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Abstract. In this paper, a new lifetime family of distributions called `New Family of
Kies Burr III (NFKBIII) distribution' was developed by using T-X family technique. The
NFKBIII distribution is very exible and its hazard rate function accommodates various
shapes such as increasing, decreasing, increasing-decreasing-increasing, and bathtub. The
density function of the NFKBIII was arc, J, reverse-J, U, bimodal, left-skewed, right-skewed
and symmetrical shaped. Some structural and mathematical properties including quantiles,
sub-models, ordinary moments, moments of order statistics, incomplete moments, mean
deviations, inequality curves, residual life functions, and reliability measures were derived.
Two characterizations for the NFKBIII distribution were studied. The Maximum
Likelihood Estimates (MLEs) for unknown parameters of NFKBIII distribution were
obtained. A simulation study was performed to evaluate the behavior of the maximum
likelihood estimators. The NFKBIII distribution was applied to two real data sets to
illustrate its potentiality and utility. The adequacy of the NFKBIII distribution was tested
via di�erent goodness of �t statistics.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Although numerous univariate continuous distributions
have been established in recent decades, many datasets
composed of reliability, life testing, risk analysis, �-
nance, ecology, climatology, geology, hydrology, and
other �elds do not �t these distributions. Therefore,
the application of the modi�ed distributions to prob-
lems in these �elds is a vibrant necessity, today.

The modi�ed, generalized, and extended distribu-
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tions are attained by adding one or more parameters,
or introducing some transformation, to the parent
distribution. Therefore, the new proposed distributions
provide best �t among the sub and competing models.

Burr [1] proposed a family of 12 distributions
by �tting cumulative frequency functions to frequency
data called Burr family. Burr distributions III, VI,
X, and XII may enjoy applications. Burr III (BIII)
distribution is commonly applied to model risk data in
business and �nance, crop rice in market, failure time
data in life testing, and reliability and ozone data in
environmental sciences.

Many modi�ed, generalized, and extended types
of BIII distribution are presented in statistical litera-
ture such as two-parameter family of distributions [2],
inverse Burr [3], BIII type [4], extended Burr III [5],
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Dagum [6], modi�ed BIII [7], McDonald BIII [8],
interpolating family [9], mixture of two BIII [10],
generalized gamma BIII [11], four-parameter gamma
BIII [12], odd BIII family [13], Kumaraswamy odd
Burr G family [14], and generalized BIII [15].

Marshall and Olkin [16] presented a new tech-
nique to add a parameter to a family of distribution.
Cordeiro and Castro [17] established Kumaraswamy
generalized family with its distributional properties.
Alizadeh et al. [18] studied Burr generalized family with
various properties. Cordeiro et al. [19] developed the
generalizability of odd log-logistic family with proper-
ties. Haghbin et al. [20] presented a new generalized
odd log-logistic family of distributions. Korkmaz and
Gen�c [21,22] studied a generalized two-sided class
of distributions along with applications. Cordeiro
et al. [23] studied a new family based on the Burr
XII density with detailed properties. Alizadeh et al.
[24] studied the odd log-logistic logarithmic class of
continuous distributions. Yousof et al. [25] developed
Burr Hatke-G family of distributions. Korkmaz et
al. [26] presented the Weibull Marshall-Olkin family
along with its properties.

The main concern of this article is to develop and
study a exible lifetime family of BIII-type distribution
with two extra shape parameters and two location
parameters called the NFKBIII distribution. The
shapes of NFKBIII density are arc, J, reverse-J, U,
bimodal, left-skewed, right-skewed, and symmetrical
shapes. The hazard rate function for the NFK-
BIII distribution is characterized by various shapes
such as increasing, decreasing, increasing-decreasing-
increasing, and bathtub. The NFKBIII distribution
is the best model for modeling data such as time to
failures of items in life testing, maximum annual ood
discharges in hydrology, and other various �elds. The
NFKBIII distribution o�ers better �ts than sub and
competing models.

This paper is organized as follows. In Section 2,
the NFKBIII distribution is derived from T-X family
technique, transformation, and compounding mixture
of distributions. Structural properties, quantile func-
tion, sub-models, and various plots of density and
hazard rate functions are discussed. In Section 3, ordi-
nary moments, moments of order statistics, incomplete
moments, mean deviations, inequality curves, residual
life functions, and reliability measures are derived.
The characterization of the NFKBIII distribution is
studied in Section 4. In Section 5, the Maximum
Likelihood Estimates (MLEs) for unknown parameters
of the NFKBIII distribution are obtained. In Section 6,
a simulation study is performed to assess the behavior
of the maximum likelihood estimators. In Section 7,
the potentiality and utility of the NFKBIII distribution
is illustrated via its application to two real data sets:
times to failures of devices and maximum annual ood

discharges. The adequacy of the NFKBIII distribution
is tested via di�erent goodness of �t statistics. The
ultimate comments are given in Section 8.

