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Abstract. The Shu�ed Complex Evolution (SCE-UA) method developed at the
University of Arizona is a global optimization algorithm, initially developed by Duan et
al. [Duan, Q., Sorooshian, S., and Gupta, V. \E�ective and e�cient global optimization
for conceptual rainfall-runo� models", Water Resources Research, 28(4), pp. 1015-1031
(1992)]. for the calibration of Conceptual Rainfall-Runo� (CRR) models. SCE-UA
searches for the global optimum of a function by evolving clusters of samples drawn
from the parameter space, via a systematic competitive evolutionary process. Being a
general-purpose global optimization algorithm, it has found widespread applications across
a diverse range of science and engineering �elds. Here, we recount the history of the
development of the SCE-UA algorithm and its later advancements. We also present a
survey of illustrative applications of the SCE-UA algorithm and discuss its extensions to
multi-objective problems and to uncertainty assessment. Finally, we suggest potential
directions for future investigation.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

The performance of Conceptual Rainfall-Runo� (CRR)
models when representing the physical ow of water
through the land phase of the earth system depends on
the adequacy of the parameter estimation (calibration)
of these models [1]. A conceptual rainfall-runo� model
f can be \parametrically" expressed as:

Y = f(X;�) + �; (1)
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where Y is the model output, � represents the modeling
error, X represents the system inputs, and � represents
the tunable parameters of the model. In general, model
calibration is carried out by searching for a set of pa-
rameters � that optimize the value(s) of some metric(s)
that quantify the performance of the model [2]. Due to
the di�culties of performing such calibration manually,
in the 1960s and 1970s, researchers began investigating
the possibility of developing automated approaches [2].
Before the 1990s, a number of \local-type" direct search
methods were tested [3], due mainly to the fact that
such methods do not require explicit information about
the gradient of the response surface [4], but instead
rely upon function information systematically collected
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from the parameter space during the search proce-
dure [5]. However, such local-type methods were found
to be unsuitable for tuning the parameters of highly
complex and nonlinear models due, in part, to the
multimodal nature of their function response surface,
which are theoretically hard or nearly impossible to
analyze their equations [5,6].

One of the more successful (in a relative sense)
local-type methods was the Downhill Simplex Method
(DSM) [3] and a natural suggestion for dealing with
multimodality was to implement a multi-start version
(multi-start simplex or MSX), which ran several trials
of the DSM method staring at multiple independent
randomly selected starting points [6]. However, the
independence of such DSM runs is ine�cient and a
large number of restarts is required for high dimen-
sional problems [6]. This ine�ciency stems from the
lack of communication among the independent DSM
searches. As explained by Duan et al. [6], this is
similar to asking multiple people to solve the same
di�cult problem without sharing information and the
ine�ciency can be resolved by allowing them to alter-
nate between working independently for some period
of time and working together to share their �ndings.
The Shu�ed Complex Evolution (SCE-UA) method
developed at the University of Arizona [1,6] is based
on this idea.

The SCE-UA method integrates the strengths of
several e�ective global optimization concepts. It em-
ploys both deterministic search strategies and random
elements to enable the algorithm to simultaneously
bene�t from topological response surface information
collected during the search. Further, it employs a clus-
tering strategy to focus the search towards regions that
tend to be more favorable, while using a version of the
DSM search strategy to evolve the population towards
the global solution [1]. Since its development, the SCE-
UA algorithm has attracted a great deal of attention
from scientists and practitioners in various �elds of
study, especially in water resources management and
hydrology [7].

In this paper, we recount the history of develop-
ment and application of the SCE-UA algorithm over

the past three decades. The rest of this paper is orga-
nized as follows. In Section 2 we detail the SCE-UA
algorithm and summarize some of its extensions and
developments. Section 2 also reviews multi-objective
and parameter uncertainty assessment tools that were
further developed based on SCE-UA concept. Sec-
tion 3 summarizes the application of the SCE-UA and
its extensions to various optimization and calibration
problems. Section 4 outlines the potential directions for
further investigations. Section 5 concludes the paper.

