of a vector or a matrix
Ef�g Expectation operator

2. Background on NLMS, SPU-NLMS, and
SM-NLMS algorithms

Consider a linear data model for d(n):

d(n) = xT (n)wo + v(n); (1)

where wo is an unknown M -dimensional vector that
we aim to estimate, v(n) is the measurement noise
with variance �2

v , and x(n) = [x(n); x(n�1); � � � ; x(n�
M + 1)]T denotes an M -dimensional input (regressor)
vector. It is assumed that v(n) is zero mean, white,
Gaussian, and independent of x(n). It is well known
that the NLMS algorithm can be derived from the
solution of the following optimization problem:

min kw(n+ 1)�w(n)k2; (2)

subject to:

d(n) = xT (n)w(n+ 1); (3)

where w(n) = [w0(n); w1(n); � � � ; wM�1(n)]T is the
vector of adaptive �lter coe�cients. Using the method
of Lagrange multipliers to solve this optimization prob-
lem, the following update equation for NLMS algorithm
is given by:

w(n+ 1) = w(n) + �
x(n)
kx(n)k2 e(n); (4)

where e(n) = d(n)� xT (n)w(n) and � is the step-size.
Now, partition the input signal vector and the

vector of �lter coe�cients into B blocks, each of length
L (B = M=L and is an integer), which are de�ned as
follows:

x(n) = [xT1 (n);xT2 (n); � � � ;xTB(n)]T ; (5)

w(n) = [wT
1 (n);wT

2 (n); � � � ;wT
B(n)]T : (6)

The SPU-NLMS algorithm for a single block update
at every iteration minimizes the following optimization
problem:

min kwj(n+ 1)�wj(n)k2; (7)
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subject to Eq. (3), where j denotes the index of the
block that should be updated. Again, by using the
method of Lagrange multipliers, the update equation
for SPU-NLMS is established as follows:

wj(n+ 1) = wj(n) + �
xj(n)
kxj(n)k2 e(n); (8)

where j = arg max kxi(n)k2 for 1 � i � B [11].
The SM-NLMS algorithm minimizes Eq. (2) sub-

ject to w(n+ 1) 2 	(n), where:

	(n) = fw 2 RM : jd(n)� xT (n)wj � 
g: (9)

The set 	(n) is referred to as the constraint set, and its
boundaries are hyperplanes. Also, 
 is the magnitude
of the error bound.

This aim is achieved by an orthogonal projection
of the previous estimate of w onto the closest boundary
of 	(n). Through this, the recursion for the SM-NLMS
is obtained by [22]:

w(n+ 1) = w(n) + �(n)
x(n)
kx(n)k2 e(n); (10)

where:

�(n) =

(
1� 


je(n)j if je(n)j > 

0 otherwise

(11)

3. Background on MSAF and IMSAF
algorithms

Figure 1 shows the structure of the MSAF [7]. In
this �gure, f0; f1; � � � ; fN�1 and g0;g1; � � � ;gN�1, are

analysis and synthesis �lter unit pulse responses of an
N channel orthogonal perfect reconstruction critically
sampled �lter bank system. xi(n) and di(n) are non-
decimated subband signals. It is important to note
that n represents the index of the original sequences
and k denotes the index of the decimated sequences
(k = 
oor(n=N)). The decimated output signal is
de�ned as:
yi;D(k) = xTi (k)w(k);

where:
xi(k)=[xi(kN); xi(kN�1); � � � ; xi(kN�M+1)]T ;

and:
w(k) = [w0(k); w1(k); � � � ; wM�1(k)]T :

Also, the decimated subband error signal is expressed
as ei;D(k) = di;D(k) � xTi (k)w(k). The �lter update
equation for MSAF can be established through the
following cost function:

min kw(k + 1)�w(k)k2; (12)

subject to di;D(k) = xTi (k)w(k + 1). Using La-
grangemultipliers approach to solving this optimization
problem leads to the �lter coe�cients update equation
for MSAF as follows:

w(k + 1) = w(k) + �
N�1X
i=0

xi(k)
kxi(k)k2 ei;D(k): (13)

The IMSAF minimizes Eq. (12), subject to di;D(k) =
XT
i (k)w(k + 1), where:

Figure 1. Structure of the Multiband-Structure Subband Adaptive Filter (MSAF) algorithm.
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Xi(k) = [xi(k);xi(k � 1); � � � ;xi(k � P + 1)]; (14)

and:
di;D(k) = [di;D(k); � � � ; di;D(k � P + 1)]T : (15)

The parameter P is the number of recent regressors.
The IMSAF algorithm is derived from the solution of
the following constraint minimization problem:

�(k) =kw(k + 1)�w(k)k2 +
N�1X
i=0

�i[di;D(k)

�XT
i (k)w(k + 1)]; (16)

where �i = [�i;1; �i;2; � � � ; �i;P ] is the Lagrange mul-
tipliers vector with length P . Using @�(k)

@w(k+1) = 0 and
@�(k)
@�i = 0, we get:

w(k + 1) = w(k) +
1
2

N�1X
i=0

Xi(k)�T
i ; (17)

where:
�T
i = 2[XT

i (k)Xi(k)]�1ei;D(k); (18)

and:
ei;D(k) = di;D(k)�XT

i (k)w(k): (19)

Therefore, the update equation for IMSAF becomes:

w(k+1)=w(k)+�
N�1X
i=0

Xi(k)[XT
i (k)Xi(k)]�1ei;D(k):

(20)

To take care of the possibility that [XT
i (k)Xi(k)] may

be close to singular, it is replaced by [�I+XT
i (k)Xi(k)],

where � is the regularization parameter. Note that
for that for P = 1, the conventional MSAF is es-
tablished. Also, it is important to note that relation
in Eq. (18) is established when the cross-correlation
between di�erent sub-bands, [XT

i (k)Xj(k)], is ignored.
This algorithm is called Simpli�ed IMSAF (SIMSAF)
algorithm. In the following, we use IMSAF algorithm
based on this assumption [27].