2. Development of NFKBIII distribution

The cumulative distribution function (cdf) of the gen-
eralized uniform distribution is given by:

G(x; a; b; �) =
x� � a�
b� � a� ;

x 2 [a; b] ; a > 0; b > 0; � > 0: (1)

The odds ratio for the generalized uniform random
variable X is given below:

W (G(x)) =
G(x; a; b; �)
�G(x; a; b; �)

=
x� � a�
b� � x� : (2)

Gurvich et al. [27] replaced `x' with odds ratio of the
Weibull distribution for the development of a class of
extended Weibull distributions. Alzaatreh et al. [28]
developed the cdf of the T-X family of distributions as
follows:

F (x) =

W (G(x))Z
a

r (t) dt; (3)

where W (G(x)) is a function of G(x) and r(t) is the
pdf of a non-negative random variable.

Bourguignon et al. [29] inserted the odds ratio
of a baseline distribution in place of `x' in the cdf of
the Weibull distribution to develop a new family of
distributions.

The NFKBIII was developed by inserting the odds
ratio for the generalized uniform in place of `x' in the
cdf of MBIII distribution. The cdf for the NFKBIII
distribution is obtained as follows:

F (x) =

W (G(x))Z
0

��t���1�1 + t��
����1

dt;

or:

F (x;�; �; ; �) =

x��a�
b��x�Z
0

��t���1�1 + t��
����1

dt;

or:

F (x) =

"
1 + 

�
b� � x�
x� � a�

��#��
; a � x < b; (4)

where a; b; �; �; � , and  are the positive parameters,
among which a; b are location parameters and �; �; �
and  are shape parameters. Clearly, F (x) is a strictly
increasing and di�erential cdf on (a; b).

The pdf of the NFKBIII distribution is given
below:
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f (x) = �� (b� � a�)�x��1 (b� � x�)��1

(x� � a�)�+1"
1 + 

�
b� � x�
x� � a�

��#�� �1

; x > a: (5)

2.1. Transformation and compounding
The NFKBIII model was also developed by (i) trans-
formation between the ratio of exponential and gamma
random variables and (ii) compounding generalized
inverse Kies (GNIK) and gamma distributions.

(i) Let Z1 be a random variable having exponen-
tial distribution with parameter value 1 and Z2
be a random variable with gamma, i.e., Z2 �
gamma

�
�
 ; 1
�

; then, using the relationship Z1 =


�
b��X�
X��a�

��
Z2; we have:

X =

(�
a� + b�

�
Z1

Z2

�� 1
�
�

�
1 +

�
Z1

Z2

�� 1
�
��1) 1

�

� NFKBIII (a; b; �; �; ; �) :

(ii) Let X be a random variable with GNIK distribu-
tion, i.e., X � GNIK (x; a; b; �; �; ; �), and � be
a random variable with gamma distribution, i.e.,
� � gamma (�;�; ). Then, after simplifying the
integral:

f (x; a; b; �; �; ; �) =
1Z

0

GNIK

(x=a; b; �; �; ; �) g (�=�; ) d�

we have X � NFKBIII (a; b; �; �; ; �) :

2.2. Structural properties
The survival, hazard, cumulative hazard, reverse haz-
ard functions, and the Mills ratio of a random variable
X with the NFKBIII distribution are given respectively
below:

S(x) = 1�
"

1 + 
�
b� � x�
x� � a�

��#��
; x � a; (6)

h(x) = ��� (b� � a�)x��1

(b��x�)��1

(x��a�)�+1

�
1+

�
b��x�
x��a�

����� �1

(
1�
�
1+

�
b��x�
x��a�

�����) ; x>a;
(7)

H(x) = � ln

8<:1�
"

1 + 
�
b� � x�
x� � a�

��#� �

9=; ;

x � a; (8)

r(x) =
f(x)
F (x)

= �� (b� � a�)�x��1 (b� � x�)��1

(x� � a�)�+1"
1 + 

�
b� � x�
x� � a�

��#�1

; x > a; (9)

and:

m(x) =
1� F (x)
f(x)

=

1�
�
1+

�
b��x�
x��a�

�����
�� (b��a�)�x��1 (b��x�)��1

(x��a�)�+1

�
1 + 

�
b��x�
x��a�

����� �1 :
(10)