2. Development

2.1. Single-objective optimization
The SCE-UA method is a general-purpose [2] direct
search population-based global optimization algorithm
that combines the concepts of complex shu�ing [6] with
the strengths of DSM [8], controlled random search [9],
and competitive evolution [10] to solve a broad class of
optimization problems [1]. The algorithm has a simple
structure and only few parameters that need to be
tuned by the user. Optimization begins by sampling
a population of points �i = [�1

i ; :::; �ni ] uniformly from
the feasible parameter region � � Rn. These points are
clustered into � complexes each havingmmembers. An
iterative evolution procedure is carried out by sampling
q points from each complex to form a sub-complex
that is then evolved � times using the DSM strategy.
This evolutionary process is repeated � times for each
complex, after which the complexes are shu�ed to
share the information obtained by each during the
evolution process. The pseudo code of these steps is
outlined in Algorithm 1. As mentioned above, the
performance of SCE-UA depends on a small number
of algorithm parameters that need to be speci�ed by
the user, for which [11] recommended using the default
values: � = 1, � = 2n+ 1, m = 2n+ 1, and q = n+ 1
with n being the dimension of the problem.

The SCE-UA algorithm employs a process called
Competitive Complex Evolution (CCE) as its search
engine. CCE evolves each complex Cj , j = 1; :::; �,
through � steps, with its reection and contraction
steps being based on the DSM method [8]. If these

Algorithm 1. Shu�ed Complex Evolution (SCE-UA).
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Algorithm 2. Competitive Complex Evolution (CCE).

steps fail to improve the worst point in the sub-
complex, the algorithm randomly generates a new
location within the smallest hypercube H � Rn that
contains all the individuals within the complex Cj .
The pseudo code of the CCE process is presented in
Algorithm 2.

The SCE-UA algorithm has been successfully
applied to a broad range of optimization problems. Its
success has spawned a number of extensions to further
enhance its performance and extend its applicability.
Examples include the Shu�ed Frog Leaping (SFL)
algorithm, introduced to solve discrete optimization
problems [12], that employs a local search method
similar to Particle Swarm Optimization (PSO) [13] as
the search core. Other studies have replaced or adapted
the DSM search strategy with other search methods
such as Di�erential Evolution (DE) [14].

Extensions of SCE-UA have not been limited only
to the hybrid algorithms mentioned above. Several
investigations have shed light on the potential for
further developments to the performance and structure
of SCE-UA. The shu�ed complex with principal com-
ponents analysis (SP-UCI) method, developed at the
University of California, Irvine, was proposed to over-
come the problem of population degeneration in high-
dimensional problems, which occurs when the search
population spans only a subspace of the search do-
main and cannot e�ectively search the whole problem

space [15]. To address this issue, the SP-UCI algorithm
monitors the dimensions of the population using prin-
cipal component analysis and restores the missing ones
[15]. Further, it uses a Modi�ed Competitive Complex
Evolution (MCCE) module that follows all the steps of
the DSM method except the shrink [15], and replaces
the mutation step with multi-normal sampling within
the sub-complex. SP-UCI also performs multi-normal
resampling after the complexes are shu�ed to overcome
local roughness.

Recently, Naeini et al. [7] proposed a new version
of SCE-UA, titled Shu�ed Complex Self Adaptive
Hybrid Evolution (SC-SAHEL), which extended the
competitive evolution concept to incorporate several
search strategies. This approach includes a number of
di�erent evolutionary algorithms as search cores and
follows an award and punishment concept to allocate
the complexes to di�erent search methods, thereby
adaptively updating itself during the course of the
search to �nd the search method most suitable for
the problem at hand [7]. The SC-SAHEL algorithm
increases methodological exibility by using di�erent
evolutionary algorithms as search cores and provides
an arsenal of tools for initial sampling and boundary
handling. Developments and extensions of the SCE-
UA algorithm are not limited to the single-objective
methods. In the next two subsections, we review
the tools which were developed on the basis of SCE-
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UA architecture in order to tackle multi-objective
optimization problems and to address parameter un-
certainty.