4. The SPU-IMSAF algorithm

In this section, the SPU-IMSAF algorithm is intro-
duced. In the SPU-IMSAF, the �lter coe�cients are
partially updated rather than the entire �lter at each
subband for every adaptation. This strategy leads to

a reduction in computational complexity. The SPU-
IMSAF algorithm is established for single and multiple
blocks.

4.1. Single block
In the SPU-IMSAF, the �lter coe�cients and the input
signal matrix are partitioned into the B blocks each
with the length L (B = M=L and is an integer) as
follows:

w(k) = [wT
1 (k);wT

2 (k); � � � ;wT
B(k)]T ; (21)

and:

Xi(k) =

26664
Xi;1(k)
Xi;2(k)

...
Xi;B(k)

37775 ; (22)

where the L � P matrices Xi;b(k) for b = 1; 2; � � � ; B
are given by Eq. (23) shown in Box I. The SPU-IMSAF
minimizes the following cost function:

�(k) = min kwb(k + 1)�wb(k)k2; (24)

subject to XT
i (k)w(k + 1) = di;D(k). Therefore,

the cost function for the SPU-IMSAF is obtained as
follows:

�(k) =kwb(k + 1)�wb(k)k2 +
N�1X
i=0

�i[di;D(k)

�XT
i (k)w(k + 1)]; (25)

where �i = [�i;1; �i;2; � � � ; �i;P ] is the Lagrange multi-
pliers vector with length P . Using @�(k)

@wb(k+1) = 0 and
@�(k)
@�i = 0, we get:

wb(k + 1) = wb(k) +
1
2

N�1X
i=0

Xi;b(k)�T
i ; (26)

and:
�T
i = 2[XT

i;b(k)Xi;b(k)]�1ei;D(k): (27)

By substituting Eq. (27) into Eq. (26), we obtain the
SPU-IMSAF algorithm as follows:

wb(k + 1) =wb(k) + �
N�1X
i=0

Xi;b(k)[�I

+ XT
i;b(k)Xi;b(k)]�1ei;D(k): (28)

It is important to note that the relation in Eq. (27)

Xi;b(k) =

0BBB@
xi(kN � (b� 1)L) xi(kN � (b� 1)L� 1) � � � xi(kN � (b� 1)L� P + 1)

xi(kN � (b� 1)L� 1) xi(kN � (b� 1)L� 2) � � � xi(kN � (b� 1)L� P )
...

...
. . .

...
xi(kN � (b� 1)L� L+ 1) xi(kN � (b� 1)L� L) � � � ::: xi(kN � (b� 1)L� L� P + 2)

1CCCA :
(23)

Box I
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is established when the cross-correlation between dif-
ferent subbands, [XT

i;b(k)Xj;b(k)], is ignored. This
phenomenon is achieved for the �lter banks with good
band partitioning in di�erent subbands. Now, we
turn our attention to determination of the block to
be updated at each subband for every adaptation.
Based on Eq. (24), the block to be updated should
be selected by determining the one with the smallest
squared Euclidean norm update. Therefore, by using
Eq. (28), the block to be updated at each subband for
every iteration is given by:

b = arg min kwb(k + 1)�wb(k)k2

= arg min
N�1X
i=0

eTi;D(k)[XT
i;b(k)Xi;b(k)]�1ei;D(k):

(29)

Since the computational complexity of Eq. (29) is high,
a simpli�ed approach to �nding the index of the block
at each subband for every adaptation is proposed as in
the following [8,11,16]:

1. Compute the following values for 1 � b � B:
N�1X
i=0

Tr[XT
i;b(k)Xi;b(k)]: (30)

2. The index b at each subband corresponds to the
largest value of Eq. (30).

4.2. Extension to multiple blocks
Suppose that we wish to update Q blocks out of
B at each subband for every iteration. Let GQ =
[b1; b2; � � � ; bQ] denote a Q-subset (subset with Q
members) of the set f1; 2; � � � ; Bg. The SPU-IMSAF
minimizes the following cost function:

�GQ(k) = min kwGQ(k + 1)�wGQ(k)k2; (31)

subject to XT
i (k)w(k + 1) = di;D(k), where:

wGQ(k) = [wT
b1(k);wT

b2(k); � � � ;wT
bQ(k)]T : (32)

Therefore, the cost function is de�ned as follows:

�GQ(k) =kwGQ(k + 1)�wGQ(k)k2

+
N�1X
i=0

�i[di;D(k)�XT
i (k)w(k + 1)]: (33)

Using
@�GQ (k)
@wGQ (k+1) = 0 and

@�GQ (k)
@�i = 0 leads to the

following update equation:

wGQ(k + 1) =wGQ(k) + �
N�1X
i=0

Xi;GQ(k)[�I

+ XT
i;GQ(k)Xi;GQ(k)]�1ei;D(k); (34)

where:

Xi;GQ(k) =

26664
Xi;b1(k)
Xi;b2(k)

...
Xi;bQ(k)

37775 : (35)

The indices of the blocks are obtained according to the
following condition:

GQ = arg min kwGQ(k + 1)�wGQ(k)k2

=arg min
N�1X
i=0

eTi;D(k)[XT
i;GQ(k)Xi;GQ(k)]�1ei;D(k):

(36)

Due to the high computational complexity of Eq. (36),
a simpli�ed approach to selecting the indices of GQ is
proposed as in the following [8,11,16]:

1. Compute the following values for 1 � b � B:
N�1X
i=0

Tr[XT
i;b(k)Xi;b(k)]: (37)

2. The indices of GQ at each subband correspond to
the Q largest values of Eq. (37).

Table 1 summarizes the SPU-IMSAF algorithm.

