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1. Introduction

Abstract. In this study, multi-walled carbon nanotubes (MWCNTSs) were function-
alized through dielectric-barrier-discharge plasma in the presence of the H»O-saturated
atmosphere at 70°C and atmospheric pressure. The functionalized MWCNTs (F-CNTs)
were decorated with 10 nm electrochemically deposited nanoparticles of NiO followed by
glucose oxidase (GOx) immobilization, and the treated electrode was used for glucose
detection. TEM, FE-SEM, TPD, and XPS techniques were used to characterize NiO/F-
CNTs samples. The maximum extent of oxygen-containing functional groups, including
carbonyl, hydroxyl, and carboxylic groups, formed in the plasma contact time of 4 min.
The optimum time for the chronoamperometric deposition of NiO was 3 min. The presence
of GOx on the NiO/F-CNTs electrode displayed a quasi-reversible and surface-controlled
reduction-oxidation wave at —0.52 V. The peak separation of this wave is 0.05 V. The
GOx/NiO/F-CNTs electrode showed a linear performance at a glucose concentration of
0.2-3.8 mM with a sensitivity rate of 2.16 pA/mM and a detection limit of 93.0 pM.

(© 2019 Sharif University of Technology. All rights reserved.

significance in different applications including clinical
detection, food industries, and environmental protec-

Hybrids of carbon nanotubes (CNTs) and metal ox-
ide nanoparticles (NPs) or polymeric materials have
received particular attention for their potential appli-
cations in various devices such as ion batteries [1],
fuel cells [2], medical instrument [3,4], tissue engi-
neering [5], and biosensors [6]. Glucose biosensors
have remained the most attractive in terms of their
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tion [7,8]. Many approaches including fluorescent
spectroscopy [9], colorimetry [10], conductometry [11],
and electrochemical [12,13] methods have improved for
glucose monitoring. These techniques mostly rely on
the detection of hydrogen peroxide, generated through
the reaction of glucose oxidase (GOx) and glucose [14].
The electrochemical biosensors have been frequently
used due to their high sensitivity and selectivity,
simplicity, and low cost [13,15].

In spite of the exceptional properties of CN'Ts, the
inherent hydrophobic surface hinders their dispersion
in aqueous solutions. The functionalization of nan-
otubes with hydrophilic groups improves their interac-
tion with solvent matrices and enhances their abilities
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to be used in different applications such as biological
systems [16]. The connection of different functional
species to the CNTs’ surface can be achieved by
using either wet chemical or dry oxidation approaches.
The later method including plasma functionalization
is a fast, flexible and non-polluting technique, which
can create new active sites for enhancing the NP
loadings and reducing their sizes on the surface of
CNTs. Dielectric Barrier Discharge (DBD) is low-
temperature and atmospheric pressure plasma, which
can produce a uniform discharge atmosphere. The
quantity of functional groups and surface defects may
be controlled by power and exposure time of the plasma
[16-17).

Among the various metal (oxide) NPs uti-
lized in combination with CNTs, NiO with a small
bandgap [18] has acquired special interest due to
its ion exchange, molecular adsorption, environmental
friendliness, and catalytic and electrochemical proper-
ties [19,20]. In addition, nickel can be combined with
other metals, such as cobalt and copper, to enhance the
electrochemical and catalytic properties of the biosen-
sor electrode [21-22]. To the best of the author’s knowl-
edge, the composition of NiO and CNTs was rarely
utilized for analytical glucose detection. Omne of the
promising methods for fabricating CNT-NiO hybrid is
the electrochemical deposition approach, by which the
thickness of NiO film might be controlled through reg-
ulating parameters of the electrochemical process [23].

In the present work, multi-walled carbon nan-
otubes (MWCNTSs) are functionalized through DBD
plasma in the HyO-saturated atmosphere at 70°C for
4 min. Afterwards, NiO-NPs are decorated on the
MWCNTS’ surface by an electrodeposition method.
Finally, the glucose sensor is constructed using GOx
immobilization on the surface of NiO/F-CNTs and is
utilized in glucose detection experiments.
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2. Materials and methods

2.1. Reagents

GOx (EC 1.1.3.4) and MWCNTs were purchased from
Sigma-Aldrich and Shenzhen Nanotech Co. Ltd., re-
spectively. All other reagents are of analytical grade,
obtained from Merck. The phosphate buffer solution
(PBS, KH,PO4 + KoHPO,4) and the other solution
samples were made using deionized water at pH 7.0.

