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Abstract. In the present investigation, static free vibration and buckling response of
laminated composite plates based on coupling of Truncated Hierarchical B-splines (THB-
splines) with Reproducing Kernel Particle Method (RKPM) through higher-order shear
deformation plate theory are presented. The coupled THB-RKPM method blends the
advantages of the isogeometric analysis and meshfree methods. Since under certain
conditions, the isogeometric B-spline and NURBS basis functions are exactly represented
by reproducing kernel meshfree shape functions, recursive process of producing isogeometric
bases can be omitted. More importantly, a seamless link between meshfree methods and
isogeometric analysis can easily be de�ned, which provides an authentic meshfree approach
to re�ning the model locally in isogeometric analysis. This procedure can be carried out
using truncated hierarchical B-splines to construct new bases and adaptively re�ne them.
It is shown that the THB-RKPM method is ideally appropriate for local re�nement of
laminated composite plates in the framework of isogeometric analysis. The 
exibility of
the proposed method for re�ning basis functions leads to decrease in the computational
cost without losing the accuracy of the solution. Numerical examples considering di�erent
boundary conditions and various aspect ratios, sti�ness ratios, and �ber orientations
demonstrated validity and versatility of the proposed method.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, increase in the use of conventional
and unconventional multilayered structures has led to
major improvements in aerospace, automotive, and
ship vehicles. Owing to the high strength to weight
and sti�ness to weight ratios, composite structures
have attracted great attention of researchers and en-
gineers [1,2]. Besides possessing superior compos-
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ite material properties, laminated composites provide
convenient design through tailoring of the stacking
sequence and layer thickness to optimize the desired
characteristics for engineering applications, e.g., some
of the structures such as sandwich panels, which consist
of 3 layers, are a special case of laminated composite
structures with large di�erence between material prop-
erties of core and face sheets [3] or layered ceramic-
metallic structures, which are employed as thermal
protection, have been used for over three decades [4].
On the other hand, new unconventional materials, such
as piezoelectric ones, which are used in Functionally
Graded Materials (FGMs) [5,6], and the so-called smart
structures [7] are characterized by continuously varying
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mechanical and/or thermal properties. In fact, smart
structures, which are distinguished from conventional
ones by the presence of integrated actuator, sensor,
and controller elements, involve interactions between
mechanical and electric �elds. They are also designed
to actively react to disturbance forces and maintain or
even improve the level of performance.

As far as multilayered structures are widely used
in practice, studying the bending and free vibration as
well as buckling analysis of laminated composite struc-
tures is an indispensable task in many applications.
Moreover, the advent of new materials and the use
of multilayered con�gurations have led to a signi�cant
increase in the modelling of plates and shells. To date,
various methods have been proposed by a number of
researchers concentrating on the analysis of laminated
composite plates and shells, e.g., Carrera et al. con-
sidered re�ned �nite elements solutions for anisotropic
laminated plates [8] and Reddy studied linear and
nonlinear �nite element analyses of laminated plates
and shells [9]. Due to the limitations of �nite element
methods in the exact modeling of geometries, the so-
called isogeometric analysis (IGA) has been proposed
by Hughes et al. [10] with the aim of integrating the
Finite Element Analysis (FEA) into the conventional
NURBS-based Computer Aided Design (CAD) tools.
In addition to representing exact geometries, CAD
basis functions (e.g., NURBS) can provide any order of
continuity through a simple procedure. Hence, many
researchers have exploited the higher-order continuity
of isogeometric formulation in the analysis of laminated
plates and shells, e.g., a model for laminated composite
plates and shells based on the �nite cell method in the
framework of isogeometric analysis was proposed by
Guo and Ruess [11]. Recently, a formulation based on
NURBS basis functions to study the global response
of cross-ply laminated composites was investigated by
Natarajan et al. [12], which su�ered from shear locking.
Due to the use of lower-order NURBS basis functions,
they proposed an arti�cial shear correction factor that
was problem dependent. In addition, Thai et al. [13]
developed a NURBS-based isogeometric approach as-
sociated with the layerwise deformation theory for
analysis of laminated composites and sandwich plate
structures. In another study by Thai et al. [14], an
isogeometric formulation based on third-order shear
deformation theory was presented for static free vi-
bration and buckling analysis of laminated composite
plate structures. However, CAD basis functions possess
important properties, which are required in numeri-
cal analysis, but su�er from the rigidity of classical
tensor-product construction. During the last decades,
considerable attention has been given to circumventing
the tensor-product constructions, which are expressed
in terms of B-spline representation. These construc-
tions hinder the possibility of accommodating trimmed

surfaces, adaptive local re�nement, or incongruent
surface descriptions at opposing faces. Several di�erent
schemes have been developed to provide more 
exible
solutions that support localized re�nement. Some of
the relevant issues are addressed in T-splines [15], hier-
archical B-splines [16], PHT-splines [17], locally re�ned
splines [18], and truncated hierarchical B-splines [19].
T-splines are de�ned by control meshes that allow the
introduction of the so-called T-junctions. Since the
initial de�nition of T-splines did not guarantee lin-
ear independence [20], analysis-suitable T-splines [21]
were subsequently introduced to provide this property.
However, local re�nement in analysis-suitable T-splines
may go beyond the domain of interest. PHT-spline{a
polynomial spline over hierarchical T-meshes{was in-
troduced for stitching several surface patches [17]. The
basis functions of PHT-splines have the main properties
of B-splines, such as non-negativity, local support, and
partition of unity. They also have the same important
properties as those of T-splines, like adaptivity. In
contrast to T-splines, which are rational, PHT-splines
are polynomial and they are only C1-continuous, which
can be mentioned as their main drawback. Locally
Re�ned Splines (LR-Splines) are based on splitting
the tensor-product of basis functions, which leads to
challenges with the linear independence [18] that was
solved in [22]. Local re�nement strategies for adaptive
isogeometric analysis using LR B-splines are proposed
in [23].

Hierarchical B-splines were �rst introduced by
Forsey and Bartels [16] and have further been elabo-
rated on in [24]. The classical hierarchical B-splines
su�er from linear independence property, which has
been solved by Kraft [24]. A major drawback of stan-
dard hierarchical B-splines is their weakness in provid-
ing the partition of unity property. In order to alleviate
this disadvantage, a truncated mechanism was devel-
oped in [19]. As reported in [19], the truncated basis
for hierarchical splines ensures partition of unity, linear
independence, and local re�nability. Since THB-splines
possess the convex hull property, they are appropriate
for geometric modeling and surface reconstructions;
thus, they can be used in computer aided design.
Additionally, THB-splines are suitable for adaptive
numerical solutions; therefore, they can be utilized as
an e�ective approach to isogeometric analysis.