2.2. Multi-objective optimization
The original SCE-UA algorithm was developed to
address single-objective optimization problems. Later,
Yapo et al. [16] extended the method to address
multi-objective optimization problems by developing
the Multi-Objective Complex Evolution (MOCOM-
UA) algorithm at the University of Arizona. MOCOM-
UA was introduced to solve the so-called a posteriori
optimization problems, in which prior information
about the decision making process in the form of
weighting preferences among a set of the problem-
speci�c performance metrics, was not available [17].
In such problems, the solution is not unique and
improving any one of the performance metrics can be
achieved only at the expense of the deterioration of one
or more metrics [16]. The goal of multi-objective opti-
mization is, therefore, to converge to the set of solutions
known as the Pareto optimal set [16], in which none
of the solutions can be deemed superior to any other
without bringing additional information to bear [18].
The Pareto optimal set is found based on the Pareto
dominance concept [17]. The search for the Pareto op-
timal set �� for a multi-objective minimization problem
(min� F(X;�) = ff1(X;�), :::; fM (X;�)g) depends on
the concept of Pareto dominance [16,17]:

�� = f�� 2 �j @ � 2 �; F(X;�) � F(X;��)g; (2)

where dominance (�) is de�ned as:

F(X;�) � F(X;��) ! 8 i = 1; : : : ;M

fi(X;�) � fi(X;��) & 9 j fj(X;�)<fj(X;��): (3)

Subsequently, Pareto front, F��, can be expressed as:

F�� = fF(X;�) j � 2 ��g: (4)

The MOCOM method modi�es the SCE-UA algorithm
to employ a Pareto ranking concept [19], which starts

by identifying all the non-dominated individuals within
a population and ranks these individuals as one. These
points are then removed from the population and the
process is repeated to �nd the second group of non-
dominated points, which are ranked as two. The
process is repeated until all the points in the population
have been ranked. Hence, the points with the smallest
rank are those (within the population) that are closest
to the Pareto optimal set [16]. Competitive evolution
is then carried out based on the rank of the individuals;
in other words, MOCOM e�ectively converts the multi-
objective problem to a single-objective one by replacing
the set of multi-objective performance criteria by a
rank ordering criterion to determine the improvement
direction(s).

The MOCOM-UA algorithm employs a concept
called the Multi-Objective Simplex (MOSIM) as its
search engine to evolve the complexes towards the
Pareto optimal set, terminating when all of the individ-
uals in the population become non-dominated, i.e., all
are of rank one [16]. The goal of the evolution process
is to generate successors that are, on average, better
than their corresponding predecessors. Let us denote
R = frigsi=1 as the set of Pareto ranked individuals and
de�ne Rmax = arg max1�i�s ri. MOCOM-UA forms
the subcomplexes according to the rank of individuals.
Algorithm 3 presents the evolutionary strategy of
MOCOM-UA.

Weakness of the original MOCOM-UA algorithm,
mainly in the MOSIM search engine, have led to the
development of several other multi-objective optimiza-
tion frameworks that use the SCE-UA framework. For
example, Yang et al. [20] proposed a multi-objective
complex evolution method with PCA and crowding
distance operator (MOSPD) to overcome the clustering
tendency of non-dominated solutions and premature
convergence phenomenon. Also, Guo et al. [21] pro-
posed the Multi-Objective Shu�ed Complex Di�eren-
tial Evolution (MOSCDE) method, which employed
di�erential evolution as the search engine. Meanwhile,
the SFL algorithm has also been extended to handle
multi-objective problems in several other studies [22].