5. The SM-IMSAF Algorithm

The SM-NLMS algorithm was introduced in [22] which
had a fast convergence speed, low steady-state error,
and low computational complexity features. This idea
was extended to APA and MSAF in [16,23]. To improve
the performance of the IMSAF, the SM method was
extended to IMSAF algorithm. First, we de�ne xi;D(k)
and di;D(k) at time instant k and the constraint set
Hi(k) containing all vectors w with estimation errors
upper bounded in magnitude by 
 as follows:

Hi(k) = fw 2 RM : jdi;D(k)� xTi;D(k)wj � 
g: (38)

The membership set 	i(k) is de�ned as:

	i(k) = Hi(1) \Hi(2) � � � \ Hi(k): (39)

Since 	i(k) in Eq. (39) is not easily computed, adaptive
approaches are needed. For example, in SM-MSAF, the
information is provided by the constraint setHi(k) [16].
The update equation for SM-MSAF algorithm was
introduced as follows:

w(k + 1) = w(k) +
N�1X
i=0

�i(k)
xi(k)
kxi(k)k2 ei;D(k); (40)

where:

�i(k) =

(
1� 


jei;D(k)j if jei;D(k)j > 

0 otherwise

(41)

In SM-MSAF, the �lter coe�cients are updated ac-
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Table 1. The SPU-IMSAF algorithm.

1. Initialize the parameters
�, �, N , P , B, Q, w(�1) = 0
For k = 0; 1; � � �

For i = 0; 1; � � � ; N � 1
w(k) = [wT

1 (k);wT
2 (k); � � � ;wT

B(k)]T

Xi(k) = [XT
i;1(k);XT

i;2(k); � � � ;XT
i;B(k)]T

di;D(k) = [di;D(k); di;D(k � 1); � � � ; di;D(k � P + 1)]T

ei;D(k) = di;D(k)�XT
i (k)w(k)

2. Determine the indices of GQ = [b1; b2; � � � ; bQ] according to Q largest values of (?)
For 1 � b � BPN�1
i=0 Tr[XT

i;b(k)Xi;b(k)] (?)
end

3. Update the input signal matrix according to the selected blocks
Xi;GQ(k) = [XT

i;b1(k); � � � ;XT
i;bQ(k)]T

4. Select the blocks of �lter coe�cients according to the selected blocks
wGQ = [wT

b1(k);wT
b2(k); � � � ;wT

bQ(k)]T

5. Update the �lter coe�cients
wGQ(k + 1) = wGQ(k) + �

PN�1
i=0 Xi;GQ(k)[�I + XT

i;GQ(k)Xi;GQ(k)]�1ei;D(k)

End
End

cording to the condition in Eq. (41). If the condition is
satis�ed, the �lter coe�cients are updated. Therefore,
the number of �lter coe�cients in the update coe�cient
is reduced. In the following, we derive the SM-IMSAF
whose updates that belong to a set formed by P
constraint sets. Let 	P

i (k) be the intersection of the
last constraint sets as follows [23]:

	P
i (k) = Hi(k � P + 1) \ � � �Hi(k): (42)

The objective is to derive an algorithm whose updated
�lter coe�cients belong to the last P constraint-sets,
w(k+1) 2 	P

i (k). The SM-IMSAF minimizes Eq. (12)
subject to:

di;D(k)�XT
i (k)w(k + 1) = gi(k); (43)

where:

gi(k) = [gi(k); gi(k � 1); � � � ; gi(k � P + 1)]T ; (44)

speci�es the point in 	P
i (k). All choices for gi(k)

satisfying the bound constraint are valid. By using
the method of Lagrange multipliers, the following cost
function is introduced as follows:


(k) =kw(k + 1)�w(k)k2 +
N�1X
i=0

�i[di;D(k)

�XT
i (k)w(k + 1)� gi(k)]: (45)

Solving this optimization problem leads to:

w(k + 1) =w(k) +
N�1X
i=0

Xi(k)[XT
i (k)Xi(k)]�1

� [ei;D(k)� gi(k)]: (46)

Eq. (46) is performed when jei;D(k)j > 
 and oth-
erwise, the �lter coe�cients do not change. There
are several choices for gi(k). The simplest choice is
gi(k) = 0. This approach leads to a considerable
complexity reduction in comparison with conventional
IMSAF. Another choice is gi(k) = 
sgn(ei;D(k)) [23].
In this case, the update equation is given by:

w(k + 1) =w(k) +
N�1X
i=0

Xi(k)[�I

+ XT
i (k)Xi(k)]�1�i(k)ei;D(k)u1; (47)

where u1 = [1; 0; 0; � � � ; 0]T is P �1 vector and �i(k) is
obtained by Eq. (41). Since Eq. (47) is related to the
�rst element of the error vector at each subband, the
following update equation for SM-IMSAF is introduced
as follows:

w(k + 1) =w(k) + �
N�1X
i=0

�i(k)Xi(k)[�I

+ XT
i (k)Xi(k)]�1ei;D(k); (48)

where:
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�i(k) =

(
1� 


kei;D(k)k2 if kei;D(k)k2 > 

0 otherwise

(49)