2.2. Equipment

The electrochemical studies were performed through
the typical three-electrode cells that include Pt as a
counter electrode, a working Glassy Carbon Electrode
(GCE, A = 3.14 x 1072 ¢m?), and Ag/AgCl as a
reference electrode. The experiments were carried out
in ambient conditions. The structure, morphology,
and oxygenated groups of the nanotube hybrids were
examined by Transmission Electron Microscopy (TEM)
equipped with energy dispersive X-ray spectroscopy
(EDS), Field Emission Scanning Electron Microscopy
(FE-SEM), X-ray Photoelectron Spectroscopy (XPS),
and Fourier transformed infrared spectroscopy (FTIR).
The Temperature-Programmed Desorption (TPD) was
performed for quantitative analyses of the functional
groups of plasma-functionalized MWOCNTs.  This
method was explained in another research work of
ours [12].

2.3. DBD plasma functionalization of
MWCNTs

In order to remove surface groups that are possibly
produced via synthesis or purification period, the pur-
chased MWCNTSs were annealed at high temperatures
(1000°C) in He. The process of functionalization
(Figure 1(a)) was done through DBD in saturated
air. The zero air with a flow rate of 40.0 sccm was
humidified using HyO at 70°C and moved over the
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Figure 1. The process steps of GOx/NiO/F-CNTs/GC electrode fabrication for analytical glucose detection.
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annealed MWCNTs inside a plasma reactor. The
details of the reactor were given elsewhere [16]. The
nanotube samples were exposed to DBD plasma at
various times (i.e., 1, 2, 4, and 6 min). In this text,
the DBD functionalized nanotubes are called F-CNTs.

2.4. Preparation of electrodes

The unmodified electrode was cleaned using polishing
tissue and alumina slurry and was sonicated in the
ethanol /water mixture. The F-CNTs were dissolved in
nafion solution (0.5 wt.%) and mixed for 10 min using
an ultrasonic homogenizer (250 UL Hielscher) to obtain
uniform suspension (2.0 mg/ml). Then, 10.0 ul of this
mixture was cast on the surface of GCE and dried
at 25°C. To fabricate the NiO/F-CNTs/GCE (Figure
(1)b), F-CNTs/GCE was inserted in the solution of
NiNO3/NaNO;3 (0.005 M) at constant potential (i.e.,
—0.8 V), versus reference electrode, for 3 min and
rinsed in water. Subsequently, 5.0 puL of the GOx
solution at a concentration of 10.0 mg/ml was immobi-
lized on the surface of NiO/F-CNTs/GCE (Figure 1(c))
and dried at 4°C overnight. A concentration range of
0.01-4.0 mM glucose was selected for glucose detection
experiments. The GOx/NiO/F-CNTs/GCE was stored
at 4°C in the refrigerator.

3. Results and discussion

3.1. Characterization

3.1.1. TPD analyses of F-CNTs

Figure 2 presents TPD profiles of F-CNTs samples
functionalized in the humid air for different exposure
times. The gas evolution profile starts from 160°C

and shows three major peaks at around 250, 400, and
800°C. These evolved gases that mainly include H,O,
CO,, and CO result from the decomposition of oxy-
genated functional groups [24]. The area at the peaks of
TPD spectrum (Figure 2 inset) corresponds to the total
amount of the evolved gases. As the exposure time
increases from 1 to 4 min, the amount of evolved gases
is enhanced. An additional exposure time of 6 min
results in a smaller quantity of functional groups. Since
there is a limited number of defect points on the surface
of nanotubes, as the primary site for functionalization,
further plasma treatment leads to the detachment of
some of the functional groups [25]. Figure 2(b) shows
the TPD profile of MWCNTs functionalized for 4 min,
which is deconvoluted to 5 peaks corresponding to
H>0, CO2, and CO evolution during the decomposi-
tion of various oxygenated functional groups including
carboxylic, anhydride, phenol, lactone, carbonyl, and
quinone groups.

