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KEYWORDS Abstract. The application of Iron (III) oxide nanoparticles in biology and medicine is
. much more than that of other magnetic nanoparticles. Biocompatibility with human body,
Superparamagnetics; o . . . .
. stability, and ease of production are the main reasons for its considerable development
Nanoparticles;

Oxygen cleaving
method;

Iron (III) oxide;
Waste soil.

during these years. In this study, single-phase iron (III) oxide nanoparticles were
synthesized using factory waste soil instead of feedstock by the low-temperature wet
chemical oxygen cleaving method. Using factory waste soil as the precursor material
(feedstock) made the method cost-effective and innovative. In this synthesis method, single-
phase iron (I1T) oxide was obtained by acid digestion of waste soil. The nanoparticles were
analyzed by Fourier transform infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD).
The crystallite size of nanoparticles was calculated by XRD peaks through Debye-Scherrer
formula at 11 nm. Transmission Electron Microscopy (TEM) images showed the spherical
shape of nanoparticles with average size of 10 nm. Vibrating Sample Magnetometery (VSM)
analysis was applied to determining the magnetic saturation and the size of nanoparticles,
which was estimated at 9 nm. FTIR showed atomic bond between iron and oxygen (Fe-O)
in nanoparticles. The results of XRD showed that the synthesized sample was cubic-spinel
single-phase.

(© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In the last decade, nanotechnology has been developed
considerably for fabrication, recognition, and special
designing. Also, the properties of nanoparticles have
been improved for medical applications and medical
recognition. FezO4 or Magnetite is the most famous
and developed magnetic nanoparticle due to its inert-
ness, biocompatibility, chemical and physical stability,
and ease of preparation [1]. Magnetic nanoparticles, as
a group of nanoscale materials, brought a big revolution
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in recognition and curing methods in medical science.
Magnetic nanoparticles less than 10 nm in the presence
of an external magnetic field have extensively been used
to enhance image clarity in Magnetic Resonance Imag-
ing (MRI) [2,3]. In addition to medical recognition,
nanoparticles are used in various curing methods, e.g.,
targeted drug delivery, transmission of gene, magnetic
separation of materials, and tissue engineering [4-6].
Iron oxide comsists of various compounds and
each compound has different magnetic properties.
Among them, the most favorable materials with sig-
nificant magnetic properties are v-Fe;O3, FezOy, and
FesOsMO (M can be replaced with Mn, Co, Ni,
and Cu). These materials possess the characteristic
of ferromagnetism. Ferrimagnetism oxides by nature
show lower magnetic reaction, but higher resistance to
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oxidation than ferromagnetism materials such as Fe,
Co, and Ni. Also, they have high stability in magnetic
properties [5]. Ferrites are intricate magnetic oxides
produced from iron (III) oxide as a basic component.
They are soft materials which have had many appli-
cations during the last half century [7,8]. Magnetites
(Fe304) and Maghemites (y-FeaO3) are the most
common ferrites for making ferrofluid in the research
in this area. Magnetite is a ferromagnetic material
with reciprocal spinel structure. Magnetite, with the
chemical formula of FezO4, is an iron oxide having
the unit cell of 730 A® with 8 molecules of Fe;0y, in
which oxygen makes closed face-centered cubic (fcc)
structure and Fe cations occupy interstitial tetragonal
and octahedral sites [9,10]. Iron oxide nanoparticles
are synthesized through various methods including Co-
Precipitation and Hydrothermal methods, sol-gel, and
combustion processes [11-13]. The main drawback of
these methods is the need for expensive inorganic man-
ufactured materials or particles during the oxidation
process at high temperatures. Nowadays, development
of novel methods that are easy and proper to large
scales is a significant challenge [14]. Physical methods
such as lithography, electron beam, etc. are not able to
control the size of nanoparticles in nanometer limits [1].
On the other hand, chemical methods, such as chemical
precipitation, are low-cost and require short processing
time. Moreover, they have higher efficiency than the
mentioned methods and allow controlling morphology,
size, and distribution of nanoparticles.

