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Abstract. In this article, a semi-analytical solution is presented in order to analyze
a Functionally Graded Piezomagnetic (FGP) cylinder resting on an elastic foundation
exposed to hygro-thermal loading. All mechanical, hygro-thermal, and magnetic properties
were considered to be varying according to the power-law function through the thickness.
The steady-state heat conduction and moisture di�usion equations were employed to attain
the moisture concentration and temperature distributions in the FGP cylinder. The
constitutive equations as well as magnetic and mechanical equilibrium equations were
combined in order to derive three second-order di�erential equations in terms of magnetic
potential and mechanical displacements. Variables were separated and the complex Fourier
series method was utilized to solve the governing equations. Numerical results revealed the
e�ects of hygro-thermal loading, elastic foundation, and non-homogeneity constants on
hygro-thermo-magneto-elastic response of the FGP cylinder. It was observed that hygro-
thermal loading had remarkable e�ects on the behavior of the cylinder, leading to increase
in the absolute values of the radial magnetic induction and radial, circumferential, and
shear stresses.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Functionally Graded (FG) materials can be distin-
guished from each other by the compositional gradi-
ents of their components. They have high thermal
resistance and their thermal and mechanical properties
continuously vary with respect to the location. They
can be designed for speci�c functions and applica-
tions in many industries, including aerospace, nuclear
power, military, medicine, electronics, and biomate-
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rials. In addition, FG materials with piezoelectric
and piezomagnetic properties can be used in ultrasonic
transducers as well as many electronic and engineering
applications [1{7].

Thick-wall cylindrical vessels are crucial equip-
ment used in oil, chemical, petroleum, petrochemical,
and nuclear �elds. They are mostly employed in,
e.g., power generation by fossil and nuclear fuels,
storing gasoline in service stations in the petrochemical
industry, and the chemical industry [8]. The thick-
wall cylinder subjected to multi-physical loadings and
surrounded by an elastic foundation is a prime example
of soil-structure interaction problems. The static and
dynamic analyses of such structures leads to a deeper
understanding of the response of the elastic foundation
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under di�erent external loads. The dynamic e�ects
of soil-structure interaction appear in the earthquake
response of large-scale structures such as nuclear power
plants structures. Furthermore, the study of fracture
mechanics, load transfer, and stress concentrations of
the mentioned structures is another �eld of investiga-
tion in solid mechanics [9{12].

Many researchers have inquired the mechan-
ical response of smart structures such as FG
piezoelectricnpiezomagnetic cylinders and spheres un-
der di�erent conditions of loading [13{18]. Hosseini et
al. [16] o�ered a strain gradient elasticity formulation
for capturing the size e�ect in micro-scale structures
to analyze the thermo-elastic response of an FG micro-
rotating cylinder. Jabbari et al. [19] presented a general
theoretical analysis of the three-dimensional mechani-
cal and thermal stresses in a hollow FG cylinder. They
assumed that temperature distribution was a function
of radial and circumferential directions and solved
the di�erential equations by employing generalized
Bessel function and Fourier series method. Thermo-
piezo-magneto-elastic response of rotating Functionally
Graded Piezomagnetic (FGP) disks exposed to thermal
and mechanical loadings was studied by Ghorbanpour
Arani et al. [20]. In this study, they explained the ef-
fects of non-homogeneity constant on the distributions
of stresses, displacement, and magnetic potential. An
analytical solution for displacement and the strain and
stress �eld in a rotating thick-wall cylinder made of FG
material subjected to the uniform external magnetic
and thermal �elds was presented by Hosseini and
Dini [4]. The magneto-thermo-elastic response of an
FG annular sandwich disk was also investigated by
Zenkour [21]. Using exp-exp strain energy for modeling
the hyperelastic materials, Almasi et al. [22] carried out
an analytical and numerical thermo-mechanical study
of an FG hyperelastic thick-wall pressure vessel. An
elastic-plastic analysis of FG spherical pressure vessels
under internal pressure based on strain gradient plas-
ticity was performed in [23]. A feedback gain control
algorithm was employed by Barati and Jabbari [24] in
the two-dimensional piezothermoelastic analysis of an
FG hollow sphere with integrated piezoelectric layers
as a sensor and actuator subject to non-axisymmetric
loads. They analytically solved the governing equations
utilizing the Legendre polynomials and the system of
Euler di�erential equations.