The elasticity e(x) = xr(x) = dlnF (x)
dlnx for the

NFKBIII distribution is:

e (x) =�� (b� � a�)�x�
(b� � x�)��1

(x� � a�)�+1"
1 + 

�
b� � x�
x� � a�

��#�1

: (11)

The quantile function of NFKBIII distribution is:

xq =

24a�� 1
�
�
q� � � 1

� 1
� + b�

� 1
�
�
q� � � 1

� 1
� � 1

35 1
�

;

and its random number generator is:

X =

24a�� 1
�
�
Z� � � 1

� 1
� + b�

� 1
�
�
Z� � � 1

� 1
� � 1

35 1
�

;

where the random variable Z has the uniform distribu-
tion on (0,1).

2.3. Sub-models
The NFKBIII distribution is widely applicable to life
testing, reliability concept, survival analysis, and hy-
drology. The NFKBIII distribution has the subsequent
nested models (Table 1).

2.4. Plots for the NFKBIII density and
hazard rate functions

Figure 1 shows that the shapes of the NFKBIII density
are arc, J, reverse-J, U, bimodal, left-skewed, right-
skewed, and symmetrical (Figure 1). The shapes
of failure rate function for the NFKBIII distribu-
tion are increasing, decreasing, increasing-decreasing-
increasing, and bathtub (Figure 2).
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Table 1. Sub-models of the New Family of Kies Burr III (NFKBIII) distribution.

1 X a b � �  � New Family of Kies Burr III (NFKBIII)
2 X a b � �  1 Kies Modi�ed Burr III (KMBIII)
3 X a b � � 1 � New Kies Burr III (NKBIII)
4 X a b � � 1 1 Kies Burr III (KBIII)
5 X 0 1 � � 1 1 Reduced Kies Burr III (RKBIII)
6 X 0 1 � �  � Reduced New Kies Burr III (RNKBIII)
7 X a b � 1  � New Kies Modi�ed Inverse Lomax (NKMIL)
8 X a b � 1  1 Kies Modi�ed Inverse Lomax (KMIL)
9 X a b � 1 1 1 Kies Inverse Lomax(KIL)
10 X 0 1 � 1 1 1 Reduced Kies Inverse Lomax (RKIL)
11 X a b � �  � Reduced Kies Burr III (RKBIII)
12 X 0 1 � �  � Reduced New Kies Burr III (RNKBIII)
13 X a b � �  ! 0 � New Inverse Kies (NIK)
14 X 0 1 � �  ! 0 � New Reduced Inverse Kies (NRK)
15 X a b � �  ! 0 � New Modi�ed Inverse Kies (NMIK)
16 X 0 1 � �  ! 0 1 Reduced New Inverse Kies(RNIK)
17 X 0 1 � �  ! 0 1 Reduced Inverse Kies (RIK)
18 X a b � �  ! 0 1 New Modi�ed Inverse Kies (NMIK)
19 X a b � �  ! 0 � Generalized Inverse Kies
20

�
b��x�
x��a�

�
a b � �  ! 0 1 Kies [30,31]

21 X a b � �  ! 0 1 Inverse Kies
22 X 0 b � �  � Modi�ed Burr III Power (MBIII-Power)
23 a 0 � �  � Modi�ed Burr III Pareto (MBIII-Pareto)
24 X 0 b � � 1 � Burr III Power (BIII-Power)
25 X a 0 � � 1 � Burr III Pareto (BIII-Pareto)
26 X 0 b � �  ! 0 � Inverse Weibull- Power
27 X a 0 � �  ! 0 � Inverse Weibull Pareto

Figure 1. Plots of pdf of New Family of Kies Burr III (NFKBIII) distribution.

Figure 2. Plots of hrf of New Family of Kies Burr III (NFKBIII) distribution.
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3. Mathematical properties

Some descriptive measures for the NFKBIII distri-
bution such as ordinary and incomplete moments,
inequality curves, mean deviations, residual life func-
tions, and reliability measures are established in this
section.

3.1. Moments of the NFKBIII distribution
The rth moment about origin of X with the NFKBIII
distribution is:

�0r = E(Xr) =
bZ
a

xrf(x)dx;

E(Xr) = �� (b� � a�)�
bZ
a

xrx��1 (b� � x�)��1

(x� � a�)�+1

"
1 + 

�
b� � x�
x� � a�

��#���1

dx:

Letting:


�
b� � x�
x� � a�

��
= w

and:

x =

8<: (a� � b�)h
1 + (�1w)� 1

�

i + b�

9=;
1
�

;

we arrive at:

E(Xr) =
�


1Z
0

8<: (a� � b�)h
1 + (�1w)� 1

�

i + b�

9=;
r
�

[1 + w]���1dw;

E(Xr) =
�


r
�X̀
=0

� r
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

24 1Z
0

w� �� [1 + w]���1dw

35 ;
and observe that:

�0r =
�


r
�X̀
=0

� r
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!
B
�

1� �
�
;
�


+
�
�

�
;

r = 1; 2; 3; ::: (12)

where (`)k = �(`+k)
�(`) is the Pochhammer symbol.