In Eq. (48), the step-size controls the stability of the
algorithm. Since ei;D(k) is the vector, we use an
Euclidean norm operator (L2-norm) in Eq. (49). We
compared the learning curves based on L2-norm and
L1-norm of ei;D(k) in the simulation results section.
Table 2 summarizes the SM-IMSAF algorithm. By
combining the SPU and SM approaches, the SM-SPU-
IMSAF can be established. The update equation for
SM-SPU-IMSAF is proposed as follows:

wGQ(k + 1) =wGQ(k) + �
N�1X
i=0

�i(k)Xi;GQ(k)[�I

+ XT
i;GQ(k)Xi;GQ(k)]�1ei;D(k): (50)

In this algorithm, the �lter coe�cients are partially
updated and the subbands are selected according to
Eq. (49) at each iteration. Combining these strategies
signi�cantly reduces the computational complexity.

6. Computational complexity

Table 3 compares the computational complexity of
the IMSAF, SM-IMSAF, SPU-IMSAF, and SM-SPU-
IMSAF algorithms in terms of the number of multipli-
cations per iteration for real data. In this table, M
is the �lter length, N the number of subbands, P the
number of input regressors, L the length of channel �l-
ters, B the number of blocks, Q the number of selected
blocks, and N(k) the number of selected subbands
according to Eq. (49) at iteration k. As we can see,
the number of multiplications in SPU-IMSAF is smaller
than that in IMSAF, especially for large values of M .
In SM-IMSAF, the number of multiplications at each
iteration is dependent on the condition in Eq. (49).
The parameter �i(k) determines which subband is
incorporated into the update equation. In the worst
case, the computational complexity of SM-IMSAF is
the same as IMSAF. It means that all subbands will
be selected at each iteration. In the simulation results
section, we show that the computational complexity of
SM-IMSAF is signi�cantly lower than IMSAF. We also
observe that SM-SPU-IMSAF has lower computational

Table 2. The SM-IMSAF algorithm.

1. Initialize the parameters
�, �, N , P , 
, w(�1) = 0
For k = 0; 1; � � �

For i = 0; 1; � � � ; N � 1
Xi(k) = [xi(k);xi(k � 1); � � � ;xi(k � P + 1)]T

di;D(k) = [di;D(k); di;D(k � 1); � � � ; di;D(k � P + 1)]T

ei;D(k) = di;D(k)�XT
i (k)w(k)

2. Determine the coe�cients �i(k)
If kei;D(k)k2 > 

�i(k) = 1� 


kei;D(k)k2
Else
�i(k) = 0
End

3. Update the �lter coe�cients
w(k + 1) = w(k) + �

PN�1
i=0 �i(k)Xi(k)[�I + XT

i (k)Xi(k)]�1ei;D(k)
End

End

Table 3. Computational complexity of Improved Multiband-Structured Subband Adaptive Filter (IMSAF), SM-IMSAF,
SPU-IMSAF, and SM-SPU-IMSAF algorithms per iteration.

Algorithm Number of multiplications

IMSAF (P 2 + 2P )M + P 3 + P 2 + 3NL

SM-IMSAF N(k)
N [(P 2 + 2P )M + P 3 + P 2 + 1] + P + 3NL

SPU-IMSAF MP + (P 2 + 2P )QL+ P 3 + P 2 + 3NL

SM-SPU-IMSAF P (M + 1) + N(k)
N [(P 2 + 2P )QL+ P 3 + P 2 + 1] + 3NL
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complexity than SM-IMSAF due to SM and SPU
strategies.

7. Simulation results

We demonstrate the performance of the proposed
algorithm by several computer simulations in Acoustic
Echo Cancellation (AEC) setup. The impulse response
of the car echo path with 256 taps (M = 256)
was used as an unknown system in the experiment
(Figure 2) [11]. The input signal is an AR(1) signal
generated by passing a zero-mean white Gaussian
noise with unit variance through a �rst-order system
H(z) = 1

1�0:95z�1 and the value of �2
v was set to

10�2. The �lter bank used in the simulations was
the Extended Lapped Transform (ELT) [16,28]. In
all simulations, we show the Normalized Mean Square
Deviation (NMSD), E[kw

��w(k)k2
kw�k2 ], which is evaluated

by ensemble averaging over 50 independent trials.
Since the exact IMSAF algorithm is characterized

by large computational complexity [24], the simpli�ed
version of this algorithm was applied in the litera-
ture [27]. Therefore, we �rstly compare the perfor-
mance of IMSAF and SIMSAF algorithms in Figure 3.
The parameter P is set to 4 and two values for N are
selected. The step-size is set to 0.5 for both values of N .
We observe that the SIMSAF has close performance to
IMSAF algorithm. In the following, we use the same
name (IMSAF) for both algorithms. Figure 4 compares
the NMSD learning curves of SPU-IMSAF algorithm
(single block) based on Eqs. (29) and (30). The step-
size is set 0.05 and the parameter N is set to 2, 4, and 8.
Also, the parameters P and B are set to 4. We observe
that the approximation relation (Eq. (30)) has close
performance to the exact relation (Eq. (29)). Figure 5
presents the same results for multiple blocks situation
with Q = 3. In this case, the step-size is set to 0.3.
Again, close performance between the learning curves

Figure 2. Impulse responses of car echo paths.