The study of the e�ects of hygro-thermal loading
on the behavior of smart materials and structures has
attracted the attention of many researchers in recent
years [25{27]. A three-dimensional discrete-layer model
was developed by Smittakorn and Heyliger [28] for
analyzing rectangular plates, in which the transient and
hygro-thermo-piezoelectric responses of plates were
evaluated under the coupled e�ects of mechanical,
electrical, thermal, and moisture �elds. In another

work, Keles and Tutuncu [29] carried out free and
forced vibration analysis of FG hollow cylinders and
spheres using analytical solutions in which the material
properties were assumed to vary based on the power
law function. The distributions of the temperature,
moisture, displacement, and stress in an FGP circu-
lar rotating disk under a coupled hygro-thermal �eld
were studied by Dai et al. [26]. Akbarzadeh and
Pasini [30] used a multi-physics model to study the
e�ects of moisture, temperature, magnetic, electric,
and mechanical loadings on the response of multi-layer
and FG cylinders. Vinyas and Kattimani [31] presented
a 3D Finite Element (FE) method in order to analyze
a magneto-electro-elastic plate subjected to hygro-
thermal loads. In their work, an FE formulation was
inferred by employing the principle of total potential
energy and linear coupled constitutive equations.

To the best of the authors' knowledge, the study
of the e�ects of hygro-thermal loading and elastic
foundation on the stress and strain �elds in the FGP
cylinders under asymmetric loading is missing in the
literature. Hence, using the complex Fourier series
method, with the assumption of power-law distribution
for FG materials, a cylinder made of piezomagnetic
materials embedded in a Winkler elastic foundation
under asymmetric hygro-thermo-magneto-mechanical
loadings is analyzed in this study.

2. Preliminaries

In this section, stress-strain relations and equilibrium
equations are expressed and the formulation of the
problem is discussed. As shown in Figure 1, a cylinder
is considered with the inner and outer radii of a
and b, which is radially magnetized and exposed to
asymmetric hygro-thermal and internal pressure loads.
The piezomagnetic cylinder is embedded in a Winkler-
type elastic foundation with sti�ness kw. According to
the power-law distribution, the material properties for

Figure 1. Schematics of the Functionally Graded
Piezomagnetic (FGP) cylinder subject to physical
loadings.
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the piezomagnetic cylinder are de�ned as [32]:

Cij = C0
ijr

�1 ; dij = d0
ijr

�1 ; gij = �0
ijr

�1 ;

ki = k0
i r
�3 ; !i = !0

i r
�3 ; �i = �0

i r
�1+�2 ;

�i=�0
i r
�1+�2 ; qi=q0

i r
�1+�2 ; 
i=
0

i r
�1+�2 ; (1)

in which ki and !i are the thermal conductivity and
moisture di�usivity coe�cients, respectively. �1, �2,
and �3 are non-homogeneity constants. The strain
equations for the cylinder are written as [33]:
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where u and v are displacements in the radial and
circumferential directions, respectively. Magnetic �eld
is considered Bi = �r and the constitutive equations
are expressed as [20,32,34]:

�rr =C11"rr + C12"�� + d11 ;r � #1T (r; �)
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in which �ij , Bi,  , T , and �M are the stress, mag-
netic induction, magnetic potential, temperature, and
moisture concentration, respectively. Cij , dij , #i, %i,
gij , qi, and 
i are the elastic, piezomagnetic, thermal
stress, hygroscopic stress, magnetic permeability, pyro-
magnetic, and hygromagnetic coe�cients, respectively.
The thermal and hygroscopic stresses are associated
with the elastic, thermal expansion �i, and moisture
expansion �i coe�cients as follows [35,36]:

#1 = C11�r + C12��; #2 = C12�r + C22��;

%1 = C11�r + C12��; %2 = C12�r + C22��: (4)

The mechanical equilibrium equation and Maxwell's
electromagnetic relation in the cylindrical coordinate
system may be expressed as [34,37]:
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3. Governing equations

In this section, the governing equations for the cylinder
are given. Submitting Eqs. (2) and (3) into Eq. (5)
leads to the coupled di�erential equations [33,34]:
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4. Hygrothermoelasticity