Algorithm 3. Complex evolution strategy in MOCOM-UA.
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2.3. Parameters uncertainty assessment tools
While SCE-UA was developed mainly to �nd (near) op-
timal solution to global optimization problems, factors
such as data errors and model inaccuracies result in pa-
rameter estimation errors that necessitate uncertainty
assessments associated with the resulting parameter
estimates. Because problem complexity in hydro-
logical models cannot be captured using �rst-order
approximations and Gaussian distributions, statistical
simulation algorithms such as Markov Chain Monte
Carlo (MCMC) have gained popularity as a class of
general-purpose methods for problems involving com-
plex inference, search, and optimization [23]. For many
applications (including hydrology), the challenge is to
employ MCMC samplers that exhibit fast convergence
to the global optimum while maintaining adequate
representation of the lower posterior probability regions
in the parameter space.

Towards this end, Vrugt et al. [24] developed
a modi�ed version of the SCE-UA, entitled Shu�ed
Complex Evolution Metropolis (SCEM-UA), which
combined MCMC sampling with shu�ed complex evo-
lution to infer the posterior distribution of the param-
eters. The SCEM-UA algorithm merges the strengths
of the Metropolis algorithm, controlled random search,
competitive evolution, and complex shu�ing to contin-
uously update the proposal distribution and evolve the
sampler towards the posterior target distribution [24].
To avoid ignoring parameter regions with lower poste-
rior density, and thereby collapsing into a small region
close to the best parameter set, SCEM-UA applies a
Bayesian approach in which probabilistic description
regarding the unknown parameters � is inferred from

prior knowledge of � and observed information about
model output Y. From Eq. (1), and using a Gaussian
assumption for the residuals �, the likelihood that the
observed data Y could have been generated by the
model conditioned on the parameter set �i is computed
as:

L��ijY� = exp

"
� 1

2

NX
�=1

 
�(��i )
�

!2#
: (5)

Vrugt et al. [24] assumed a non-informative prior
p(�) / ��1 which followed by the posterior density:

p
�
�ijY� / � NX

�=1

�
�
��i
�2�� 1

2N

: (6)

In order to draw the link between Algorithm 1 and
Algorithm 4, given prior density p(�), s sample points
f�1; : : : ;�sg are generated and their corresponding pos-
terior probabilities fp��1jY�; : : : ; p��sjY�g are com-
puted according to Eq. (6). The next step is to sort
the points in decreasing order of posterior probability
and form the set D (recall step 5 of Algorithm 1).
Construction of the complexes follows a procedure
similar to Algorithm 1. Referring to steps 7-13 of
Algorithm 1, SCEM-UA replaces the evolution step 9
with a Sequence Evolution Metropolis (SEM) strategy
as explained in Algorithm 4.

Vrugt et al. [25] subsequently developed a multi-
objective extension of the SCEM-UA entitled Multi-
Objective Shu�ed Complex Evolution Metropolis
(MOSCEM) based on the same evolution strategy used

Algorithm 4. Sequence Evolution Metropolis (SEM) strategy in SCEM-UA.
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in SCEM-UA. The main di�erence is the replacement
of the single-objective posterior probability with a
multi-objective �tness assignment concept [26]. Major
reasons for development of this extension were that (i)
the MOCOM-UA method failed to represent the tails of
Pareto front, as its non-uniform approximation of the
Pareto front resulted in a concentrated solution in the
compromise region between the objectives, and (ii) the
MOCOM-UA evolution strategy failed to converge to
the true Pareto optimal set for problems with highly
correlated performance criteria and large number of
parameters [25]. In a later development, Vrugt et
al. [27] developed the Di�erential Evolution Adaptive
Metropolis (DREAM) algorithm to maintain ergodicity
and detailed balance, thereby providing better estima-
tion of the posterior distribution [28].