On the other hand, many e�orts have been made
to blend IGA and meshfree methods in order to open
a pathway for taking advantage of the strengths of
both techniques. The so-called meshless or meshfree
methods have been focused on overcoming the di�-
culties associated with structured nodal connectivity.
However, most of the meshless methods [25] are based
on an approximation of �eld variables and do not
satisfy Kronecker delta property [26]. Some researchers
have paid great attention to blending advantageous
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techniques of meshfree approximants and isogeometric
analysis, e.g., in [27], Local Maximum Entropy (LME)
approximation was coupled with isogeometric analysis.
This coupling strategy exploited the best features
and overcame the main drawbacks of each of these
approximants [27]. In fact, the IGA method preserved
veracity representation of problem domain boundary
and meshfree methods dealt with unstructured grids
and the possible local re�nement. In another re-
search, Valizadeh et al. [28] proposed a methodology
based on the coupling of isogeometric analysis with
Reproducing Kernel Particle Method (RKPM), which
was a representative of a class of meshfree methods.
The domain interior was discretized by RKPM, while
IGA provided geometrically exact model discretization.
Another meshless method, namely Natural Element
Method (NEM), developed by Sambridge et al. [29],
endowed advantageous properties of both meshless and
�nite element methods [26]. In a research by Gonzalez
et al. [30], it was shown that NEM was equivalent
to isogeometric analysis. However, this method did
not rely on an underlying tensor-product quadrilateral
mesh [30]. Zhang and Wang [31] introduced a consis-
tently coupled isogeometric-meshfree method based on
the reproducing conditions. In order to achieve a con-
sistently coupled approximation, a mixed reproducing
point vector was proposed to ensure arbitrary order
monomial reproducibility for isogeometric basis func-
tions and reproducing kernel meshfree shape functions.
Chi et al. [32] presented a meshfree analysis framework
whereby the NURBS boundary surface was provided
by CAD tools to describe the exact geometry of the
problem and the 
exibility of meshfree approximants
was used to enhance the solution accuracy. Although
isogeometric meshfree coupled methods combine the
bene�t of geometry exactness of IGA with adaptivity
of meshfree approximations, the basis functions in
these coupled methods are di�erent. To circumvent
this drawback, Zhang and Wang [31] recently intro-
duced a reproducing kernel meshfree formulation for
isogeometric basis functions. It was shown that by
properly introducing meshfree nodes, support size,
and consistency conditions, the reproducing kernel
meshfree shape functions could exactly recover B-spline
and NURBS basis functions. Moreover, the proposed
formulation o�ered a meshfree strategy for the local
model re�nement in isogeometric analysis.

The present paper is based on the new concept
of THB-RKPM method, which was established in [33],
to investigate the capability of hierarchical bases with
truncation and reproducing kernel particle method
in bending, free vibration, and buckling analysis of
laminated composite plate structures by means of
showing numerical results for well-known benchmark
examples. In the proposed method, the meshfree
construction of B-spline or NURBS basis functions is

carried out through a one-step approach instead of
using recursive process. Then, truncation mechanism
is used to provide local model re�nement. First, the
initial shape or basis functions are de�ned by knot
vectors. Then, the corresponding meshfree nodes are
obtained according to the reproducing kernel formu-
lation. Thereafter, instead of inserting additional
knots into the initial knot vectors, adaptive re�nement
using truncated hierarchical splines is used to compute
the new linear reproducing points. Thus, the local
re�nement is achieved by adding new meshfree nodes
to the originally left nodes. It turns out that a
seamless link between meshfree methods and truncated
hierarchical B-splines can conveniently be de�ned.

The paper is arranged as follows: the basic de�ni-
tions of B-splines, THB-splines, RKPM basis functions,
and the coupled THB-RKPM method are provided in
Section 2. The isogeometric formulation of laminated
composite plates using THB-RKPM based on HSDT is
presented in Section 3. Section 4 gives various numeri-
cal examples to illustrate local re�nement performance
using the coupled isogeometric-meshfree method in
comparison with the NURBS uniform re�nement case.
Concluding remarks are provided in Section 5.

2. Isogeometric fundamentals in summary

In this section, a brief description of B-splines and
NURBS is given. At �rst, some basic de�nitions of
knot vectors as well as B-spline basis functions, curves,
and surfaces are provided. Then, the hierarchical and
truncated hierarchical B-splines are introduced. The
reproducing kernel particle method and its relation
with isogeometrics are also discussed here.

2.1. De�nition and basic properties
A knot vector given as � = f�1; �2; � � � ; �n+p+1g is a
non-decreasing sequence of parameter values, where
�i represents the ith knot, n is the number of basis
functions, and p is the polynomial degree. When the
�rst and last knots of a knot vector have multiplicity
p+ 1, the vector is known as open. Univariate B-spline
basis functions are de�ned recursively using Cox-de
Boor formula [34]:

Ni;0(�) =

(
1 if �i � � � �i+1

0 otherwise
(1)

and for p � 1:

Ni;p(�) =
� � �i

�i+p � �iNi;p�1(�)

+
�i+p+1 � �
�i+p+1 � �i+1

Ni+1;p�1(�): (2)

A basis function of degree p spans up to p+ 1 elements
and the basis functions constructed by open knot
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Figure 1. Cubic B-splines basis functions.

vectors are interpolatory at the boundaries. Moreover,
they possess important properties such as partition of
unity, non-negativity, and linear independence. An
example of cubic basis functions with an open knot
vector is shown in Figure 1.

The reproducing conditions for B-spline basis
functions can be de�ned as follows [32]:

nX
i=1

Ni;p(�)p
�
�[�]
i

�
= p(�); (3)

where p(�) is a monomial basis vector given as:

p(�) =
�

1; �; �; �2; ��; �2; � � � ; �p; � � � ; �p	T ; (4)

and p
�
�[�]
i

�
is de�ned as:

p
�
�[�]
i

�
=
�

1; �[1]
i ;
�
�[2]
i

�2
; � � � ;��[p]

i

�p�T
; (5)

in which �[l]
i is the reproducing point for the monomial

�l. By de�ning an operator Slp[G], the reproducing
point �[l]

i can be expressed as:

�[l]
i =

l

vuutSlp
h
Gi+pi+1

i
Clp

; Clp =
p!

l!(p� l)! : (6)

If needed, refer to [32] for more details on the operator
Slp[G] and reproducing points of B-spline basis func-
tions.

A piecewise polynomial B-spline curve is given by
the linear combination of control points Pi and the
respective basis functions Ni;p(�):

C(�) =
nX
i=1

Ni;p(�)Pi: (7)

A B-spline surface is computed by the Cartesian prod-
uct of B-spline basis functions Ni;p(�) and Mj;q(�) in
two parametric dimensions � and �:

S(�; �) =
nX
i=1

mX
j=1

Ni;p(�)Mj;q(�)Pi;j : (8)

The generalization of B-splines, called NURBS, has the
ability to exactly represent all quadric surfaces, such as
cylinders, spheres, ellipsoids, etc. NURBS are rational
functions of B-splines and, similar to B-spline ones,
NURBS-based curves and surfaces are de�ned as:

C(�) =

nP
i=1

Ni;p(�)wiPi

nP
j=1

Nj;p(�)wj
; (9)

S(�; �) =

nP
i=1

mP
j=1

Ni;p(�)Mj;q(�)wi;j

nP
k=1

mP
l=1

Nk;p(�)Ml;q(�)wi;j
Pi;j ; (10)

where wi is a set of positive weights, which allows
NURBS to exactly represent conic sections.

2.2. Hierarchical B-splines
Given a knot vector � = f�1; �2; � � � ; �n+p+1g, the B-
spline basis functions, Ni;p(�), with a local support on
[�i; �i+p+1] are re�nable, which allows construction of
hierarchical B-splines. Suppose N `

i;p represents basis
functions with the parametric domain 
` de�ned on
the knot vector �` at the level ` (` = 0; 1; � � � ). B-spline
basis functions, N `+1

i;p , associated with level ` + 1 are
obtained by bisecting the knot vector of the previous
level `. The basis functions de�ned on the re�ned knot
sequence, �`+1, are the children of N `

i;p de�ned on
�`. Therefore, a basis function N `

i;p on the level ` can
be represented as a linear combination of p + 2 of its
children as follows:

N `
i;p(�) =

p+1X
r=0

�prN
`+1
2i+r;p(�) with

�pr =
1
2p

�
p+ 1
r

�
; (11)

where N `+1
2i+r;p(�) represents the children of N `

i;p and
�pr represents the binomial coe�cients. For bivariate
basis functions, the procedure is the same; given two
knot vectors � and H, a bivariate B-spline basis
Ni;p(�; �) with local support [�i; �i+p+1]� [�j ; �j+q+1]
has (p + 2) � (q + 2) children, in which p and q are
polynomial degrees of basis functions. The process
of hierarchical re�nement, replacing coarse grid bases
with �ne B-spline ones, is as follows: Suppose N ` is
the tensor product of B-spline basis functions at level
` with parametric domain 
`. Then, �nd a set of basis
functions N 2 N ` in such way that supp N 6� 
`+1.
Next, identify the children of N at level ` + 1 so that
N 2 N `+1 and supp N � 
`+1. Finally, gather all the
active basis functions at levels ` and `+ 1 as follows:

H =
�
N 2 N ` : supp N 6� 
`+1	
[ �N 2 N `+1 : supp N � 
`+1	

for ` = 0; � � � ; `max � 1: (12)

Eq. (12) de�nes the recursive construction of hierarchi-
cal B-splines. However, hierarchical bases are globally
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linearly independent [24], but they do not ensure
partition of unity, which leads to overlapping of basis
functions that may produce bad numerical condition-
ing. To overcome the de�ciencies of hierarchical B-
splines, the truncated operation is presented [19].