The factorial moments E[X]n =
nP
r=1

#rE(Xr) for

the NFKBIII distribution are:

E[X]n =
nX
r=1

�
#r
�


rX̀
=0

(r`) (a� b)`br�`

1X
k=0

(�1)k(`)k
k
�

k!
B
�

1� k
�
;
�


+
k
�

��
;
(13)

where [Z]i = Z (Z + 1) (Z + 2) ; :::; (Z + i� 1) and #r
is Stirling number of the �rst type.

The Mellin transform was used to obtain moments
of a probability distribution. By de�nition, the Mellin
transform is:

M ff (x) ; sg = f� (s) =
1Z

0

f (x) xs�1dx:

The Mellin transform of X with the NFKBIII distri-
bution is:

M ff (x) ; sg=�
s�1X̀
=0

1X
k=0

�s�1
`
� (�1)k(`)k

k!

k
��1bs�1

�a
b
�1
�`
B
�

1� k
�
;
�


+
k
�

�
: (14)

The rth moment about means, Pearson's measures for
skewness and kurtosis, moment generating function,
and cumulants of X for the NFKBIII distribution were
obtained through the following relations:

�r =
rX
i=1

(ri ) (�1)i�0i �0i�r;

1 =
�3

(�2)
3
2
; �2 = �4

(�2)2

MX (t) = E
�
etX
�

=
1X
r=1

tr

r!
E(X)r;

kr = �0r �
r�1X
c=1

�r�1
c�1
�
kc �0r�c:

Table 2 displays the numerical descriptive measures
such as median, mean, standard deviation, skewness,
and kurtosis of the NFKBIII distribution for the care-
fully chosen parameter values to describe their e�ect
on these descriptive measures.

3.2. Moments of order statistics
Moments of order statistics were applied to life testing
and reliability. Moments of order statistics were aimed
at anticipating the possible failure of future items after
few initial failures.

The pdf for the mth order statistic Xm:n is as
follows:
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Table 2. Median, mean, standard deviation, skewness, and Kurtosis of the New Family of Kies Burr III (NFKBIII)
distribution.