Dhyvia et al. (2016) fabricated magnetite
nanoparticles (Fe3O4) by using an aqueous solution
containing iron ions in an alkaline medium and
polyethylene glycol as a surfactant. Also, in the
synthesis of iron oxide nanoparticles, chitosan thin
layer as a surfactant was used [15]. Chaki et al. [16] and
Khoshnevisan et al. in 2012 [17] reported the synthesis
of magnetic iron oxide Fe3O4 nanoparticles by using
CTAB as a surfactant. The results showed that the al-
ternation of CTAB would decrease the size and increase
the scattering of particles in solution, effectively, with
no changes in superparamagnetic properties.

2. Material

Waste soil was provided by a Cu leaching factory in
Rafsanjan, Iran. Sulfuric acid (H2SO4), phosphoric
acid 85% (H3PO,), sodium hydroxide (NaOH), Cetyl
Trimethyl Ammonium Bromide (CTAB), distilled wa-
ter (H20), and acetone were purchased from Merck Co.

3. Synthesis process of iron oxide
nanoparticles through wet chemical method

First, 0.2 g copper factory waste soil was dissolved in
40 ml sulfuric acid (phosphoric acid) and the solution
was stirred for 3 hours by a magnetic stirrer until
complete dissolving. Afterwards, 150 ml deionized
water was slowly added to the solution. The solution
was filtered once to became clear. In the next stage,
the final solution was poured into three-neck round-
bottom flasks in 45°C oil bath for one hour by oxygen
cleaving, simultaneously. At this stage, no change in
color was observed. Then, a proper volume of 10 M
Sodium hydroxide solution was prepared and injected
using a syringe until the solution became dark and pH
was adjusted to 12. The dark precipitate was extracted
from the solution using a simple magnet, washed twice
with deionized water, and dried at room temperature.
The final product was a 0.15 g black or brownish
powder of Fe3Q4. To prepare a sample with CTAB
as surfactant for the sake of comparison, after filtering
the dissolved soil, 0.02 g pre-dissolved CTAB in 50 ml
DI water was added to it and then, the mixture was set
for oxygen cleavage. Figure 1 shows the wet chemical
oxygen cleaving synthesis method for nanoparticles.

4, Experimental characterization of
nanocomposites

Energy Dispersive X-ray spectroscopy and Field Emis-
sion Scanning FElectron Microscopy (EDX-FESEM)
were performed by a Zeiss (Gemini 1550) microscope
having a Field Emission (FE) electron source and an
in-lens detector for secondary electrons and elemental

Figure 1. Setup of the synthesis of iron oxide nanoparticles by the wet chemical oxygen cleaving method and the

resultant Fe3O4 dark precipitate.



3940 M. Karimipour et al./Scientia Iranica, Transactions F: Nanotechnology 26 (2019) 3938-3945

mapping. Furrier Transformed Infra-Red (FTIR) data
were collected using an AVATAR-370-FTIR THER-
MONICOLET spectrometer under two separate pro-
cedures. Crystalline structure of the powders was
recorded by D8-Advance Bruker X-ray diffractometer
(XRD) using Cu-Ka radiation with 1.54 A wave-
length. Scanning Electron Microscope (SEM) images
were obtained using LEO 1450 VP system. For the
magnetization curve, we used VSM 7400 Lake Shore.
TEM and SAED images were recorded by Zeiss EM900
Transmission Electron Microscope.

5. Results and discussion

Energy-Dispersive X-ray (EDX) spectroscopy is an
analytical method for quantitative analysis of elements
as well as structural and chemical composition of the
samples. To check the elemental composition of the
soil and the prepared sample, EDX spectra are plotted
in Figures 2 and 3, respectively. Spectra show that
the waste soil comprises various impurities such as Fe,
Cu, Zn, and Cr. However, as shown in Figure 3, only
the peaks of Fe and Cu remain after F30,4 preparation,
while the concentration of Cu is less than 5%.
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Figure 2. EDX spectrum of the initial waste soil.
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Figure 3. EDX spectrum of the synthesized sample
without CTAB.

To identify the presence of molecular bonds of
oxygen with iron and other possible bonds in the
synthesized sample, FTIR spectroscopy was performed
in the wavelength range of 400 cm ™' to 4000 cm~!.