The two-dimensional heat conduction and moisture
di�usion relations in the cylindrical coordinates can be
written as [36,38,39]:
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Simplifying Eqs. (9) and (10) yields:
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The complex Fourier series is de�ned as the solution to
Eqs. (11) and (12):
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where Tn(r) and �Mn(r) are the coe�cient of complex
Fourier series. By substituting Eqs. (13) and (14) into
Eqs. (11) and (12), the following equations are given
(please consider revising the distorted text):
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Using Eqs. (15) and (16), the temperature and moisture

distributions in the piezomagnetic cylinder are written
as:
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in which An1, An2, Gn1, and Gn2 are hygro-thermal
constants. Also:
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5. Solution procedure

In the complex Fourier series method, the displace-
ments u(r; �) and v(r; �) and the magnetic potential
 (r; �) are expressed as [40]:
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By submitting Eq. (20) into Eqs. (6){(8), three di�er-
ential equations can be derived:
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The symbols \0" and \00" indicate the �rst and second
derivatives with respect to the variable r, respectively.
Eqs. (22){(24) are ordinary di�erential equations to
which the general solution can be formulated as:
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in which B, C, and D are unknown constants deter-
mined by boundary conditions. Submitting Eq. (25)
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The determinant of the system in Eq. (27) should be
equal to zero in order to attain a nontrivial solution
to Eq. (26). Therefore, six roots �nj (j = 1; 2; :::; 6) of
Eq. (27) are achieved:
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where Lnj is the relation between constants Bnj and
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Qjn (j = 1; 2; � � � ; 12) are constants. By substituting
Eq. (30) into Eqs. (22){(24) and equating the coe�-
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The constants �Xi (i = 1; 2; :::; 36) and �Yj (j =
1; 2; :::; 12) are presented in the appendix. The con-
stants Qjn (j = 1; 2; :::; 12) are evaluated by the solution
to Eqs. (31){(34) as a system of algebraic equations.
Utilizing Eqs. (27) and (30), we have:

un(r) =

0@ 6X
j=1

Bnjr�nj

1A+Q1
nr
mn1+�2+1

+Q2
nr
mn2+�2+1+Q3

nr
Sn1+�2+1+Q4

nr
Sn2+�2+1;

vn(r) =

0@ 6X
j=1

LnjBnjr�nj

1A+Q5
nr
mn1+�2+1

+Q6
nr
mn2+�2+1+Q7

nr
Sn1+�2+1+Q8

nr
Sn2+�2+1;

 n(r) =

0@ 6X
j=1

PnjBnjr�nj

1A+Q9
nr
mn1+�2+1

+Q10
n r

mn2+�2+1+Q11
n r

Sn1+�2+1+Q12
n r

Sn2+�2+1:
(35)

For n = 0, the coe�cients Lnj and Pnj are unde�ned.
Substituting n = 0 into Eqs. (22){(24) and following
the solution procedure, the complete solutions for
u0(r), v0(r), and �0(r) are derived as:

u0(r) =

0@ 4X
j=1

B0jr�0j

1A+Q1
0r
m01+�2+1

+Q2
0r
m02+�2+1 +Q3

0r
S01+�2+1 +Q4

0r
S02+�2+1;

v0(r) =
6X
j=5

B0jr�0j ;

 0(r) =

0@ 4X
j=1

P0jB0jr�0j

1A+Q9
0r
m01+�2+1

+Q10
0 r

m02+�2+1+Q11
0 r

S01+�2+1+Q12
0 r

S02+�2+1;
(36)

where:

P0j = �
�
C0

11�0j (�0j + �1) + �1C0
12 � C0

22
�

[d0
11�0j (�0j + �1)� d0

21�0j ]
: (37)

�05 and �06 can be written as:

�05 =
��1 +

p
�2

1 + 4(�1 + 1)
2

;

�06 =
��1 �p�2

1 + 4(�1 + 1)
2

: (38)

Therefore, the radial and circumferential displacements
and magnetic potential are approximated by the sum
of Eqs. (35) and (36):
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u(r; �) =
1X

n=�1;n 6=0

8<:
0@ 6X
j=1

Bnjr�nj

1A
+Q1

nr
mn1+�2+1 +Q2

nr
mn2+�2+1 +Q3

nr
Sn1+�2+1

+Q4
nr
Sn2+�2+1	 ein� +

0@ 4X
j=1

B0jr�0j

1A
+Q1

0r
m01+�2+1 +Q2

0r
m02+�2+1 +Q3

0r
S01+�2+1

+Q4
0r
S02+�2+1; (39)

v(r; �) =
1X

n=�1;n 6=0

8<:
0@ 6X
j=1

LnjBnjr�nj

1A
+Q5

nr
mn1+�2+1 +Q6

nr
mn2+�2+1 +Q7

nr
Sn1+�2+1

+Q8
nr
Sn2+�2+1

9=; ein� +

0@ 6X
j=5

B0jr�0j

1A ; (40)