2.3. Truncated hierarchical B-splines
The truncation mechanism for hierarchical B-splines
basis was �rst introduced by Giannelli et al. [19].
Truncated hierarchical B-splines satisfy partition of
unity, reduce support overlapping, and preserve the
geometry. Since they are natural extensions of classical
B-splines, they have similar properties such as partition
of unity, convex hull, non-negativity, and compact
support. Very similar to hierarchical B-splines, trun-
cated bases can be constructed only by truncating
the basis functions N 2 N ` with supp N 6� 
`+1.
This mechanism is using Eq. (11) and de�ning a basis
function t � 
` with respect to the �ner basis of
N 2 N `+1, as follows:

t =
X

N2N `+1

�`+1
N N; �`+1

N 2 R: (13)

The truncated basis function of t with respect to N `+1

can be expressed as:

trunc`+1t =
X

N2N `+1;supp N 6�
`+1

�`+1
N N;

�`+1
N 2 R: (14)

According to Eq. (14), the truncation of a basis
function is to discard active children whose support
has a non-empty overlap with 
`+1. It should be
noted that the truncation of a function is applied in
terms of basis functions of the �ner hierarchical levels
through a recursive procedure. Figure 2 illustrates
the construction process of hierarchical and truncated

hierarchical B-splines for two levels, namely 0 and 1, of
B-spline basis functions. The level-0 basis functions,
which are shown in blue curves, are de�ned on the
cubic knot vector �0 = f0; 1; � � � ; 8g, whereas green
curves represent level-1 basis functions obtained by
subdivision of �0. Let the blue dashed curve with the
black area domain 
1 in Figure 2(a) be such a basis
function to be re�ned. In terms of re�nability, the
level-0 blue dashed basis function can be replaced by
its 5 children de�ned at level 1, as shown in green solid
curves in Figure 2(b). All level-1 basis functions whose
support is not in 
1 are depicted as dashed curves and
known as passive basis. The remaining solid curves are
known as active and, by taking the union of all solid
curves from levels 0 and 1, the hierarchical B-spline
bases of level 1 can be obtained; see Figure 2(c). As
can be seen in the construction process of hierarchical
basis, there are too many overlaps of basis functions at
di�erent levels, which leads to weakness in providing
the partition of unity property. To resolve this issue,
among the 4 basis functions adjacent to the blue dashed
curve, those with active level-1 basis functions should
be truncated. Each of the blue solid curves has 5
children; each child with supports fully contained in 
1

should be discarded and the remaining active children
are collected to form the truncated hierarchical B-
splines; see Figure 2(d). Similarly, the truncation
mechanism can be implemented for bivariate basis
functions. Figure 3 shows an example of bivariate B-
spline and truncated hierarchical B-spline basis func-
tions for the procedure presented in Figure 2.

2.4. RKPM basis functions
The parametric domain 
�, which is discretized by
a set of particles, �k (k = 1; � � � ; np), is employed
in this study to present meshfree shape functions.
The association between a particle, �k, and a �eld
point, �, is de�ned by the kernel function �(�k �
�). The in
uence domain of kernel function is often

Figure 2. The procedure to construct univariate cubic HB- and THB-splines: (a) The blue dashed curve represents a
to-be-re�ned basis function known as passive, (b) the green solid curves represent active level-1 basis functions, (c) the
combination of active basis functions from the previous two levels to construct the hierarchical B-splines, and (d) �ve
children of each solid curve with supports fully contained in the black area are discarded and the remaining active basis
functions are collected to construct THB-splines.
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Figure 3. Truncation mechanism for bivariate basis functions: (a) Uniform B-spline basis functions and (b) truncated
hierarchical B-spline basis functions.

expressed as supp (�k) measured by z. The union of
nodal supports covers the parametric domain 
�. By
imposing the polynomial reproducing condition, the
discrete Reproducing Kernel (RK) can be de�ned as:

uh(�) =
npX
k=1

�(�)dk; (15)

where dk is a coe�cient associated with node k and
�(�) is the meshfree shape function that can be
expressed as [35]:

�k(�) = pT (�)a(�)�(�k � �); (16)

where p(�) is de�ned according to Eq. (4) and a(�)
is an unknown coe�cient vector that can be obtained
by enforcing the pth order reproducing conditions as
follows:

npX
k=1

�k(�)�ik�
j
k = �i�j ; 0 � i+ j � p: (17)

Eq. (17) can be rewritten in a vector form with the aid
of Eq. (4):

npX
k=1

�k(�)p(�k) = p(�): (18)

Substituting Eq. (16) into Eq. (18) yields:

M(�)a(�) = p(�); (19)

where M(�) is the moment matrix:

M(�) =
npX
k=1

pT (�k)p(�k)�(�k � �): (20)

With the aid of Eq. (19), the meshfree shape function
�k(�) can be obtained as:

�k(�) = pT (�k)M�1(�)p(�)�(�k � �): (21)

2.5. Meshfree local re�nement based on
THB-splines

As discussed in [31], after properly introducing mesh-
free nodes, support size, and consistency conditions,
the reproducing kernel meshfree shape functions are ca-
pable of exactly representing the isogeometric B-spline
and NURBS basis functions. This correspondence
provides a great tool for local model re�nement, and
node insertion can readily be realized in isogeometric
analysis. In order to make great 
exibility regarding
adaptive local re�nement of IGA basis functions, this
technique is coupled with truncated hierarchical B-
splines; see [33]. For the sake of brevity, the local
re�nement procedure is discussed for one-dimensional
basis functions. The readers who are interested in the
2D case can refer to [33] for more details.

In the 1D case, let us consider initial basis
functions de�ned by the following knot vector:

� = f0; 0; 0; 1; 2; 3; 4; 5; 6; 6; 6g: (22)

The corresponding meshfree nodes are obtained accord-
ing to Eq. (6) as:

�[1] =
�

0;
1
2
;

3
2
;

5
2
;

7
2
;

9
2
;

11
2
; 6
�
: (23)

The initial basis functions with the aid of reproducing
kernel meshfree formulation are shown in Figure 4. The
corresponding meshfree nodes are denoted by green
circles.

Figure 4. Initial basis functions with corresponding
meshfree nodes before local re�nement.
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Now, suppose the domain 
e� = [2; 3] is the area
to be re�ned. First, the related basis function spans
in the domain are designated by the green dashed
curve. According to Eq. (11), this basis function can be
represented by its children. Among the children, those
with supports fully contained in 
e� should be discarded
and the remaining children are considered as active. By
collecting all the active basis functions, the truncated
hierarchical B-splines can be constructed. The related
meshfree nodes based on truncation mechanism are:

�[1] =
�

0;
1
2
;

3
2
;

19
8
;

5
2
;

21
8
;

7
2
;

9
2
;

11
2
; 6
�
: (24)

The local model re�nement in a preferable meshfree
environment with the new corresponding meshfree
nodes (blue and red circles) is depicted in Figure 5.
It should be noted that the meshfree node from the
previous level is kept and the new nodes are added into
the domain. In comparison with [31], re-computing
the shape functions based on the new node group is
omitted, since the original basis functions are truncated
to produce the new basis ones. This means that,
instead of calculating all basis functions, only a number
of bases are modi�ed and new meshfree nodes are
produced. For �ne levels of re�nement, one can
see [33]. The construction process of meshfree nodes
is illustrated in Algorithm 1, where the step associated
with truncation mechanism is discussed in Section 2.3.