3. Applications of SCE-UA and its
descendants

In this section, we look into the diverse applications of
the SCE-UA family in di�erent �elds. According to the
Web of Science (a.k.a web of knowledge), at the time
of submitting this manuscript, the original SCE-UA
papers [1,6] have been cited by over 2400 documents
excluding the self-citations, and MOCOM-UA [16],
SCEM-UA [24], and MOSCEM-UA [25] have over 500,
600, and 300 independent citations, respectively. To
relatively compare application domains of SCE-UA
and its extensions, a sample statistic is calculated
and shown in Figure 1. The �gure shows the top 10
research �elds with the highest contributions to the
total number of independent citations for the SCE-
UA papers [1,6] by dividing the total number of citing
references in that �eld by the total number of indepen-
dent citations for each algorithm. As these �elds may
overlap, the sum of these percentages is larger than
100 percent. Figure 1 reveals that the original SCE-
UA papers and its decedents are mostly cited in water
resources domain, while engineering and environmental
sciences are next in the ranking. Other �elds, such
as computer science and mathematics, have smaller
but still signi�cant contribution to the independent
citations of the SCE-UA family. In this section, some
of these applications are briey presented.

3.1. Applications of SCE-UA
The SCE-UA algorithm was initially developed for
the automated calibration of CRR models and has
since been mostly applied to hydrologic and terrestrial
models [29]. Initially, the algorithm was tested on
the six-parameter SIXPAR model [6,30], which is a
simpli�ed version of the Sacramento Soil Moisture
Accounting (SAC-SMA) model [31]. SIXPAR was
developed mainly for theoretical and analytical stud-
ies of SAC-SMA and was not intended for practical

Figure 1. The current top 10 research �elds with the
highest contribution to the total number of SCE-UA
independent citations, and the portion of citation for
MOCOM-UA and combined citations for SCEM-UA and
MOSCEM-UA for these categories according to the web of
science.

application [32]. The model has been used to test the
SCE-UA and its extensions in a number of studies [33].
Following its demonstrated success with the SIXPAR
model, the SCE-UA algorithm has been widely used
for parameter estimation of several other conceptual
models, including the lumped SAC-SMA model [34].

Over the past several decades, the SCE-UA has
also served as a performance benchmark against which
other algorithms such as the Genetic Algorithms (GA)
and Simulated Annealing (SA) [35] have been com-
pared. These studies have revealed the robustness
and e�ciency of the SCE-UA for calibrating a wide
class of models [6,36], including lumped models such as
Hydrologiska Byrans Vattenavdelning (HBV) [37], HY-
MOD [38], SIMHYD [39], Xinanjiang [40], and PRMS
[41] as well as distributed models such as coupled
routing and excess storage Hydrology Laboratory Re-
search Distributed Hydrologic Model (HL-RDHM) [42],
coupled routing and excess storage (CREST) [43], Soil
& Water Assessment Tool (SWAT) [44], and Variable
In�ltration Capacity (VIC) [45] model. Some of
these models and their application with the SCE-UA
algorithm are listed in Table 1.

Due to its success, the SCE-UA method has
been implemented within several optimization tools
developed for the calibration of a variety of models.
For instance, ParaSoll [46] employs SCE-UA as the
core search method used for calibration of the SWAT
model [47] and has been coupled with the SWAT Cal-
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Table 1. Example of hydrologic models calibrated by SCE-UA.

Model Developed by Application

The Coupled Routing and Excess Storage (CREST) [43] [109,110,111,112,113]

Hydrologiska Byrans Vattenavdelning (HBV) Swedish Meteorlogical and
Hydrological Institute [37]

[114,115,116,117,118]

HYdrological MODel(HYMOD) [38] [96,97,119,120,121]

Syst�eme Hydrologique Europ�een (MIKE SHE) DHI water & environment [122] [123,124,125,126]

abcd [127] [128,129,130,131,132]

Sacramento Soil Moisture Accounting (SAC-SMA) [31] [84,49,133,134,120]

Six Parameter (SIXPAR) [30] [1,135,33]

Soil, Water, Atmosphere and Plant (SWAP) [136] [137,138,139,140]

Soil & Water Assessment Tool (SWAT) [44] [141,142,143,144,145]

Simpli�ed Hydrology Model (SIMHYD) [39] [146,147,148,149,150]

Storm Water Management Model (SWMM) Environmental protection
agency [151]

[152,153,154,155]

TOPMODEL [156] [157,158,159,160]

Precipitation-Runo� Modeling System (PRMS) [41] [161,162,163,164]

Variable In�ltration Capacity (VIC) [45] [165,166,167,168,169]

Xinanjiang [40] [170,171,172,173]

ibration and Uncertainty Program (SWAT-CUP) [48].
In addition, the Multi-step Automatic Calibration
Scheme (MACS) uses the SCE-UA algorithm as its
optimization engine [49].