Figure 3. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and simpli�ed IMSAF (SIMSAF) for N = 2 and 4
(M = 256, P = 4, � = 0:5).

Figure 4. The Normalized Mean Square Deviation
(NMSD) learning curves of SPU-IMSAF based on
Eqs. (29) and (30).

Figure 5. The Normalized Mean Square Deviation
(NMSD) learning curves of SPU-IMSAF based on
Eqs. (36) and (37).
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Figure 6. The Normalized Mean Square Deviation
(NMSD) learning curves of the Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and the proposed SPU-IMSAF algorithms for the same
steady-state error (M = 256, N = 4, B = 4).

can be seen based on Eqs. (36) and (37) for di�erent
values of N .

Figure 6 presents the NMSD learning curves of
IMSAF and SPU-IMSAF algorithms with N = 4. The
parameters N and P are set to 4. In SPU-IMSAF, the
number of blocks (B) is set to 4 and di�erent values for
Q are chosen. Also, the step-size in IMSAF is set to 0.5
and to make the comparison fair, the step-size for SPU-
IMSAF algorithm is chosen to get approximately the
same steady-state NMSD as IMSAF. The results show
that by increasing the parameter Q, the performance
of SPU-IMSAF will be close to the IMSAF. For Q =
3, the similar performance between IMSAF and SPU-
IMSAF is observed. It is important to note that for
SPU-IMSAF with Q = 2 and Q = 3, 128 and 192
coe�cients out of 256 are updated.

In Figures 7 and 8, we set the number of blocks
(B) to 16. Figure 7 shows the learning curve for
di�erent values of Q. In this simulation, the step-
size is set to 0.5. By increasing the parameter Q, the
performance of SPU-IMSAF will be close to IMSAF.
The NMSD learning curves for the same steady-state
error are shown in Figure 8. The step-size in IMSAF
is set to 0.5 and to make the comparison fair, the step-
size for SPU-IMSAF algorithm is chosen to get approx-
imately the same steady-state NMSD as IMSAF. The
values of the step-size for Q = 10, 12, 14, and 16
are 0.26, 0.33, 0.4, and 0.5, respectively. The results
show that the performance of SPU-IMSAF algorithm
for Q = 10, 12, and 14 is close to the conventional
IMSAF algorithm. Figure 9 compares the performance
of the SPU-IMSAF algorithm for di�erent values of B
and Q where the ratio, Q=B, is �xed. In this case, the
number of �lter coe�cients updated at each iteration is
192. We observe close performance for all algorithms.

Figure 7. The Normalized Mean Square Deviation
(NMSD) learning curves of the Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and the proposed SPU-IMSAF algorithms (M = 256,
N = 4, B = 16, � = 0:5).

Figure 8. The Normalized Mean Square Deviation
(NMSD) learning curves of the Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and the proposed SPU-IMSAF algorithms for the same
steady-state error (M = 256, N = 4, B = 16).

The performance of SPU-IMSAF for B = 16 and
Q = 12 is slightly better than other curves. Figure 10
presents the steady-state NMSD values versus Q for
di�erent values of N . The parameters B and P were
set to 4. Also, the step-size was set 0.1. As we can see,
by increasing the parameter Q, the steady-state NMSD
decreases. This observation can be seen for B = 16 in
Figure 11.

Figure 12 shows the NMSD learning curves of SM-
IMSAF algorithm based on L1 and L2 norms of ei;D(k).
The parameters P and N are set to 4 and the step-size
is set 0.5. We observe that the performance of SM-
IMSAF based on L2-norm of ei;D(k) is better than
L1-norm. This advantage can be seen in Figure 13
for N = 8. Therefore, in the following, we use L2-
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Figure 9. The Normalized Mean Square Deviation
(NMSD) learning curves of SPU-IMSAF with di�erent
values of B and Q.

Figure 10. The steady-state Normalized Mean Square
Deviation (NMSD) versus Q with di�erent values of N for
SPU-IMSAF (M = 256, B = 4, � = 0:1).

Figure 11. The steady-state Normalized Mean Square
Deviation (NMSD) versus Q with di�erent values of N for
SPU-IMSAF (M = 256, B = 16, � = 0:1).

Figure 12. The Normalized Mean Square Deviation
(NMSD) learning curves of SM-IMSAF based on L1-norm
and L2-norm of ei;D(k) (M = 256, N = 4, � = 0:5).

Figure 13. The Normalized Mean Square Deviation
(NMSD) learning curves of SM-IMSAF based on L1-norm
and L2-norm of ei;D(k) (M = 256, N = 8, � = 0:5).

norm of ei;D(k). Figure 14 compares the performance
of IMSAF and SM-IMSAF for N = 4 and 8. For
IMSAF, two values for the step-size were chosen (0.1
and 0.5). In SM-IMSAF, the value of 
 was set
to
p

5�2
v [16,23]. The results show that SM-IMSAF

has better performance than IMSAF. Figure 15 shows
that when the �lter coe�cients at each subband (i =
0; 1; 2; 3) are updated during the adaptation. This
�gure shows that at di�erent iterations, we do not need
to update the �lter coe�cients which can, in turn,
reduce computational complexity. Figure 16 shows
these selections in the limited range of iterations. We
clearly observe that the adaptation is not performed at
di�erent subbands.