Figure 4 represents the FTIR spectroscopy of (a)
waste soil and (b) the synthesized sample without
CTAB surfactant as well as (c¢) a sample synthe-
sized with CTAB. With due attention to spectroscopy
graphs, the peaks can be classified in this way: those
between 590 cm~! and 1650 ¢cm~! are related to
Fe-O [11,18] and those from 3200 to 3600 cm™!
are attributed to symmetrical and anti-symmetrical
vibration-strain modes of O-H band. The latter implies
physical absorption of water molecules in the air on the
surface.

Figure 5(a) shows the XRD of the sample synthe-
sized without CTAB and the crystal phases of waste
soil. The waste soil with diffraction peaks of various
compounds such as Cu, CuO, Fe;O3 and FezO is
presented in comparison with standard patterns (Cubic
Fe304: JPCD-00-002-1035, Cubic Fe,O3: JPCD-00-
002-1047, monoclinic CuO: JPCD-00-001-1117, Cu-
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Figure 4. FTIR spectra of (a) the initial soil and the

samples, (b) Fe3O4 synthesized without CTAB, and (c)

Fe3O4 synthesized with CTAB.
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Figure 5. XRD patterns of (a) iron (I1I) oxide
nanoparticles prepared without CTAB and (b) initial
factory waste soil.
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Figure 6. XRD patterns of nanoparticles at different
times (1 h and 3 h) of oxygen cleaving process.

bic Cu: JPCD-00-003-1005). The sample diffraction
pattern of Figure 5(a) is endorsing the single phase
magnetite with spinel cubic (Cubic Fe304: GPCD-01-
075-1372).

Figure 6 shows the XRD pattern of iron (IIT) oxide
nanoparticles (magnetite Fe3O4), which were synthe-
sized in different treatment times (1 h and 3 h) using
a single acid (sulfuric acid). The synthesis process was
performed at 40°C. The proportion intensities of all
diffracted peaks were reported with magnetic ferrite
in spinel structure with FdsM space group and great
consistency with Cubic Fe3O4: JPCD-072-2303. The
six peaks in XRD of iron (III) oxide nanoparticles
were related to lattice planes (220), (311), (400), (511),
(440), (422), and (533) and consistent with spinel cubic
structure.

The crystallite size of micro lattice could be
calculated by XRD peaks and Debye-Scherrer formula
(Eq. (1)) [19,20]. Sharp peaks showed well crystalliza-
tion of nanoparticles. The intensity of (311) with (26 =
51.35°) degrees peak in XRD pattern, which is the
sharpest peak, shows lattice growth in the privileged
direction (311). The size of crystallite is 11 nm.

0.9A
b= Bcosh’ (1)

D is the diameter of the crystal, 8 is the FWHM, and
A is the X-ray wavelength (0.154 nm) [20].

XRD pattern of iron oxide (FezO4) with CTAB
as surfactant is shown in Figure 7. XRD pattern of
Fe304 with CTAB surfactant indicates a weak crystal
structure, which cannot be analyzed because of the
very small size of particles. However, there is no
change in the position of peaks, which shows that
the synthesis process with CTAB surfactant makes no
change in the phase of the Fe;O, magnetic nanoparti-
cles [17].
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Figure 7. XRD patterns of synthesized samples: (a)

Without CTAB as surfactant and (b) by adding 0.02 g of

CTAB as surfactant.

Figure 8 shows the images of scanning electron mi-
croscopy with different magnifications (a) with CTAB
and (b) without CTAB. As observed in the images,
the synthesized particles are spherical and the sizes are
about 37.6 to 77.8 nanometers, respectively.

Chemical compound, cation distribution, and
average size of iron oxide seeds affect the magnetic
properties. The distribution of cations in tetragonal
and octahedral positions predicates ferromagnetism,
anti-ferromagnetism, and para-magnetism [10,21].

Magnetic hysteresis curves of iron (III) oxide
superparamagnetic nanoparticles at room temperature
with different times of oxygen cleaving (1 and 3 hours,
zero and 30 mins) and synthesized samples with CTAB
as surfactant and without CTAB are presented in
Figure 9. All the samples show superparamagnetic be-
havior, because the coercive field in response to the ex-
ternal field is zero and the curve form is like the letter S.