Beyond its application to hydrologic and land
surface models, the SCE-UA method has been applied
in other domains such as ground water [50], water
quality [51], water demand [52], rating curve [53], radar
rainfall [54], and stochastic rainfall models [55].

Further, it has been used to solve other kinds
of optimization problems. Ketabchi and Ataie-
Ashtiani [56] applied the SCE-UA to groundwater
management problems and showed that it provided
better solutions than those obtained using other meta-
heuristic algorithms such as GA and DE. Moreover,
Liong and Atiquzzaman [57] applied the SCE-UA to
aid in optimal design of water distribution network and
optimization of reservoir operation [58].

Beyond hydrology and water resources manage-
ment, the SCE-UA framework has found numerous
applications in other �elds of science and engineering.
In the �elds of data analysis and machine learn-
ing, it has been used to calibrate the parameters of
statistical distributions such as the Beta probability
distribution [59], copulas [60], Generalized Extreme
Value (GEV) [61], and Gamma function [62]. It
has also been used in conjunction with several ma-

chine learning algorithms including Support Vector
Regression (SVR) [63], Support Vector Machine (SVM)
[64], Random Forest (RF) [65], and fuzzy neural
network [66]. The related SP-UCI algorithm has been
used for calibrating the parameters of the Arti�cial
Neural Networks (ANNs) [67].

Applications of SCE-UA in other �elds include
pavement and road design [68], optimal air tra�c
ow [69], earthquake and structural engineering [70],
crop yield analysis [71], uid mechanics [72], oil spill
modelling [73], wireless sensor networks load opti-
mization [74], modeling sorption in polymers [75],
dielectric spectra analysis [76], astronomy [77], and
many other �elds [78]. These studies illustrate the wide
utility of the SCE-UA algorithm and its tremendous
potential for helping to solve a wide variety of classes
of optimization problems.

Finally, the SCE-UA method has been adapted
for use with computationally expensive models by
incorporating the use of surrogate models [79] to
provide lower-cost information about the nature of
the objective function response surface. For instance,
Wu et al. [80] employed SCE-UA with SVMs for the
optimization of groundwater use, Ketabchi and Ataie-
Ashtiani [81], used it with ANNs for coastal manage-
ment, Gan et al. [82] coupled it with Multivariate
Adaptive Regression Splines (MARS) for use with
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hydrologic models, and Wang et al. [83] used it with
a general adaptive Gaussian Process (GP) surrogate
model for optimization.

3.2. Applications of MOCOM-UA
The MOCOM-UA method has also been widely
used for calibrating hydrologic and land surface
models including, SAC-SMA [84,85], HYMOD [38],
Biosphere-Atmosphere Transfer Scheme (BATS) [86],
VIC [87], Alpine Hydrochemical Model (AHM) [88],
Ecomag [89], and many other models [90]. Its appli-
cability to multi-objective problems has enabled the
investigation of uncertainty bounds of parameters for
di�erent CRR models by providing a Pareto optimal
set for the parameters [91]. The MOCOM-UA and its
extensions have been also used for calibrating other
types of models, such as those related to the carbon
cycle [92], ecohydrology [93], and the optimization of
reservoir discharges [20]. Notably, MOCOM-UA has
been used as the core optimization tool within the U.S.
Geological Survey Modular Modelling System (MMS)
for parameter estimation [94].