It should be noticed that the new meshfree nodes
are constructed through the truncation mechanism;
they are interpreted as the �eld variables and the values
of solution �eld are de�ned in these nodes.

Figure 5. Re�ned basis functions with the corresponding
meshfree nodes after local re�nement.

Algorithm 1. THB-RKPM re�nement.

3. An isogeometric formulation for laminated
composite plates using THB-RKPM based
on HSDT model

3.1. Reddy's third-order shear deformation
plate theory

A higher-order shear deformation plate theory has been
developed by Reddy [36] in which the transverse shear
strains are assumed to be parabolically distributed
across the thickness. The displacement components are
de�ned as:

U(x; y; z) =u0(x; y) + z�y(x; y)

+ cz3
�
@w0(x; y)

@x
+ �y(x; y)

�
;

c =
�4
3h2 ; (25a)

V (x; y; z) = v0(x; y)� z�x(x; y)

+ cz3
�
@w0(x; y)

@y
� �x(x; y)

�
; (25b)

W (x; y; z) = w0(x; y); (25c)

where u0, v0, and w0 denote the displacements of an
arbitrary point in the plate, and �x and �y are the
rotations of the normal to the mid-plane about the x
and y axes, respectively. The in-plane strain vector,
f"g, and transverse shear strain vector, f
g, have the
following forms; (; ) indicates the partial derivative:

f"g =

8<: "x
"y

xy

9=; =

8<: u0;x
v0;y

u0;y + v0;x

9=;+ z

8<: �y;x��x;y
�y;y � �x;x

9=;
+ cz3

8<: w0;xx + �y;x
w0;yy � �x;y

2w0;xy + �y;x � �x;x

9=; ;
(26a)

f
g=
�

xz

yz

�
=
�
�y+w0;x��x+w0;y

�
+3cz2

�
�y+w0;x��x+w0;y

�
:

(26b)

Or the compact form is:

f"g = f"mg+ z f"bg+ cz3 f"pg ; (27a)

f
g = f
sg+ 3cz2 f
swg ; (27b)

where "m, "b, and "p denote membrane linear strain,
bending strain, and warping strain, respectively; also,

s and 
sw indicate the �rst-order transverse shear
strain and shear-warp strain, respectively. The stress-
strain relations of an orthotropic layer in the local
coordinate system can be expressed as:
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8>>>><>>>>:
�1
�2
�12
�13
�23

9>>>>=>>>>;=

266664
Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

377775�
8>>>><>>>>:
"1
"2

12

13

23

9>>>>=>>>>; ;
(28)

where the constants are given as:

Q11 =
E1

1� �12�21
; Q12 =

�12E2

1� �12�21
;

Q22 =
E2

1� �12�21
;

Q66 = G12; Q44 = G13; Q55 = G23: (29)

In the above equation, E1 and E2 are Young's moduli
parallel to and perpendicular to the �bers orientation,
respectively; G12, G23, and G13 are the shear moduli;
and �12 and �21 are the Poisson's ratios.

Since the laminate is usually made of several
orthotropic layers the material coordinate system of
which is oriented arbitrarily with respect to the lami-
nate axes, the constitutive equation of each layer must
be transformed to the laminate coordinates (x; y; z).
The constitutive equation which relates the stresses to
the strains in the laminate coordinates can be stated
as:8>>>><>>>>:

�x
�y
�xy
�xz
�yz

9>>>>=>>>>;=

266664
�Q11 �Q12 �Q16 0 0
�Q21 �Q22 �Q26 0 0
�Q61 �Q62 �Q66 0 0
0 0 0 �Q44 �Q45
0 0 0 �Q54 �Q55

377775�
8>>>><>>>>:
"x
"y

xy

xz

yz

9>>>>=>>>>; ;
(30)

where �Qij (i; j = 1; 2; 4; 5; 6) represents the trans-
formed reduced sti�ness coe�cients of the plate [9].
The stress resultants and couples are de�ned by:24Nx Mx Px

Ny My Py
Nxy Mxy Pxy

35 =

h
2Z

�h2

8<:�x
�y
�xy

9=; (1; z; z3)dz; (31a)

�
Qx Rx
Qy Ry

�
=

h
2Z

�h2

�
�xz
�yz

�
(1; z2)dz; (31b)

where N and Q are the membrane and transverse shear
forces, respectively; M is bending moment per unit
length; and P and R are the higher-order bending
moment and shear forces, respectively. By substituting
Eq. (28) into Eq. (31), the stress resultants are related
to the strains as follows:24 �N

�M
�P

35 =

24A B E
B D F
E F H

358<:"m"b"p
9=; ; (32a)

� �Q
�R

�
=
�
As Ds

Ds F s

��

s

sw

�
; (32b)

where Aij , Bij , etc. are the plate sti�nesses de�ned by:

(Aij ;Bij ; Dij ; Eij ; Fij ;Hij)

=
NX
k=1

zk+1Z
zk

�Q(k)
ij (1; z; z2; z3; z4; z6)dz; (33a)

�
Asij ; D

s
ij ; F

s
ij
�

=
NX
k=1

zk+1Z
zk

�Q(k)
ij (1; z2; z4)dz: (33b)

The sti�nesses in Eq. (33a) are de�ned for (i; j =
1; 2; 6) and other sti�ness coe�cients in Eq. (33b) are
de�ned for (i; j = 4; 5).

3.2. Governing equations
The governing equations of the higher-order theory
will be derived according to Hamilton's variational
principle:

t2Z
t1

�(U �W � T )dt = 0; (34a)

U = U1 + U2; (34b)

in which the virtual strain energy, �U1, the potential
energy subjected to in-plane mechanical loads, �U2, the
virtual work done by the applied external forces, �W ,
and the virtual kinetic energy, �T , are given by:

�U1 =
t2Z
t1

�
1
2
�
Z
�ij"ijdv

�
dt; (35)

�U2 =
t2Z
t1

�
1
2
�
Z
�0
ijus;i:us;jdv

�
dt; (36)

�T =
t2Z
t1

�
1
2
�
Z
f _ugT � f _ug dv

�
dt; (37)

�W =
t2Z
t1

�Z
F:�udv

�
dt: (38)

In the above equations, �ij and "ij are stress and strain
components, respectively; � is the density of the plate
material; �0

ij denotes the initial stress components due
to in-plane mechanical loads; and us is displacement
components (U; V;W ). Using THB-RKPM method,
the variables at the control points, also called control
variables, are the in-plane extensions, transverse de
ec-
tion, and the rotations in a vector form as follows:

d = fu0; v0; w0; �x; �yg: (39)
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The solution �eld is approximated as:

u =
n�mX
k=1

trunc`tkdk; (40)

where trunc`tk is the coupled THB-RKPM basis of the
level ` and n �m is the number of control points. By
substituting Eq. (40) into Eq. (27), the relationship
between strains and displacements can be expressed as:�

"m "b "p 
s 
sw
�T

=
n�mX
k=1

�
Bmk Bbk Bpk Bsk Bswk

�
dk: (41)

The strain-displacement matrices are written as:

[Bmk ] =

24Rk;x 0 0 0 0
0 Rk;y 0 0 0

Rk;y Rk;x 0 0 0

35 ; (42a)

�
Bbk
�

=

240 0 0 Rk;x 0
0 0 0 0 Rk;y
0 0 0 Rk;y Rk;x

35 ; (42b)

[Bpk ] = c

240 0 Rk;xx Rk;x 0
0 0 Rk;yy 0 Rk;y
0 0 2Rk;xy Rk;y Rk;x

35 ; (42c)

[Bsk] =
�
0 0 Rk;x Rk 0
0 0 Rk;y 0 Rk

�
; (42d)

[Bswk ] = 3c
�
0 0 Rk;x Rk 0
0 0 Rk;y 0 Rk

�
: (42e)