The amount of magnetization of iron (III) oxide
in oxygen cleaving for 3 h is 24 emu/g as computed in
the intersection of magnetization axis versus 1/H?. Its
difference in saturated magnetization range shows that
time duration affects the size of nanoparticles. The de-
crease in saturated magnetization in comparison with
the bulk and superparamagnetics synthesized using
industrial precursors may be due to the decrease in the
seed size as well as lattice and shape anisotropy [22,23].
In addition, the surface effects can decrease magnetiza-
tion, because when particle size becomes smaller, the
number of surface atoms would be increased. Conse-
quently, the magnetic moment of surface atoms may be
random in this surface area, so-called dead area, and
lead to lower saturated magnetization [10,24]. Another
reason for decrease in magnetization may be the slight
changes in ferrite cation distribution. To estimate the
magnetization moment of iron oxide nanoparticles, the
following formula is used:
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Figure 8. SEM images of iron (IIT) oxide nanoparticles synthesized: (a) With CTAB and (b) without CTAB.
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Figure 9. Magnetization curve of iron (III) oxide supermagnetic nanoparticles at different times of oxygen cleaving with
the effect of CTAB surfactant: (a) In the range of —15000 to 15000 Oe and (b) in the range of —500 to 500 Oe.

18KBT$i 1/3
—] ; (2)

o = { TpM3
where Kp is Boltzman constant, x; represents mag-
netic susceptibility, M, stands for magnetic satu-
ration, and p represents density of nanoparticles
(5.18 g/cm3) [25-28]. The results of our calculations
are given in Table 1. The size of nanoparticles was
estimated at 9 nm, which is approximately equal
to the size obtained by TEM. The average size of
nanoparticles is smaller than the estimated crystallite

size by XRD, which shows the existence of dead surface
area in magnetic nanoparticles.

Figure 10 shows TEM images of iron (III) oxide
nanoparticles. It shows the spherical shape of nanopar-
ticles with the average size of 10 nm, which is very
consistent with XRD and VSM results. The very small
formation and superparamagnetic behavior of particles
indicate that this method is a useful and industrial
one for direct production of Fe3O4 nanoparticles from
mineral sources available in soil.

In Figure 11, Selected Area (Electron) Diffrac-
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Table 1. Magnetic characteristics obtained by the VSM analysis.

M. (emu/g) M, (emu/g) =; (emu/gOe) H. (Oe) dmn (nm)
Deoxidization in 3 h+CTAB 0.33 22.7797 0.00476 0 9.85
Deoxidization in 1 h+CTAB 0.045 11.37221 0.00222 0 9.63
Deoxidization in 30 min+CTAB 0.039 12.76989 0.00251 0 9.65
Deoxidization in 0 min+CTAB 0.215 11.89195 0.00134 0 8.02
Deoxidization in 30 min 0.055 15.94361 0.00229 0 8.69

Figure 10. TEM images of iron oxide nanoparticles synthesized without CTAB at different scales.

(a) (b)

Figure 11. SAED patterns of iron (III) oxide
nanoparticles synthesized: (a) With CTAB and (b)
without CTAB.

tion (SAED) pattern is shown for samples (a) with
and (b) without CTAB. Dispersion of light points
in rings and the stability of points prove the single-
crystal nanoparticles. Moreover, they show that the
nanoparticles are well crystallized even in the absence
of CTAB as stabilizer. Thus, this method can also be
developed for the preparation of Fe3O4 nanoparticles

with superparamagnetic behavior without the need for
surfactant [29,30].

6. Conclusion

In this study, single-phase iron (III) oxide was synthe-
sized from factory waste soil as precursor by means
of the wet chemical oxygen cleaving method at room
temperature. Considering the fact that the primary
material was factory waste soil (feedstock), the method
can be considered as an economically cost-effective as
well as innovative one. The particles showed super-
paramagnetic behavior at room temperature with sizes
of about 10 nm, as estimated from the TEM images as
well as XRD and VSM analyses.
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