Figure 17 compares the performance of IMSAF
with all the proposed algorithms. This �gure shows
that the SPU-IMSAF has close performance to IMSAF.
Also, the SM-IMSAF and SM-SPU-IMSAF algorithms
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Figure 14. The Normalized Mean Square Deviation
(NMSD) learning curves of the Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and the proposed SM-IMSAF algorithms (M = 256,
P = 4, and N = 4; 8).

Figure 15. Filter coe�cients in update for SM-IMSAF at
di�erent subbands (M = 256, N = 4, P = 4).

have faster convergence speed and lower steady-state
error than conventional IMSAF. Figure 18 compares
the performance of the proposed algorithms with those
of SR-IMSAF and DSR-IMSAF algorithms in [27] for
the same steady-state error. We observe that the SM-
IMSAF has better convergence speed than other algo-
rithms. Also, SM-SPU-IMSAF has better performance
than IMSAF and close to the DSR-IMSAF algorithm.
Table 4 shows the total number of multiplications, the
processing time, and the number of iterations until
convergence is achieved based on Figure 18. As is ob-
served, the computational complexity of the proposed
algorithms is lower than that of IMSAF. The SM-

Figure 16. Filter coe�cients in update for SM-IMSAF at
di�erent subbands in the limited range of iterations
(M = 256, N = 4, P = 4).

Figure 17. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and proposed SPU-IMSAF, SM-IMSAF, and
SM-SPU-IMSAF algorithms (M = 256, N = 4, P = 4,
B = 4, Q = 3).

IMSAF needs 3:88� 106 multiplications. In the worst
case, the number of multiplications of SM-IMSAF is
the same as that of IMSAF. However, the performance
of SM-IMSAF is better than other algorithms in both
convergence speed and steady-state error features.

Figures 19{21 show the NMSD learning curves of
the proposed algorithms at di�erent levels of Signal
to Noise Ratio (SNR). The parameter B is set to 4.
The values of N and P are set to 2 and Q is set to 3.
Also, the step-size is set to 0.5. Figure 19 presents the
results for IMSAF and SPU-IMSAF. We observe that
by decreasing the level of SNR, the steady-state error
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Table 4. Total number of multiplications, processing time, and the number of iterations until convergence for Improved
Multiband-Structured Subband Adaptive Filter (IMSAF), SR-IMSAF, DSR-IMSAF, SPU-IMSAF, SM-IMSAF, and
SM-SPU-IMSAF algorithms until convergence.

Algorithm Number of
multiplications

Processing time
(sec)

Iterations until
convergence

IMSAF, N = 4, P = 4, � = 0:1 3:84� 107 60.51 1500
SR-IMSAF, N = 4, P = 4, � = 0:1 3:11� 107 49 1800
DSR-IMSAF, N = 4, P = 4, � = 0:15 1:44� 107 22.69 1300
SM-IMSAF, N = 4, P = 4, � = 0:5 3:88� 106 6.11 1000
SPU-IMSAF, N = 4, P = 4, B = 4, Q = 3, � = 0:08 3:7� 107 58.3 1900
SM-SPU-IMSAF, N = 4, P = 4, B = 4, Q = 3, � = 0:34 5:48� 106 8.63 1700

Figure 18. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF),
SR-IMSAF, DSR-IMSAF, proposed SPU-IMSAF,
SM-IMSAF, and SM-SPU-IMSAF algorithms for the same
steady-state error (M = 256, N = 4, P = 4, B = 4,
Q = 3).

Figure 19. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and SPU-IMSAF for di�erent values of Signal to Noise
Ratio (SNR).

Figure 20. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and SM-IMSAF for di�erent values of Signal to Noise
Ratio (SNR).

Figure 21. The Normalized Mean Square Deviation
(NMSD) learning curves of Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and SM-SPU-IMSAF for di�erent values of Signal to Noise
Ratio (SNR).
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Figure 22. Tracking performance of the Improved
Multiband-Structured Subband Adaptive Filter (IMSAF)
and the proposed SPU-IMSAF, SM-IMSAF, and
SM-SPU-IMSAF algorithms (M = 256, N = 8, P = 4,
B = 4, Q = 3).

increases. The NMSD learning curves for IMSAF and
SM-IMSAF are shown in Figure 20. Figure 21 shows
the results for IMSAF and SM-SPU-IMSAF. The same
performance given in Figure 19 can be seen for both
�gures. Figure 22 presents the tracking performances
of IMSAF, SPU-IMSAF, SM-IMSAF, and SM-SPU-
IMSAF. For tracking performance analysis, we consider
a system to identify the two unknown �lters with
M = 256, whose z-domain transfer functions are given
as follows:

W1(z) =
127X
n=0

z�n �
M�1X
n=128

z�n (51)

and:

W2(z) = �
M�1X
n=0

z�n; (52)

where the transfer function of optimum �lter coe�-
cients will be W1(z) for n � 1700, and the transfer
function of optimum �lter coe�cients will be W2(z)
for 1700 < n � 3400. The parameters N and P
were set to 8 and 4, respectively. The NMSD learning
curves show that the SM-IMSAF and SM-SPU-IMSAF
algorithms have better tracking performance than IM-
SAF. Also, the SPU-IMSAF has closer performance to
conventional IMSAF. Figure 23 presents the results for
real speech input signal. The parameters N and P
were set to 8 and the step-size was set to 0.5. Again,
the SM-IMSAF and SM-SPU-IMSAF have a faster