From Eqs. (27) and (31), �U1 can be obtained as:

�U1 =
1
2
�
Z



�
["m]T [N ] + ["b]

T [M ] + ["p]
T [P ]

+ [
s]
T [Q] + [
sw]T [R]

�
d
: (43)

By using Eq. (32) in Eq. (43) and applying the strain-
displacement matrices, �U1 can be rewritten as:

�U1 =
1
2
�fdgT ([K])fdg; (44)

where [K] is the linear sti�ness matrix and can be
calculated as follows:

[K] =
Z



�
[Bm]T [A] [Bm] + [Bm]T [B] [Bb]

+ [Bm]T [E] [Bp]
�
d
 +

Z



�
[Bb]

T [B] [Bm]

+ [Bb]
T [D] [Bb] + [Bb]

T [F ] [Bp]
�
d


+
Z



�
[Bp]

T [E] [Bm] + [Bp]
T [F ] [Bb]

+ [Bp]
T [H] [Bp]

�
d
 +

Z



�
[Bs]

T [As] [Bs]

+ [Bs]
T [Ds] [Bsw] + [Bsw]T [Ds] [Bs]

+ [Bsw]T [F s] [Bsw]
�
d
: (45)

With respect to displacement components (U; V;W ),
Eq. (36) can be obtained as:

�U2 =
1
2
�
Z
V

�
�0
x
�
U2
x + V 2

x +W 2
x
�

+ �0
y
�
U2
y + V 2

y +W 2
y
�

+ 2�0
xy (UxUy + VxVy +WxWy)

+2�0
xz(UxUz+VxVz)+2�0

yz(UyUz+VyVz)
�
dV:
(46)

Like Eq. (35), Eq. (46) can be expressed in expanded
form as:

�U2 =
1
2
�fdgT [KG] fdg; (47)

where:

[KG] =
Z



[G]T [� ][G]d
; (48)

in which [KG] is the geometric sti�ness matrix and
other quantities are as follows:

[G]T =

266664
Rk;x Rk;y 0 0 0 0

0 0 Rk;x Rk;y 0 0
0 0 0 0 Rk;x Rk;y
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

Rk;x Rk;y 0 0
0 0 Rk;x Rk;y

377775 ; (49)

[� ] = h

266664
�̂0 0 0 0 0
0 �̂0 0 0 0
0 0 �̂0 0 0
0 0 0 �̂0 0
0 0 0 0 �̂0

377775; (50)

where h is the thickness of the plate and �̂0 is a matrix
related to pre-buckling stresses:
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�̂0 =
�
�0
x �0

xy
�0
xy �0

y

�
: (51)

For free vibration analysis of composite plates, Eq. (37)
can be rewritten as:

�T =
1
2
�
Z
�
�

_U2 + _V 2 + _W 2
�
dv: (52)

With the aid of Eq. (40) and substituting Eq. (25a) into
Eq. (52), the virtual kinetic energy can be obtained as:

�T =
1
2
�
n

_d
oT

[M ]
n

_d
o
; (53)

where the global mass matrix [M ] is given as:

[M ] =
Z h

~N
iT

[m]
h

~N
i
d
; (54)

in which the details of [ ~N ]T =
�
N1 N2 N3

	
and [m]

are as follows:

N1 =

24Rk 0 0 0 0
0 0 0 Rk 0
0 0 Rk;x Rk 0

35 ;
N2 =

240 Rk 0 0 0
0 0 0 0 Rk
0 0 Rk;y 0 Rk

35 ;
N3 =

240 0 Rk 0 0
0 0 0 0 0
0 0 0 0 0

35 ; (55)

[m] =

24I0 0 0
0 I0 0
0 0 I0

35 ;
where:

I0 =

24 I1 I2 cI4
I2 I3 cI5
cI4 cI5 c2I7

35 ;
(I1; I2; I3; I4; I5; I7) =

�h=2Z
�h=2

�(1; z; z2; z3; z4; z6)dz:
(56)

From Eqs. (44), (47), and (53), and minimizing each
term with respect to the generalized displacement
vector fdg, the formulation of HSDT plate for static
analysis is obtained as:

[K]fdg = fFg: (57)

Free vibration equation is:�
[K]� !2[M ]

� fdg = 0: (58)

And buckling analysis can be stated as:

([K] + � [KG]) fdg = 0; (59)

where ! and � are natural frequency and critical buck-
ling values, respectively. Since truncated hierarchical
basis functions are a new class of B-splines, they are
Cp�1-continuous and easily satisfy C1-requirement in
the approximate formulation of the HSDT model. It
is worth mentioning that local re�nement based on
THB-RKPM decreases the computational cost without
attenuating accuracy of the solution.

4. Numerical results

In this section, bending, free vibration, and buckling
of laminated composite plates with rectangular and
circular shapes using the coupling of truncated hierar-
chical B-splines with RKPM are studied. The results
obtained by THB-RKPM are compared with other
published data. For all numerical results, the elements
integrated with (p + 1)(q + 1) Gauss points are used.
The material parameters are given as:

For isotropic plates:

� Material I: E1 = E2 = 1; G12 = G13 = G23 =
E2=2(1 + �); � = 0:25; � = 1.

For laminated plates:

� Material II: E1 = 25E2; G12 = G13 = 0:5E2;
G23 = 0:2E2; �12 = 0:25; � = 1;

� Material III: E1=E2 = 10; 20; 30; 40; G12 = G13 =
0:6E2; G23 = 0:5E2; �12 = 0:25; � = 1;

� Material IV: E1 = 2:45E2; G12 = G13 = 0:48E2;
G23 = 0:2E2; �12 = 0:23; � = 1.

Since THB-RKPM bases like NURBS basis func-
tions are noninterpolatory, similar to many meshfree
methods, the Kronecker delta properties are not satis-
�ed. Therefore, several techniques have been developed
to overcome the drawback [25]. If Dirichlet boundary
condition is inhomogeneous, the Lagrange multiplier
method [37] can be adopted. In our work, since the
homogeneous Dirichlet boundary condition is used,
zero values can easily and directly be imposed on
control variables as in the standard �nite element
analysis.

4.1. Analysis of isotropic plates
4.1.1. Static analysis
In this problem, a simply supported square isotropic
plate subjected to a uniform transverse load, q, with
length, L, and thickness, h, as shown in Figure 6, is
considered. The length to thickness ratios are L=h =
10; 20; 50; 100. For this example, the material I is used.
The normalized transverse displacement is de�ned as:

�w =
�
100E2h3�w�L

2
;
L
2
; 0
���

qL4� : (60)
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Figure 6. An isotropic plate: (a) Geometry of plate; (b), (c), and (d) control mesh based on 660, 920, and 2420 Dofs,
respectively.

In order to show the capability of THB-RKPM basis
functions, the convergence of normalized de
ection
with various L=h for quadratic and cubic elements
with di�erent control meshes, as shown in Figure 6, is
studied. The present results are compared with global
and local radial basis functions based on HSDT [38],
FEM by Reddy [39], and the exact solution [40]. As
shown in Table 1, the obtained normalized de
ections
with THB-RKPM method appear satisfactory. Addi-
tionally, the method presents a more accurate solution
with respect to lower degrees of freedom than NURBS
model does when the same order of approximation
is used. Moreover, the normalized central de
ections
versus various L=h ratios are depicted in Figure 7. It is
seen that the present results, using THB-RKPM basis
functions, are close to the exact solution [40].

4.1.2. Free vibration analysis
In order to show the applicability of THB-RKPM
to modelling of the common engineering shapes in
free vibration analysis, the non-dimensional frequency
parameter given by �! = !R2

p
�h=D for an isotropic

clamped circular plate with radius R, thickness h, and

exural sti�ness D = Eh3=12(1 � �2) is considered.
The coarsest mesh of circular plate is described em-
ploying quadratic-order NURBS basis functions. The
re�ned model with di�erent meshes is also plotted in

Figure 7. Central de
ection of simply supported isotropic
square plate with various length to thickness ratios.