In order to evaluate the emerged gases, the TPD
instrument was coupled with an FTIR gas cell, and the
results of the identified and quantified evolved gases at
various temperatures are shown in Figure 3. The major
component in the low-temperature region of 160-280°C
is H,O, which is originated either from water trapped
in the micropores or from the interaction of adjacent
OH-containing groups [26]. The decomposition of these
functional groups leads to the formation of carboxylic
anhydrides and HoO molecules [27].

The intermediate temperature region in the range
of 260-600°C is mostly a mixture of H,O and COs.
These gases have evolved from the dissociation of
phenol and carboxylic/anhydride groups [27,28]. The
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Figure 2. (a) TPD spectra of MWCNTs functionalized at power = 30.6 W and various exposure times of (A) 1, (B) 2,
(C) 4, and (D) 6 min. Inset: the influence of contact time on the total amount of evolved gases. (b) Deconvoluted peaks of
TPD profile of MWCNTSs functionalized for 4 min corresponding to different functional groups.
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Figure 3. The relative amounts of evolved HyO, CO, and
COs from the MWCNTs functionalized in the DBD
plasma for 4 min at various temperatures during the TPD
experiment.

slight CO evolution around 600°C results from the
decomposition of anhydride and phenol groups [28].
The high-temperature region of 600-1000°C is mainly
attributed to the evolution of CO5 and CO from lactone
and carbonyl/quinone groups, respectively [28]. The
existence of these oxygenated functional groups on the
F-CNTs’ surface was confirmed by FTIR in our other
work [12]. Another major source of COy desorption in
the high-temperature region is the secondary reaction
between CO and oxygen surface species, as shown in
the following:

CO+C—0— COy+C,, (1)
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where C, is the adsorption site on the CNTs’ surface,
and C-O is the oxygenated group attached to the
nanotubes. During the TPD, C, may also react with

the desorbed H,0O, CO,, and CO and reform the
oxygenated functional groups.

3.1.2. XPS results
To further study the surface chemical state of different
F-CNTs samples, XPS survey spectra were employed.
The XPS data for the annealed sample and F-CNTs
(Figure 4(a)) indicate the presence of carbon and
oxygen atoms. During the DBD plasma treatment
of MWCNTs, the photoelectron peak of O 1s at
533 eV increases from 1.5% to 5.6% for the annealed
and functionalized samples, respectively. In order to
examine the bond structure of the oxygen-containing
species, the C 1s peak was deconvoluted, the results
of which are presented in Figure 4(a), inset. The
major component at 284.9 eV is attributed to C=C
bond, and the peaks at 286.3, 287.2, and 288.4 eV
can be assigned to hydroxyl, carbonyl, and carboxyl
groups, respectively [29]. These oxygenated species
are created through the interaction of the reactive
components such as O, Oz, H, and OH with the surface
of MWCNTs. These reactive species generated during
DBD plasma in humid air atmosphere can split C=C
bond and interact with open ends and defect points
of CNTs [16]. The oxygenated groups have polar
properties and make negative charges on the surface of
CNTs and improve dispersion in aqueous solutions [12].
Figure 4(b) illustrates XPS spectra of NiO/F-
CNT sample. The attachment of nickel oxide to the
surface of F-CNTs leads to increasing the percentage
of oxygen atoms to 11.3%. Two photoelectron peaks
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Figure 4. (a) The XPS spectra of the annealed sample and F-CNTs. Inset: deconvolution of C 1s XPS spectra of
F-CNTs. (b) XPS spectra of NiO/F-CNTs. Inset: the magnified region of Ni 2p: The peaks at 857.7 and 875.7 eV were

attributed to Ni 2p3/o and Ni 2p; /2, respectively.
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100 nm

Figure 5. The SEM micrographs of (a) F-CNTs and (b) NiO/F-CNTs. (c¢) TEM image and (d) HRTEM of NiO/F-CNTs

hybrid.

at 857.7 and 875.7 eV might be related to Ni2p3/» and
Ni2py /5, respectively [30]. Moreover, the percentage of
Ni atoms in the NiO/F-CNT hybrid was calculated to
be about 5.4%.