Figure 23. Normalized Mean Square Deviation (NMSD)
learning curves of the Improved Multiband-Structured
Subband Adaptive Filter (IMSAF) and the proposed
SPU-IMSAF, SM-IMSAF, and SM-SPU-IMSAF
algorithms for real speech input signal (M = 256, N = 8,
P = 8, B = 4, Q = 3).

convergence rate than IMSAF. According to Figures 24
and 25, the adaptation is performed in SM-IMSAF
and SM-SPU-IMSAF algorithms. These �gures have
been presented in the limited range of iterations for all
subbands. Therefore, the computational complexity of
SM-IMSAF and SM-SPU-IMSAF is lower than that of
IMSAF. Again, in the worst case, the computational
complexity of SM-IMSAF is the same as that of
IMSAF. However, the performance of SM-IMSAF is
better than conventional IMSAF algorithm.

Figures 26 and 27 evaluate the stability bounds of
the proposed algorithms. Figure 26 shows the steady-
state NMSD versus the step-size for SPU-IMSAF al-
gorithm with B = 4. Di�erent values of Q have been
selected. At low values of Q, the stability bounds are
low. Upon increasing the value of parameter Q, the sta-
bility bounds increase. In Figure 27, the steady-state
NMSD values versus the step-size for IMSAF, SPU-
IMSAF, SM-IMSAF, and SM-SPU-IMSAF algorithms
are presented. As is clear, the SM-IMSAF has a higher
stability bound than the other algorithms.

Table 5 shows the maximum values for the step-
size (�max) to guarantee the stability of the algorithms.

8. Conclusion

This paper proposed two new adaptive �lter algorithms

Table 5. Stability bounds of Improved Multiband-Structured Subband Adaptive Filter (IMSAF), SPU-IMSAF,
SM-SPU-IMSAF, and SM-IMSAF algorithms.

Step-size IMSAF SPU-IMSAF,
Q = 1

SPU-IMSAF,
Q = 2

SPU-IMSAF,
Q = 3

SM-SPU-IMSAF,
Q = 3

SM-IMSAF

�max 0.873 0.12 0.39 0.857 0.868 1.14
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Figure 24. Filter coe�cients in update for SM-IMSAF in di�erent subbands (M = 256, P = 8, N = 8).

Figure 25. Filter coe�cients in update for SM-SPU-IMSAF in di�erent subbands (M = 256, P = 8, N = 8).

with low computational complexity feature. These
algorithms utilized the Selective Partial Update (SPU)
and Set-Membership (SM) approaches in Improved
Multiband-Structured Subband Adaptive Filter (IM-
SAF) algorithm. In SPU-IMSAF, a subset of �lter

coe�cients was optimally selected and updated at each
subband for every iteration. The SM-IMSAF had fast
convergence speed, low steady-state error, and low
computational complexity features at the same time.
Also, by combining SM and SPU approaches, the SM-
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Figure 26. Steady-state Normalized Mean Square
Deviation (NMSD) versus the step-size for SPU-IMSAF
algorithm with di�erent values of Q.

Figure 27. Steady-state Normalized Mean Square
Deviation (NMSD) versus the step-size for Improved
Multiband-Structured Subband Adaptive Filter (IMSAF),
SM-IMSAF, SPU-IMSAF, and SM-SPU-IMSAF
algorithms.

SPU-IMSAF was introduced. The good performance of
the proposed algorithms was con�rmed through several
experiments.

References

1. Widrow, B. and Stearns, D., Adaptive Signal Process-
ing, Englewood Cli�s, NJ Prentice Hall, Inc (1985).

2. Haykin, S.S., Adaptive Filter Theory, Pearson Educa-
tion India, 5th Edn. (2013).

3. Sayed, A.H., Adaptive Filters, John Wiley & Sons, Inc.
(2008).

4. Farhang-Boroujeny, B., Adaptive Filters: Theory and
Applications, John Wiley & Sons, Ltd (2013).

5. Dogancay, K., Partial-Update Adaptive Signal Process-

ing: Design Analysis and Implementation, Academic
Press (2008).

6. Ozeki, K. and Umeda, T. \An adaptive �ltering algo-
rithm using an orthogonal projection to an a�ne sub-
space and its properties", Electron. Commun. Japan
(Part I Commun.), 67, pp. 19{27 (1984).

7. Lee, K.-A. and Gan, W.-S. \Improving convergence
of the NLMS algorithm using constrained subband
updates", IEEE Signal Process. Lett., 11(9), pp. 736{
739 (2004).

8. Abadi, M.S.E. and Danaee, A.-R. \Low computational
complexity family of a�ne projection algorithms over
adaptive distributed incremental networks", AEU-
International J. Electron. Commun., 68, pp. 97{110
(2014).

9. Shams Esfand Abadi, M. and Sha�ee, M.S. \A family
of di�usion normalized subband adaptive �lter algo-
rithms over distributed networks", Int. J. Commun.
Syst., 30, pp. 1{15 (2017).

10. Lee, J.-W., Kim, S.-E., and Song, W.-J. \Data-
selective di�usion LMS for reducing communication
overhead", Signal Processing, 113, pp. 211{217 (2015).

11. Dogancay, K. and Tanrikulu, O. \Adaptive �ltering al-
gorithms with selective partial updates", IEEE Trans.
Circuits Syst. II Analog Digit. Signal Process., 48(8),
pp. 762{769 (2001).