Figure 8. It can be seen that truncated hierarchical
B-spline basis coupling with RKPM preserves the
geometry when local re�nement is performed. Di�erent
values of radius to thickness ratio, R=h = 10; 100, are
considered. The results obtained by THB-RKPM are
presented in Table 2 and compared with NURBS by
Thai et al. [14], meshfree methods based on RKPM by
Liew et al. [41], RBF by Ferreira et al. [42], and the
exact solution [43]. The present computed values are
in good agreement with other published data. The �rst
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Table 1. Normalized de
ection of a simply supported isotropic square plate under a uniformly distributed load.

L=h Method Degree Dofs �w L=h Method Degree Dofs �w

10

Present

Quadratic
660 4.7895

50

Present

Quadratic
660 4.558

920 4.7899 920 4.5696
2420 4.7906 2420 4.5771

Cubic
725 4.7911

Cubic
725 4.5791

965 4.7911 965 4.579
2525 4.7911 2525 4.579

NURBS [14] Quadratic 3125 4.8015 NURBS [14] Quadratic 3125 4.5889
Cubic 3125 4.8045 Cubic 3125 4.5919

Global [38] | 2205 4.7866 Global [38] | 2205 4.5753
Local [38] | 2205 4.7804 Local [38] | 2205 4.5615
Reddy [39] | | 4.770 Reddy [39] | | 4.496
Exact [40] | | 4.791 Exact [40] | | 4.579

20

Present

Quadratic
660 4.6211

100

Present

Quadratic
660 4.5073

920 4.6225 920 4.5495
2420 4.6247 2420 4.5666

Cubic
725 4.6254

Cubic
725 4.5732

965 4.6254 965 4.5725
2525 4.6254 2525 4.5724

NURBS [14] Quadratic 3125 4.6355 NURBS [14] Quadratic 3125 4.5819
Cubic 3125 4.6396 Cubic 3125 4.5844

Global [38] | 2205 4.6132 Global [38] | 2205 4.5737
Local [38] | 2205 4.6110 Local [38] | 2205 4.5546
Reddy [39] | | 4.570 Reddy [39] | | 4.482
Exact [40] | | 4.625 Exact [40] | | 4.572

Figure 8. Circular plate: (a) Coarse mesh with one element; (b) and (c) two levels of re�nement.

4 mode shapes for the circular plate with R=h = 10 are
plotted in Figure 9.

4.1.3. Buckling analysis
Consider the simply supported rectangular isotropic
plate subjected to in-plane compression loading, see
Figure 10. The non-dimensional buckling load in-
tensity factor �� = b2�cr=(�2D) is computed using
quadratic and cubic basis functions with hierarchical

meshes. The critical buckling load intensity factors ��
with respect to 3 di�erent thickness to width ratios,
h=b = 0:05; 0:1; 0:2, and 5 length to width ratios,
a=b = 0:5; 1; 1:5; 2; 2:5, are tabulated in Table 3. Also,
the present results are compared with NURBS basis
functions, the meshfree method based on the repro-
ducing kernel particle approximate by Liew et al. [41],
and pb-2 Ritz method presented by Kitipornchai et
al. [44]. It is observed that the present values by
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Table 2. The �rst 6 frequencies of an isotropic clamped circular plate.

R=h Method Degree Dofs
Modes

1 2 3 4 5 6

10

Present
Cubic 965 9.967 20.2802 32.4402 36.7952 46.3328 54.5315

Quartic 1020 9.9641 20.27 32.4218 36.7534 46.2236 54.4123

NURBS [14]
Cubic 1805 9.9439 20.1880 32.2318 36.5118 45.8242 53.9147

Quartic 2000 9.9439 20.1880 32.2314 36.5111 45.8223 53.9113

RKPM [41] | | 9.931 20.194 32.353 36.665 45.827 54.257

RBF [42] | | 9.9442 20.1884 32.2313 36.5086 45.8353 53.9028

Exact [43] | | 9.941 20.232 32.406 36.479 46.178 53.89

100

Present
Cubic 965 10.23 21.2805 35.178 39.867 52.7984 61.2180

Quartic 1020 10.2127 21.2501 34.8713 39.7419 51.2015 60.8029

NURBS [14]
Cubic 1805 10.2135 21.2554 34.8637 39.7967 51.1153 61.0447

Quartic 2000 10.2130 21.2488 34.8470 39.7348 50.9706 60.7532

RKPM [41] | | 10.2661 21.4488 35.2556 40.2905 51.6626 62.1455

RBF [42] | | 10.2317 21.2684 34.9802 39.6223 52.1268 60.8731

Exact [43] | | 10.2158 21.2600 34.8800 39.7710 51.0400 60.8200

Figure 9. The �rst 4 mode shapes of the clamped circular plate with R=h = 10.

Figure 10. Rectangular plate with a=b = 1:5: (a) In-plane compression loading; (b) and (c) quadratic and cubic
hierarchical meshes, respectively.

THB-RKPM are very close to the pb-2 Ritz results.
From the comparisons provided in Table 3, it can
be concluded that THB-RKPM basis functions with
lower degrees of freedom have good performance in
comparison with HSDT NURBS and FSDT meshfree
methods. Furthermore, Figure 11 depicts the critical
buckling load factor, ��, against aspect ratio, a=b.

4.2. Analysis of laminated composite plates
4.2.1. Static analysis of three-layer [0=90=0] square

laminated plate under a uniformly distributed
load

Consider a laminated square plate under the simply
supported boundary conditions subjected to a uni-
formly distributed load, q, as shown in Figure 12.
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Table 3. Critical buckling load intensity factors of simply supported rectangular isotropic plates with various length to
width and thickness to width ratios under uniaxial compression.

Present NURBS Meshfree [41] pb-2 Ritz [44]
D

eg
.�

Quadratic Cubic Quadratic Cubic Regular
particles

Irregular
particles

|
D

of
s

660 725 1620 1805 867 867 |

a
=b 0.5 h
=b

0.05 6.0002 5.9942 5.9950 5.9942 6.0405 5.9624 6.0372
0.1 5.3649 5.3620 5.3627 5.3620 5.3116 5.2084 5.4777
0.2 3.8853 3.8834 3.8839 3.8834 3.7157 3.6933 3.9963

a
=b 1 h
=b

0.05 3.9396 3.9324 3.9331 3.9324 3.9293 3.9610 3.9444
0.1 3.7484 3.7459 3.7463 3.7459 3.7270 3.6760 3.7865
0.2 3.1770 3.1758 3.1760 3.1758 3.1471 3.0750 3.2637

a
=b 1.5 h
=b

0.05 4.2838 4.2401 4.2438 4.2404 4.2116 4.2849 4.2570
0.1 3.9825 3.9690 3.9706 3.9690 3.8982 3.8761 4.0250
0.2 3.2110 3.2062 3.2073 3.2062 3.1032 3.0505 3.3048

a
=b 2 h
=b

0.05 3.9746 3.9324 3.9367 3.9324 3.8657 4.0511 3.9444
0.1 3.7590 3.7459 3.7474 3.7459 3.6797 3.6714 3.7865
0.2 3.1799 3.1758 3.1766 3.1758 3.0783 3.1040 3.2637

a
=b 2.5 h
=b

0.05 4.1848 4.0498 4.0700 4.0498 3.9600 4.1423 4.0645
0.1 3.8856 3.8195 3.8256 3.8195 3.7311 3.6985 3.8683
0.2 3.1663 3.1484 3.1509 3.1484 3.0306 2.9520 3.2421

�: Degree.

Figure 11. Critical buckling load factors of simply
supported rectangular isotropic plate with various
thickness to width and length to width ratios based on
quadratic and cubic THB-RKPM.