 (r; �) =
1X

n=�1;n 6=0

8<:
0@ 6X
j=1

PnjBnjr�nj

1A
+Q9

nr
mn1+�2+1+Q10

n r
mn2+�2+1+Q11

n r
Sn1+�2+1

+Q12
n r

Sn2+�2+1

9=; ein� +

0@ 4X
j=1

P0jB0jr�0j

1A
+Q9

0r
m01+�2+1 +Q10

0 r
m02+�2+1 +Q11

0 r
S01+�2+1

+Q12
0 r

S02+�2+1: (41)

The displacement potential �eld of an FG piezoelectric
solid has been addressed in [41]. Submitting Eqs. (39){
(41), (17), and (18) into Eq. (3), the components of
stress and magnetic induction are attained as:

�rr(r; �) =
1X

n=�1;n 6=0

8<:
0@ 6X
j=1

Z1
njBnjr

�nj+�1�1

1A
+ �W 1

nr
mn1+�1+�2 + �W 2

nr
mn2+�1+�2

+ �W 3
nr

Sn1+�1+�2 + �W 4
nr

Sn2+�1+�2

9=; ein�

+

0@ 4X
j=1

Z1
0jB0jr�0j+�1�1

1A+ �W 1
0 r

m01+�1+�2

+ �W 2
0 r

m02+�1+�2 + �W 3
0 r

S01+�1+�2

+ �W 4
0 r

S02+�1+�2 ; (42)

���(r; �) =
1X

n=�1;n6=0

8<:
0@ 6X
j=1

Z2
njBnjr

�nj+�1�1

1A
+ �W 5

nr
mn1+�1+�2 + �W 6

nr
mn2+�1+�2

+ �W 7
nr

Sn1+�1+�2 + �W 8
nr

Sn2+�1+�2

9=; ein�

+

0@ 4X
j=1

Z2
0jB0jr�0j+�1�1

1A+ �W 5
0 r

m01+�1+�2

+ �W 6
0 r

m02+�1+�2 + �W 7
0 r

S01+�1+�2

+ �W 8
0 r

S02+�1+�2 ; (43)

�r�(r; �) =
1X

n=�1;n 6=0

8<:
0@ 6X
j=1

Z3
njBnjr

�nj+�1�1

1A
+ �W 9

nr
mn1+�1+�2 + �W 10

n rmn2+�1+�2

+ �W 11
n rSn1+�1+�2 + �W 12

n rSn2+�1+�2

9=; ein�

+

0@ 6X
j=5

Z3
0jB0jr�0j+�1�1

1A ; (44)

Br(r; �) =
1X

n=�1;n6=0

8<:
0@ 6X
j=1

Z4
njBnjr

�nj+�1�1

1A
+ �W 13

n rmn1+�1+�2 + �W 14
n rmn2+�1+�2

+ �W 15
n rSn1+�1+�2 + �W 16

n rSn2+�1+�2

9=; ein�

+

0@ 4X
j=1

Z4
0jB0jr�0j+�1�1

1A+ �W 9
0 r

m01+�1+�2

+ �W 10
0 rm02+�1+�2 + �W 11

0 rS01+�1+�2

+ �W 12
0 rS02+�1+�2 ; (45)
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B�(r; �) =
1X

n=�1;n6=0

8<:
0@ 6X
j=1

Z5
njBnjr

�nj+�1�1

1A
+ �W 17

n rmn1+�1+�2 + �W 18
n rmn2+�1+�2

+ �W 19
n rSn1+�1+�2 + �W 20

n rSn2+�1+�2

9=; ein�

+

0@ 6X
j=5

Z5
0jB0jr�0j+�1�1

1A ;
(46)

where constants Zi0j , Zinj (i = 1; 2; :::; 5), �W i
n (i =

1; 2; :::; 20), and �W i
0 (i = 1; 2 � � � 12) are de�ned in the

Appendix. It is noteworthy that Eqs. (42){(46) consist
of six unknown constants Bnj , (j = 1; 2; :::; 6) and six
boundary conditions are needed to approximate Bnj .