3.3. Applications of SCEM-UA and
MOSCEM-UA

The SCEM-UA and MOSCEM-UA methods have been
widely used for parameter uncertainty assessment. The
SCEM-UA method has been extensively applied to hy-
drologic models including the SAC-SMA [95], HYMOD
[96,97], MOD-HMS [98], LISFLOOD [99], HBV [100],
Xinanjiang [101], TopNet [102], and Flex [103] model.
Further, Blasone et al. [104] used SCEM-UA to sample
the prior distribution of the parameters for Gen-
eralized Likelihood Uncertainty Estimation method
(GLUE) [105] and demonstrated its superior perfor-
mance in comparison with other sampling methods.
The SCEM-UA enabled GLUE method has also been
used for uncertainty assessment of the MIKE-SHE
model [106]. In other applications, Haddeland et
al. [107] used SCEM-UA to �nd optimal reservoir
releases, while the MOSCEM-UA algorithm has been
used for uncertainty assessment of several hydrologic
models [25,100].

4. Future directions

As reported above, the SCE-UA algorithm has been
extensively studied and applied to a wide variety
of optimization problems, and has also spawned a
number of descendant methodologies. However, since
the time it was �rst introduced, there has been a
rapid increase in problem complexity across all of the
scienti�c domains, and this motivates the need for
further improvements. Here, we briey mention some
potential research directions:

� The application of optimization algorithms can be

severely limited by computational burden, which is
closely linked to the number of model or function
evaluations required. Hence, complexity of the
models, and the associated function can hinder
application of SCE-UA type algorithms to high
dimensional problems. The use of surrogate models
has been proposed by Wang et al. [83] to address
this issue. Further investigations can extend the
application of SCE-UA to more complex systems;

� Initial sampling and boundary handling methods
can play a signi�cant role in the performance of
optimization algorithms. To-date, there have been
very few studies on the e�ects of initial sampling
and boundary handling on the performance of the
SCE-UA;

� Self-adaptive search mechanisms can extend the ap-
plication of the SCE-UA to a wider class of optimiza-
tion problems [7]. The investigation of other adap-
tive procedures for implementation within SCE-UA
is likely to be a productive direction for future
research;

� While the SCE-UA algorithm was initially devel-
oped for continuous problems, many engineering
problems deal with discrete, mixed-integer, and
binary problems. Although the SFL algorithm [12]
was introduced to tackle this class of problems,
there is room to explore mixed-integer and binary
optimization problems. The recent development of
new hybrid algorithms [7] illustrates the exibility
of the SCE-UA family of methods for employing
discrete, mixed-integer, and binary evolutionary
methods;

� While MOCOM-UA and its extensions were devel-
oped to tackle multi-objective problems, extending
the application of SCE-UA to many-objective prob-
lems (with 4 or more objective functions) needs
further investigation;

� The architecture of SCE-UA makes it suitable for
parallel computing. Since the complexes within
SCE-UA evolve independently during each evolution
loop, each complex can be assigned to a di�erent
processing unit [7]. To-date, the prospect of acceler-
ating SCE-UA through parallel computing method
has been little studied [108].

5. Conclusion

Since its introduction in 1992, the SCE-UA algo-
rithm has been successfully applied to scienti�c and
engineering problems ranging from water resources
management to machine learning and statistics. In
this paper, we reviewed the history of its development
and application, and its extensions to multi-objective
problems and uncertainty assessment. We showed that
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the methodology had found a wide range of applica-
tions to di�erent �elds of science and engineering, and
explored future directions for further development. It
seems clear that the SCE-UA methodology shows great
potential to become more prominent in the �eld of
optimization. In summary, its popularity is due to:

� The algorithm is simple to understand and easy
to implement. This argument is supported by the
widespread implementation of SCE-UA on di�erent
platforms and its application to a wide range of
problems as referenced above;

� The algorithm has proven to provide more robust
and e�cient performance than many traditional op-
timization methods such as GA, DE, and SA [35,57];

� The algorithm has only a few control parameters
(e.g., �;m; �; q) that need to be tune by the user.
Duan et al. [11] made suggestions for typical values
of �; q; and m and these recommendations have
stood the test of time.
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