The thickness to length ratios are h=a = 0:2; 0:1; 0:05.
Material II is used in this problem. The normalized
displacement of the three-layer [0=90=0] square plate is
as follows:

�w =
�
100E2h3�w �a

2
;
a
2
; 0
�.�

qa4� : (61)

The present results are compared with those of the
element-free Galerkin based on FSDT [45], the mesh-
less local Petrov Galerkin using multiquadrics [46],
exact solution [47], thin plate splines based on HSDT
model [46], and 3D �nite element solution [46]. The
details are tabulated in Table 4. It is observed
that good values of de
ection are obtained by the
proposed basis functions. In addition, the numerical
solution obtained by THB-RKPM is computationally
more e�cient than other available methods, since its
total number of degrees of freedom is lower than those
in other methods. It should also be mentioned that
EFG is based on Reissner-Mindlin plate theory with 3
degrees of freedom per each node with quadratic shape
functions for transverse displacement, rotations, and
7th-order Spline for weight function.

4.2.2. Free vibration analysis of laminated composite
plates

In this example, a three-layer [0�=90�=0�] elliptical
plate subjected to fully clamped boundary condition
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Table 4. Normalized de
ection of a simply supported [0/90/0] laminated square plate under a uniformly distributed load.

h=a Method Degree Dofs �w

0.05

Present Quadratic
660 0.7759
920 0.7759
2420 0.7758

NURBS [14]
Quadratic 3125 0.7787

Cubic 3125 0.7796
Quartic 3125 0.7805

EFG (FSDT) [45] 7th-order and quadratic 867 0.7583
MQ-MLPG (HSDT) [46] 4th-order 3042 0.7688
TSP-MLPG (HSDT) [46] 4th-order 3042 0.7613
3D-FEM [46] Quadratic 18759 0.7951
Exact [47] | | 0.7572

0.1

Present Quadratic
660 1.0898
920 1.0898
2420 1.0898

NURBS [14]
Quadratic 3125 1.0937

Cubic 3125 1.0950
Quartic 3125 1.0963

EFG (FSDT) [45] 7th-order and quadratic 867 1.0248
MQ-MLPG (HSDT) [46] 4th-order 3042 1.1090
TSP-MLPG (HSDT) [46] 4th-order 3042 1.0955
3D-FEM [46] Quadratic 18759 1.1401
Exact [47] | | 1.0250

0.2

Present Quadratic
660 2.1869
920 2.1868
2420 2.1865

NURBS [14]
Quadratic 3125 2.1941

Cubic 3125 2.1967
Quartic 3125 2.1991

MQ-MLPG (HSDT) [46] 4th-order 3042 2.1496
TSP-MLPG (HSDT) [46] 4th-order 3042 2.1400
3D-FEM [46] Quadratic 18759 2.2383

Figure 12. Square laminated plate: (a) Geometry of plate; (b), (c), and (d) control mesh based on 660, 920, and 2420
Dofs, respectively.
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Figure 13. Elliptical plate: (a) Coarse mesh with one element; (b) and (c) two levels of re�nement, respectively.

Table 5. The �rst 6 frequencies of a fully clamped laminated elliptical plate.

a=h Method Dofs Modes
1 2 3 4 5 6

5

Present 725 14.4229 20.4664 27.9402 29.8436 36.1716 36.2946
965 14.4173 20.4618 27.9338 29.8223 35.1553 36.2746

FSDT [13] 1792 14.157 19.969 27.114 28.855 34.943 35.062
TSDT [49] 1280 14.1353 20.0216 27.2208 28.8527 34.9609 35.2453
SSDT [49] 1280 14.1945 20.0986 27.3172 29.0467 35.1965 35.3653
ESDT [49] 1280 14.2711 20.1982 27.4413 29.3002 35.5012 35.519

10

Present 725 17.2846 25.9678 37.5621 39.6872 49.8718 51.4338
965 17.2818 25.9645 37.5491 39.6753 49.8565 51.3547

FSDT [13] 1792 17.184 25.714 36.982 39.196 49.148 50.259
TSDT [49] 1280 17.188 25.7979 37.0987 39.0942 49.1092 50.3576
SSDT [49] 1280 17.2128 25.8318 37.1416 39.2032 49.2466 50.4108
ESDT [49] 1280 17.2446 25.876 37.1991 39.3431 49.4234 50.484

20

Present 725 18.3575 28.3666 42.5319 44.4824 57.3777 60.6944
965 18.3563 28.3605 42.4719 44.4756 57.3496 60.3244

FSDT [13] 1792 18.329 28.28 42.255 44.321 57.09 59.827
TSDT [49] 1280 18.3666 28.4097 42.4237 44.2872 57.1596 59.9436
SSDT [49] 1280 18.3742 28.4203 42.4372 44.3262 57.2112 59.9602
ESDT [49] 1280 18.3837 28.4342 42.4557 44.3758 57.2773 59.9845

100

Present 725 18.7666 29.4437 45.6415 46.6351 61.5257 66.278
965 18.7552 29.3371 44.755 46.509 60.9096 65.2853

FSDT [13] 1792 18.755 29.332 44.792 46.508 60.792 65.6230
TSDT [49] 1280 18.8085 29.4663 44.8105 46.5297 60.9055 64.763
SSDT [49] 1280 18.8088 29.4667 44.8111 46.5316 60.908 64.7637
ESDT [49] 1280 18.8092 29.4673 44.8119 46.5339 60.9112 64.7648
EFG [48] 201 18.8100 29.5800 44.9900 46.7200 61.3400 65.1400

using Material IV is studied. The elliptical plate has
two radii a = 5 and b = 2:5, as shown in Figure 13.
The non-dimensional frequencies are de�ned by �! =
(!a2)

�p
�h=D0

�
with D0 = E1h3=12(1� �12�21). Ta-

ble 5 presents the normalized �rst 6 frequencies of the
laminated clamped elliptical plate with various radius
to thickness ratios. Since there is no analytical solution,
the results obtained are compared with those of the
isogeometric analysis using layerwise �rst-order shear
deformation theory (LW-FSDT) [13], the element free
Galerkin method based on Classical Laminate Plate
Theory (CLPT) [48], and layerwise higher-order shear
deformation theory via NURBS based isogeometric

analysis using di�erent shape functions [49]. For the
thick plate, the solution obtained is slightly larger than
those of other methods. The �rst 6 mode shapes of a
three-layer fully clamped laminated elliptical plate with
a=h = 20 are depicted in Figure 14.

As the last example in this section, a laminated
composite square plate with a hole of very complicated
shape is analyzed to demonstrate applicability of the
present method to the analysis of laminated plates
with complicated shapes. Material IV is used and
geometrical parameters are shown in Figure 15 with
thickness h = 0:06 and length a = 10. The natural

frequency is normalized by �! =
�
!2a4�h
D0

� 1
2
. As shown
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Figure 14. Six mode shapes of an elliptical three-layer
[0=90=0] clamped laminated plate with a=h = 20.

in Figure 15(b), the plate is divided into 8 patches
and the bending strip method [50] is employed to
maintain C1-continuity between patches. Quadratic
THB-RKPM basis functions with 432 control points
are applied to this problem. Table 6 presents the �rst
6 normalized frequencies of the three-ply laminated
plate with simply supported boundary conditions and
various �ber orientations. The THB-RKPM solutions
are compared with the results obtained by the Element-
Free Galerkin (EFG) and Moving Kriging Interpolation
(MKI) methods [25]. It is observed that the results
obtained by quadratic truncated hierarchical B-splines
coupling with RKPM are in good agreement with EFG
and MKI methods for all the considered orientations.

4.2.3. Buckling analysis of laminated composite plates
A four-layer cross-ply [0=90=90=0] laminate square
plate subjected to uniaxial compression with simply
supported boundaries is analyzed to investigate the

convergence of the present method for the buck-
ling problems. The critical buckling load is non-
dimensionalized as follows:

�� = a2�cr=(E2h3); (62)

where a and h are the edge length and thickness of the
composite plate. Material III is used in this section.
The convergence of the normalized critical buckling
load with di�erent numbers of degrees of freedom and
various modulus ratios is presented in Table 7. The
numerical results obtained are compared with those of
the research by Noor and Mathers [51] based on the
3D elasticity solution, isogeometric analysis by Thai et
al. [14], the meshfree radial basis function method by
Liu et al. [52], �nite element solution based on HSDT
by Phan and Reddy [53], and �nite element method
by Khdeir and Librescu [54]. It is observed that the
proposed formulation presents good performance. It is
also seen that by increasing the E1=E2 modulus ratio,
the normalized critical buckling load increases.