3.1.3. Morphology of F-CNTs and NiO/F-CNTs

The FE-SEM micrograph obtained for F-CNTs (Figure
5(a)) reveals a twisted morphology of MWCNTSs with
diameters of 20-30 nm, while the length reaches tens
of micrometers. The SEM of NiO/F-CNTs sample
(Figure 5(b)) shows that NiO-NPs are deposited on the
nanotubes’ surface and a relatively thin film is created.
The TEM image of NiO/F-CNTs (Figure 5(c)) further
shows that NiO has uniformly and directly grown on
the CNTs’ surface. From the HRTEM image of the
NiO/F-CNTs (Figure 5(d)), the particle size of NiO-
NPs was determined to be approximately 10 nm. EDS
analyses (data not shown here) confirm the presence
of carbon, oxygen, and nickel elements in the NiO/F-
CNTs hybrid.

3.2. Biosensor performance

3.2.1. Optimum deposition time

Figure 6 presents the cyclic voltammogram of NiO/F-
CNTs electrodes synthesized by chronoamperometry
at different deposition times. The formation of NiO-
NPs (Eqgs. (2)-(4)) [20] on the surface of F-CNTs/GCE
increases current, indicating that the electroactive
surface of NiO/F-CNTs/GC electrode is enhanced.

20H™ + Ni*T — Ni(OH),, (2)

Ni(OH), — H,0 + NiO, (3)

—— Blank F-MWCNTs
304 ____1min

4 - 2 min

10

I (pA)

-10 =

220 -

30 0 e

Figure 6. The cyclic voltammograms of blank F-CNTs
and NiO/F-CNTs electrodes synthesized by the

chronoamperometry method at different deposition times.

2C = O + 2Nit2 — 2C — NiO. (4)

The charging current improvement is the greatest
for the optimum deposition time of 3 min, and a
further increase in the deposition time may cause the
agglomeration of NiO-NPs and the reduction of the
reactive surface of the modified working electrode.

3.2.2. Enzyme immobilization
The modified electrodes were investigated using cyclic
voltammetry in the range of —0.8-0 V, the results
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Figure 7. The cyclic voltammograms of (a) bare GCE,
(b) F-CNTs/GCE, (c) GOx/F-CNTs/GCE, (d)
NiO/F-CNTs/GCE, and (e) GOx/NiO/F-CNTs/GCE.

of which are illustrated in Figure 7. The anodic
charging current has increased from 2.0 pA for the bare
GCE (Figure 7(a)) to 15.0 pA for F-CNTs/GCE (Fig-
ure 7(b)), indicating that the functionalized nanotubes
improve the reactive surface of treated electrodes. The
GOx immobilization on the F-CNTs/GC electrode
(Figure 7(c)) has created a reduction-oxidation wave
centered at —0.54 V with a peak-to-peak potential
separation (AE,) of 0.08 V.

Because of the existence of NiO-NPs on the F-
CNTs/GCE (Figure 7(d)), the reactive surface has
further increased and enhanced the efficient points for
the adsorption of GOx. The GOx/NiO/F-CNTs/GCE
(Figure 7(e)) presents a reduction-oxidation wave at
—0.52 V with AE, of 0.05 V. The metal NPs may act
as effective electron-conducting channels and decrease
working potential and AE), for the enzymatic electrode.
The modified electrodes in the absence of GOx show no
faradic current as a result of the oxidation-reduction
process, suggesting that the reduction-oxidation ac-
tivity of the modified electrodes is assigned to the
immobilized GOx as follows:

GOx(FAD) + 2e + 2H" < GOx(FADHS,). (5)

3.2.8. Effect of the scan rate
The effect of various scan rates on the cyclic voltammo-
grams of GOx/NiO/F-CNTs electrodes is presented in
Figure 8. AE, of GOx peaks has slightly increased with
an increase in the scan rate. Moreover, the currents of
cathodic and anodic peaks are closely equal and show
linear behavior (R? = 0.99) versus the scan rate in
the range of 10-250 mV/s. The results (Figure 8(b))
illustrate that the reduction-oxidation process is quasi
reversible and surface confined [31].