6. Numerical results and discussion

6.1. Veri�cation of the presented solution
To verify the solution, the results are depicted in
Figure 2 for the axisymmetric FGP cylinder, regard-
less of moisture concentration e�ects (i.e., �M = 0).
Given the assumption of axisymmetric loadings (i.e.,
� = 0), three coupled di�erential equations, namely,
Eqs. (22){(24), derived in this study are reduced to
two coupled di�erential equations, as stated in [20].
For this purpose, the geometrical parameters used are
a = 0:2 m and b = 1 m and the non-homogeneity
constant is assumed to be � = 1. Also, the boundary
conditions are set to �rr (r = a) = �rr (r = b) =
0. The thermal, magnetic, and mechanical properties
are chosen following Ghorbanpour Arani et al. [20].

Figure 2. Distribution of the radial stress. Comparison
between the present study and Ref. [20].

Figure 2 shows the distribution of the radial stress for
the purpose of veri�cation. It can be observed that
the results of the present study have a good agreement
with those given in [20].

6.2. Current results
In this section, numerical results of the analysis of
the FGP cylinder resting on an elastic foundation
are discussed. The distributions of stress, displace-
ment, magnetic potential, temperature, and moisture
are illustrated. The inner and outer radii of the
piezomagnetic cylinder are assumed a = 1 m and
b = 1:2 m, respectively. The material properties of
BaTiO3/CoFe2O4 are listed in Table 1 [36,37,42]. The
boundary conditions on the inner and outer surfaces of
the piezomagnetic cylinder are expressed as follows:

T (a; �) = 60 cos 2�; T (b; �) = 100 cos 2� (K);

�M(a; �) = cos 2�; �M(b; �) = 3 cos 2� (kg/m3);

�rr(a; �)=10 cos 2�; �rr(b; �)=�kwu(b; �) (MPa);

�r�(a; �) = 0; �r�(b; �) = 0 (MPa);

 (a; �)=104 cos 2�;  (b; �) = 0 (W/A):

Figures 3 and 4 reveal the distributions of moisture
concentration and temperature, respectively. As
shown, the boundary conditions are satis�ed at the
inner and outer surfaces of the FGP cylinder. Also,
the maximum values of moisture concentration and
temperature occur at the angles of � = 0;��.

Table 1. Material properties of BaTiO3/CoFe2O4

[36,37,42].

C0
11 (GPa) 269.5

C0
12 (GPa) 170.5

C0
22 (GPa) 286

C0
31 (GPa) 170.5

d0
11 (N/Am) 699.7
d0

21 (N/Am) 580.3
d0

31 (N/Am) 550
g0

11 (10�4 Ns2/C2) 1.57
g0

22 (10�4 Ns2/C2) {5.9
�r (10�6 1/K) 10
�� (10�6 1/K) 10
�r (10�4 m3/kg) 0.8
�� (10�4 m3/kg) 1.1
q0
1 (10�3 N/AmK) 6
q0
2 (10�3 N/AmK) 6

0

1 (10�5 Nm2/Akg) 0

0

2 (10�5 Nm2/Akg) 0
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Figure 3. Distribution of moisture concentration in the
Functionally Graded Piezomagnetic (FGP) cylinder.

Figure 4. Distribution of temperature in the Functionally
Graded Piezomagnetic (FGP) cylinder.

Figure 5. Distribution of radial displacement in the
Functionally Graded Piezomagnetic (FGP) cylinder.

Figures 5{9 illustrate the distributions of the
radial and circumferential displacement and radial,
circumferential, and shear stresses, respectively. It is
observed in Figure 5 that the minimum values of the
radial displacement occur at the angles of � = 0;��,
whereas the critical values are achieved at the angles
of � = ��2 .

Figure 6. Distribution of circumferential displacement in
the Functionally Graded Piezomagnetic (FGP) cylinder.

Figure 7. Distribution of radial stress in the Functionally
Graded Piezomagnetic (FGP) cylinder.

Figure 8. Distribution of circumferential stress in the
Functionally Graded Piezomagnetic (FGP) cylinder.

It is evident in Figures 7 and 9 that the boundary
conditions of radial and shear stresses are satis�ed
at the inner and outer surfaces of the cylinder. As
depicted, the maximum values of radial stress are
achieved at the angles of � = 0;��, and the values
of shear stress are equal to zero at the angles of � =
0;��. It can be seen in Figure 8 that the behavior of
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Figure 9. Distribution of shear stress in the Functionally
Graded Piezomagnetic (FGP) cylinder.