Next, in order to assess the e�ect of the length to
thickness ratio a=h on the uniaxial compression load
intensity, two- and four-layer simply supported cross-
ply square plates are considered. The critical buckling
loads of two- and four-layer simply supported plates are
presented in Table 8. It can be seen that the present
method has acceptable results and the critical buckling
loads become larger with increase in span to thickness
ratio. Finally, a three-layer cross-ply [0=90=0] simply
supported square plate under bi-axial buckling load,
as shown in Figure 16, with length a and thickness h
is considered. The e�ect of modulus ratio E1=E2 with
a=h = 10 on the critical bi-axial buckling load is studied
in this example. Table 9 shows the normalized critical
buckling loads with respect to various modulus ratios.
It is observed that by increasing the modulus ratio
E1=E2, the normalized critical bi-axial buckling load

Figure 15. A laminated composite square plate with a hole of complicated shape: (a) Geometrical parameters and (b)
control mesh with 432 control points.
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Table 6. The normalized natural frequencies of simply supported three-ply laminate plate with a complicated hole for
various orientations.

Angle ply Method
Modes

1 2 3 4 5 6

[0�=0�=0�]

Present 18.233 31.098 35.648 55.387 62.334 81.897

NURBS [55] 18.288 31.110 35.735 55.499 62.464 82.033

EFG [25] 18.226 31.127 36.237 56.874 62.390 83.565

MKI [25] 18.169 30.303 36.581 57.429 64.145 85.656

[15�=� 15�=15�]

Present 18.965 32.195 36.024 56.211 63.564 83.679

NURBS [55] 19.020 32.260 36.078 56.480 63.727 83.830

EFG [25] 19.177 32.445 37.238 58.716 63.994 86.500

MKI [25] 18.323 31.472 37.617 63.077 66.538 86.486

[30�=� 30�=30�]

Present 20.379 34.056 36.988 58.434 66.195 88.071

NURBS [55] 20.448 34.184 37.179 58.660 66.310 88.107

EFG [25] 20.926 34.915 39.101 62.222 67.054 92.715

MKI [25] 20.310 33.987 39.898 58.111 69.699 92.099

[45�=� 45�=45�]

Present 21.011 34.896 37.463 59.459 67.743 91.041

NURBS [55] 21.128 35.122 37.692 59.545 67.948 91.196

EFG [25] 21.736 36.079 39.975 63.897 68.525 96.767

MKI [25] 20.987 34.897 39.269 63.375 69.017 96.588

[0�=90�=0�]

Present 18.134 31.129 35.532 55.481 62.652 82.554

NURBS [55] 18.284 31.267 35.713 55.567 62.892 82.631

EFG [25] 18.278 32.264 36.134 57.151 65.853 90.678

MKI [25] 18.027 32.506 37.268 57.698 70.768 92.998

Table 7. Normalized critical buckling load of simply supported cross-ply [0=90=90=0] square plate with a=h = 10 and
various E1=E2 ratios.

a=h Method Degree Dofs
E1=E2

3 10 20 30 40

10

Present
Quadratic 220 5.3591 9.8699 15.2014 19.5679 23.2330

Cubic 250 5.3186 9.8203 15.1416 19.4991 23.1558

NURBS [14]
Quadratic 1805 5.3876 9.9195 15.2459 19.5852 23.2126

Cubic 2000 5.3867 9.9174 15.2427 19.5814 23.2082

Noor and Mathers [51] Cubic 315 5.294 9.762 15.019 19.304 22.881

Phan and Reddy [53] Cubic 567 5.114 9.774 15.298 19.957 23.340

Liu et al. [52] | 2000 5.412 10.013 15.309 19.778 23.412

Khdeir and Librescu [54] | | 5.442 10.026 15.019 19.304 22.881
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Table 8. Convergence of normalized critical buckling loads of cross-ply simply supported square plates.

Layer Method Degree Dofs a=h
10 20 50 100

[0�=90�]

Present Quadratic 220 11.4174 12.6993 13.5509 14.3216
Cubic 250 11.3258 12.4982 12.8904 12.9727

NURBS [14] Quadratic 1805 11.5360 12.5794 12.9043 12.9584
Cubic 2000 11.5315 12.5741 12.8977 12.9472

FSDT [56] Quadratic 7623 11.349 12.510 12.879 12.934
MISQ24 [57] Quadratic 1734 11.446 12.609 13.011 13.095
FSDT [58] | | 11.353 12.515 12.884 12.939
HSDT [58] | | 11.563 12.577 12.895 12.942

[0�=90�=90�=0�]

Present Quadratic 220 23.2330 31.7510 36.1106 37.9609
Cubic 250 23.1558 31.5584 35.3343 35.9830

NURBS [14] Quadratic 1805 23.2126 31.6407 35.3607 35.9771
Cubic 2000 23.2082 31.6325 35.3497 35.9612

FSDT [56] Quadratic 7623 23.409 31.625 35.254 35.851
MISQ24 [57] Quadratic 1734 23.236 31.747 35.561 36.190
FSDT [58] | | 23.471 31.707 35.356 35.955
HSDT [58] | | 23.349 31.637 35.419 35.971

Figure 16. A three-layer cross-ply [0/90/0] simply supported square plate: (a) Geometry of the composite plate under
bi-axial compression, and (b) control mesh based on 220 Dofs.

also increases. Once again, the present results show
good agreement with other numerical results cited here.

5. Conclusions

In this paper, our main focus was on local re�nement
of laminated plates. Therefore, the truncated hier-
archical B-splines were coupled with the reproducing
kernel meshfree shape functions to investigate static,
buckling, and free vibration of multilayered plates.
Since a correspondence between meshfree methods and
isogeometric analysis was established, the nodes and
their related meshfree shape functions were constructed

in a meshfree environment, which led to geometry
exactness and model re�nement. The main novelty
of the proposed method was introducing a 
exible
coupling strategy for re�ning basis functions to de-
crease the computational cost without losing accuracy
of the solution. In the proposed approach, after
de�ning the linear reproducing points, basis functions
were constructed through a one-step process and more
importantly, after generating new meshfree nodes, re-
computing the shape functions based on the new node
group was omitted because the original basis functions
were truncated to produce the new basis ones. This
means that, instead of calculating all basis functions,
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Table 9. Bi-axial critical buckling load of a three-layer [0=90=0] simply supported cross-ply square plate.

a=h Method Degree Dofs E1=E2

10 20 30 40

10

Present Quadratic 220 4.8807 7.3956 8.9131 10.0615
Cubic 250 4.8561 7.3302 8.6372 9.7834

NURBS [14] Quadratic 1805 4.9777 7.5446 8.9429 10.1096
Cubic 2000 4.9766 7.5429 8.9383 10.1046

MISQ24 [57] Quadratic 1734 4.939 7.488 9.016 10.252
HSDT [54] | | 4.963 7.516 9.056 10.259
FSDT [59] | | 4.963 7.588 8.575 10.202

only a number of bases were modi�ed, which improved
the computational performance and considerably facil-
itated the adaptive local re�nement. It also caused
the computing cost to be lower than those of the
existing methods. The advantage of preserving the
exact geometry throughout the re�nement process was
also inherited. Displacement, frequencies, and critical
buckling loads were computed using quadratic and cu-
bic orders of THB-RKPM basis functions. The results
of the present method proved its high accuracy for all
test cases with various geometrical shapes, boundary
conditions, and aspect ratios. Hence, this method can
be applied to practical problems of engineering with
integrated advanced materials.
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