12. Aboulnasr, T. and Mayyas, K. \Complexity reduction
of the NLMS algorithm via selective coe�cient up-
date", IEEE Trans. Signal Process., 47(5), pp. 1421{
1424 (1999).

13. Werner, S., De Campos, M.L.R., and Diniz, P.S.R.
\Partial-update NLMS algorithms with data-selective
updating", IEEE Trans. Signal Process., 52(4), pp.
938{949 (2004).

14. Abadi, M.S.E., Mehrdad, V., and Gholipour, A. \A
family of variable step-size a�ne projection adaptive
�ltering algorithms with selective regressors and selec-
tive partial updates", Sci. Iran. Trans. D, Comput.
Sci. Eng. Electr., 17, pp. 81{98 (2010).

15. Arablouei, R., Werner, S., Huang, Y.-F., and Dogan-
cay, K. \Distributed least mean-square estimation with
partial di�usion", IEEE Trans. Signal Process., 62, pp.
472{484 (2013).

16. Abadi, M.S.E. and Husy, J.H. \Selective partial update
and set-membership subband adaptive �lters", Signal
Processing, 88, pp. 2463{2471 (2008).

17. Desiraju, N.K., Doclo, S., and Wol�, T. \E�cient
multichannel acoustic echo cancellation using con-
strained tap selection schemes in the subband do-
main", EURASIP J. Adv. Signal Process., 2017, p.
63 (2017).

18. Abadi, M.S.E., Sha�ee, M.S., and Zalaghi, M. \A
low computational complexity normalized subband
adaptive �lter algorithm employing signed regressor
of input signal", EURASIP J. Adv. Signal Process.,
2018(1), pp. 1{23 (2018).



M. Shams Esfand Abadi et al./Scientia Iranica, Transactions D: Computer Science & ... 28 (2021) 3396{3411 3411

19. Cho, J., Baek, H.J., Park, B.Y., and Shin, J. \Variable
step-size sign subband adaptive �lter with subband
�lter selection", Signal Processing, 152, pp. 141{147
(2018).

20. Abadi, M.S.E. and Sha�ee, M.S. \Di�usion normalized
subband adaptive algorithm for distributed estimation
employing signed regressor of input signal", Digit.
Signal Process., 70, pp. 73{83 (2017).

21. Doust, H.A.M. and Shah, T.K. \NLMS algorithm with
variable step-size using set-membership identi�cation",
Sci. Iran. Trans. D, Comput. Sci. Eng. Electr., 9, pp.
378{384 (2002).

22. Gollamudi, S., Nagaraj, S., Kapoor, S., and Huang,
Y.-F. \Set-membership �ltering and a set-membership
normalized LMS algorithm with an adaptive step size",
IEEE Signal Process. Lett., 5, pp. 111{114 (1998).

23. Werner, S. and Diniz, P.S.R. \Set-membership a�ne
projection algorithm", IEEE Signal Process. Lett., 8,
pp. 231{235 (2001).

24. Yang, F., Wu, M., Ji, P., and Yang, J. \An im-
proved multiband-structured subband adaptive �lter
algorithm", IEEE Signal Process. Lett., 19(10), pp.
647{650 (2012).

25. Yang, F., Wu, M., Ji, P., and Yang, J. \Low- com-
plexity implementation of the improved multiband-
structured subband adaptive �lter algorithm", IEEE
Trans. Signal Process., 63(19), pp. 5133{5148 (2015).

26. Yang, F., Wu, M., Ji, P., Kuang, Z., and Yang, J.
\Transient and steady-state analyses of the improved
multiband-structured subband adaptive �lter algo-
rithm", IET Signal Process., 9, pp. 596{604 (2015).

27. Abadi, M.S.E., Husy, J.H., and Ahmadi, M.J. \Two
improved multiband structured subband adaptive �lter
algorithms with reduced computational complexity",
Signal Processing, 154, pp. 15{29 (2019).

28. Malvar, H.S., Signal Processing with Lapped Trans-
forms, Artech House, Inc. (1992).

Biographies

Mohammad Shams Esfand Abadi received the
BS degree in Electrical Engineering from Mazandaran
University, Mazandaran, Iran and the MS degree in
the same �eld of study from Tarbiat Modares Uni-
versity, Tehran, Iran in 2000 and 2002, respectively,
and the PhD degree in biomedical engineering from
Tarbiat Modares University in 2007. Since 2004, he
has been with the Faculty of Electrical Engineering,
Shahid Rajaee Teacher Training University, Tehran,
Iran, where he is currently a Professor. His research
interests include digital image processing, digital �lter
theory, adaptive distributed networks, and adaptive
�lter algorithms.

John H�akon Hus�y was born in Toronto, ON,
Canada in 1956. He received the MSc and PhD in
Electrical Engineering in 1981 and 1991, respectively,
from the Norwegian Institute of Technology, University
of Trondheim, Trondheim, Norway. He has been
involved in hardware and software development in
various positions in several companies. Since 1992, he
has been a Professor at the Department of Electrical
and Computer Engineering, University of Stavanger,
Norway. His research interests include adaptive algo-
rithms, digital �ltering, signal representations, image
compression, bioelectrical signal processing, and image
analysis.

Mohammad Javad Ahmadi was born in 1990. He
received the BS degree (with honors) in Electrical En-
gineering from Babol University of Technology, Babol,
Iran and the MSc degree in Communications from
Sharif University of Technology, Tehran, Iran. His
research interests include adaptive algorithms, estima-
tion theory, and adaptive distributed networks.