The plots of cathodic and anodic potential peak

(E,) versus the log of scan rate are given in Figure 8(c).
As shown, at a scan rate of 80 to 250 mV/s, two lines
with the slopes of £2.3RT /anF' are generated. In this
equation, « is the coefficient of charge transfer, n is the
number of transferred electrons, and other parameters
are constant (T' = 298 K, R = 8.314 J/mol.K, F' =
96485). Through the slope of plotted lines, the mean
values of @ and n were approximated to be 0.39 and 2,
respectively. In addition, the charge transfer rate
constant (ks) of the enzyme at a scan rate of 250 mV/s
was evaluated to be 1.12 £ 0.1 s~! based on Laviron’s
equation [32]:

log ks =alog(l — a) + (1 —a)loga

RT nFAE,
~log((7,) — el —a)5apr (6)

The average GOx concentration (I') was calculated
through the following equation:
n2F2AT

L=, (7)
where A denotes the surface area of the treated elec-
trode (0.125 cm?), and I, is the peak current. Through
the slope of plot of peak currents versus scan rate
(Figure 8(b)), the GOx concentration was calculated
to be 1.2 x 107° mol/cm?. In addition, the ratio of
GOx/NiO was estimated to be about 5.4, suggesting
that the multi-layered GOx was involved in the process
of electron transferring.

3.2.4. Glucose detection using
GOz/NiO/F-CNTs/GCE

The response of GOx/NiO/F-CNTs/GCE toward the
addition of glucose was studied using cyclic voltam-
metry [33,34], the results of which are shown in
Figure 9. The oxidation current decreases from 19.8
to 11.0 pA with a sequential glucose addition due to
the blocking effect of the modified electrode [28]. The
reaction mechanism of glucose in the sensor matrix was
proposed to be [13]:

Glucose + GOx(FAD) — Gluconolactone

+ GOx(FADH,), (8)
2NiO + 2H,0, — 2Ni(OH), + O, (9)
20H™+2Ni(OH), < 2H,0+2NiO(OH)+2e~, (10)
GOx(FADH,) + 2NiO(OH) — GOx(FAD)

+ 2NiO + 2H,0. (11)

Figure 9, inset, presents the corresponding curve
of calibration based on anodic faradic current response.
The current response in the range of 0.2-3.8 mM
presents a linear performance with the equation of:
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Figure 9. Cyclic voltammograms of the
GOx/NiO/F-CNTs/GCE in the presence of 0.2 (outer) to
3.8 mM (inner) glucose. Inset: the curve of calibration for
oxidation currents at different glucose concentrations.

I(pA) = —2.16C (mM) + 19.32 (R? = 0.99).

The modified electrode shows relatively high sensitivity
of 2.16 pA/mM that may be assigned to the high sur-
face area of F-CNTs and high electro-catalytic activity
and adsorption ability of NiO-NPs. The detection
limit of the fabricated electrode was estimated to
be 93.0 uM based on a signal-to-noise ratio of 3.
Table 1 reports the analytical characteristics of the
GOx/NiO/F-CNTs/GCE. This result is comparable
to other works that have utilized nickel oxide in the
medium of immobilization. It is noted that the
electrode preparation process in the present work is
fairly faster and simpler than that of other reports.

4. Conclusions

GOx/NiO/F-CNTs modified electrodes for glucose de-
tection were fabricated by the treatment of nanotubes
in the DBD plasma reactor in humid air, followed by
electrodeposition of NiO and immobilization of GOx.
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Table 1. The comparison of GOx/NiO/F-CNTs/GCE and other similar electrodes.

Electrode Formal Sensitivity Detection Linear Ref.
material potential (V) ( pA.mM ~') limit (uM) range (mM)
GOx/NiO/GC —0.42 0.44 24 0.03-5 [34]
CHIT* /GOx/NiO/GC 0.35 3.43 47 1.5-7 [19]
NiCFP® electrode 0.6 3.3 1 0.002-2.5 [7]
GOx/NiO/F-CNTs/GCE -0.52 2.16 93 0.2-3.8 This work

@ Chitosan; P Carbon nanofiber paste.

The functionalization increased the oxygen-containing
groups of MWCNTSs from 1.5 to 5.6%, which in turn led
to an important improvement of the anodic charging
current. The larger number of oxygenated groups
rolled as active centers for the uniform decoration of
the F-CNTs with 10 nm NiO-NPs. This decoration
improved the electroactive surface area and enhanced
the immobilization of GOx by electrostatic attraction
on the basic NiO. The presence of NiO-NPs improved
electron transfer efficiency and reversibility of GOx
reduction-oxidation wave, which is a quasi-reversible
and surface-confined process.
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