Figure 10. Distribution of magnetic potential in the
Functionally Graded Piezomagnetic (FGP) cylinder.

Figure 11. Distribution of radial magnetic induction in
the Functionally Graded Piezomagnetic (FGP) cylinder.

the circumferential stress is reversed at the radius of
r=a > 1:1. The distributions of the magnetic potential
and radial and circumferential magnetic inductions are
depicted in Figures 10{12. As shown, the maximum
values occur at the angles of � = 0;��, whereas the
minimum values arise at � = ��2 .

Figure 12. Distribution of circumferential magnetic
induction in the Functionally Graded Piezomagnetic
(FGP) cylinder.

Figure 13. Distribution of radial stress with di�erent
hygrothermal loadings (� = �=3, � = 0:5, kw = 109 N/m3).

The e�ects of hygro-thermal loading on the re-
sponse of the piezomagnetic cylinder at � = �=3
are presented in Figures 13{16, wherein the non-
homogeneity constants and foundation sti�ness are
considered as �1 = �2 = �3 = � = 0:5 and kw =
109 (N/m3) respectively. Figures 13{16 are depicted on
the basis of the temperature di�erence �T = To � Ti
and moisture di�erence � �M = �Mo � �Mi. Figure 13
indicates that increase in the hygro-thermal loading
enhances the absolute values of radial stress. As shown
in Figure 14, increase in the hygro-thermal loading
raises the absolute values of circumferential stress. It
can be seen in Figure 15 that the absolute values
of shear stress increase by raising the hygro-thermal
loading. As shown in Figure 16, raising the hygro-
thermal loading leads to an increase in the absolute
values of radial magnetic induction. Therefore, it can
be concluded that hygro-thermal loading has negative
e�ects on the response of a thick-wall structure.
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Figure 14. Distribution of circumferential stress with
di�erent hygrothermal loadings (� = �=3, � = 0:5,
kw = 109 N/m3).

Figure 15. Distribution of shear stress with di�erent
hygrothermal loadings (� = �=3, � = 0:5, kw = 109 N/m3).

7. Conclusion

In the current study, complex Fourier series method
was employed to assess the hygro-thermo-magneto-
elastic response of the piezomagnetic cylinders made
of Functionally Graded (FG) materials resting on
an elastic foundation. The material properties were
considered based on the power-law function. The
coupled di�erential equations in terms of mechanical
displacements and magnetic potential were solved using
the separation of variables and complex Fourier series
method. The main advantage of this method is
that any type of mechanical and magnetic boundary
conditions can be de�ned in it without any limita-
tions. Numerical results obtained in this study were
evaluated to investigate the e�ects of hygro-thermal
loading. It should be pointed out that in the uncoupled

Figure 16. Distribution of magnetic induction with
di�erent hygrothermal loadings (� = �=3, � = 0:5,
kw = 109 N/m3).

hygrothemal problems, the temperature and moisture
concentration have not only the same manner, but also
similar e�ects on the behavior of the cylinder. As
observed in the results, all the components of stress,
displacement, magnetic potential, and magnetic induc-
tion followed a harmonic pattern in the cross section
of the piezomagnetic cylinder. Furthermore, hygro-
thermal loading had considerable e�ects on the stresses
and magnetic induction distributions. Moreover, the
absolute values of the radial, circumferential, and shear
stresses and radial magnetic induction increased by
raising the hygrothermal loading.

Nomenclature

�ij Stress components (Pa)
"ij Strain components
Bi Magnetic induction (N/Am)
u Radial displacement (m)
v Circumferential displacement (m)
T Temperature (K)

M Moisture concentration (kg/m3)
 Magnetic potential (Nm/C)
Cij Elastic coe�cient (Pa)
dij Piezomagnetic coe�cient (N/Am)

#i Thermal stress (N/m2K)
%i Hygroscopic stress (Nm/kg)

gij Magnetic permeability (Ns2/C2)
�i Thermal expansion coe�cient (1/K)

�i Moisture expansion coe�cient (m3/kg)
qi Pyromagnetic coe�cient (N/AmK)
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i Hygromagnetic coe�cient (Nm2/Akg)
!i Moisture di�usivity (kg/ms�M)
ki Thermal conductivity (W/mK)
�i Non-homogeneity constant
kw Elastic foundation sti�ness
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