Parameters
�; �; ; �; a = 0:1; b = 5

Median Mean Standard
deviation

Skewness Kurtosis

0.5,0.5,0.5,0.5 0.4897 1.4750 1.7079 0.9765 2.3803

0.5,1.5,1.5,0.5 0.6763 1.1133 1.1156 1.2380 3.7107

1,0.5,0.5,0.5 2.1126 2.3588 1.8197 0.1678 1.4319

1,1,1,2 3.5333 3.3328 1.1766 {0.5611 2.3903

0.5,1,1,1, 1.3210 1.7305 1.4595 0.6413 2.1471

1,1,1,1 2.5460 2.5475 1.4138 0.0019 1.8006

2,1,1,1 3.3649 3.3649 1.1546 {0.5638 2.3977

1.5,1,1,1 3.1834 3.0379 1.2827 {0.3377 2.0496

1,1,1,0.5 1.6268 1.9349 1.4408 0.4984 2.0057

1.5,1.5,1.5,1 2.8765 2.8088 1.1137 {0.2179 2.2432

1.5,1.5,1.5,1.5 3.4298 3.2977 0.9797 {0.5674 2.7456

1.5,1.5,1.5,2.5 3.9849 3.8405 0.7525 {0.9578 3.7872

1.5,1.5,1.5,3 4.1375 4.0009 0.6698 {1.0776 4.2189

1.5,1.5,1.5,0.5 1.9744 2.0897 1.1797 0.3375 2.2034

2.5,1.5,1.5,0.5 2.5717 2.5902 1.0939 0.0430 2.1806

2,2,2,2 3.8261 3.7287 0.6639 {0.8429 3.8245

2.5,1.5,2.5,2.5 4.2032 4.0413 0.6924 {1.2421 4.6981

2.5,1.5,2.5,2.5 4.0501 3.9854 0.4675 {0.9543 4.6041

5,2.5,2.5,2.5 4.2659 4.2409 0.3136 {0.5782 3.6917

3.25,2.4,0.65,1.5 3.7515 3.7577 0.4326 0.0016 2.7084

4.5,2.4,0.65,1.5 3.8735 3.8788 0.3956 0.0010 2.6739

5,2.5,2.5,2.5 4.2659 4.2409 0.3136 {0.5782 3.6917

5,2.5,2.5,0.5 3.2661 3.2192 0.9057 {0.2531 2.4020

6,2,1.5,0.5 3.0029 3.0224 0.7507 0.0597 2.5103

6,2,1.5,0.5 4.3075 4.2356 0.4691 {0.8193 3.6134

5,1.5,1.5,1.5 4.2268 4.1482 0.5200 {0.8090 3.5801

5,0.5,1.5,1.5 4.9222 4.6458 0.6553 {3.0134 13.2449

5,1,1.5,1.5 4.5453 4.3729 0.5804 {1.5137 5.6080

f (xm:n) =
1

B (m; n�m+ 1)
[F (x)]m�1

[1� F (x)]n�mf (x) : (15)

The pdf of Xm:n for the NFKBIII distribution is given
below:

fXm :n (x) =
�

1
B (m; n�m+ 1)

n�mX
i=0

(�1)i
�n�m
i

�
��� (b� � a�)�x��1 (b� � x�)��1

(x� � a�)�+1

"
1 + 

�
b� � x�
x� � a�

��#� �


(m+i)�1�
: (16)

Moments about the origin of Xm:n for the NFK-
BIII distribution are:

E (Xr
m:n) =

bZ
a

xrf (xm:n)dx: (17)

Eq. (18) is shown in Box I.

3.3. Incomplete moments
Bonferroni and Lorenz curves can be easily computed
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E (Xr
m:n) =

�


1
B (m; n�m+ 1)

n�mX
i=0

r
�X̀
=0

1X
�=0

� r
�
`

�
(a� � b�)`b(r��`)

�n�m
i

� (�1)i+�(`)�
�
�

�!

B
�

1� �
�
;
�


(m+ i) +
�
�

�
;

E (Xr
m:n) =

�


n�mP
i=0

r
�P̀
=0

1P
�=0

� r
�
`

�
(a� � b�)`b(r��`)

�n�m
i

� (�1)i+�(`)�
�
�

�! B
�

1� �
� ;

�
 (m+ i) + �

�

�
B (m; n�m+ 1)

;

r = 1; 2; 3:::: (18)

Box I

using �rst incomplete moment. The life testing features
such as residual life and mean inactivity life functions
can be obtained from incomplete moments. The lower
incomplete moments for the random variable X with
the NFKBIII distribution are given below:

M 0r (z) = EX�z (Xr) = �� (b� � a�)�

zZ
a

xrx��1 (b� � x�)��1

(x� � a�)�+1

"
1 + 

�
b� � x�
x� � a�

��#���1

dx:

Letting:


�
b� � x�
x� � a�

��
= w

and:

x =
�

(a� � b�)
h
1 +

�
�1w

�� 1
�
i�1

+ b�
� 1
�

;

we arrive at:

E(Xr) =
�


1Z
( b��z�z��a� )��
(a� � b�)

h
1 +

�
�1w

�� 1
�
i�1

+ b�
� 1
�

[1 + w]���1dw;

EX�z (Xr) =
�


r
�X̀
=0

� r
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

2664 1Z
( b��z�z��a� )�

w� �� [1 + w]���1dw

3775 ;
and observe that:

M 0r (z) =
�
�


s
�X̀
=0

� s
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!
�
�
B
�

1� �
�
;
�


+
�
�

�
�B

"

�
b� � z�
z� � a�

��
; 1� �

�
;
�


+
�
�

#��
;

r = 1; 2; 3; :::; (19)

where B (z ; :; :) is the incomplete beta function.
The upper incomplete moments for the random

variable X with the NFKBIII distribution are:

EX�z (Xr) =
bZ
z

xr �� (b� � a�)�x��1 (b� � x�)��1

(x� � a�)�+1

"
1 + 

�
b� � x�
x� � a�

��#���1

dx;

EX�z (Xr) =
�


r
�X̀
=0

� r
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!
B
�

�
b� � z�
z� � a�

��
; 1

� �
�
;
�


+
�
�

�
: (20)
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The mean deviation about the mean is MD �X =
E
��X � �1

1
�� = 2�1

1F
�
�1

1
� � 2�1

1M 01
�
�1

1
�

and mean
deviation about the median is MDM = E jX �M j =
2MF (M) � 2MM 01 (M), where �01 = E (X) and M =
Q (0:5). Bonferroni and Lorenz curves for a speci�ed
probability p are computed by B(p) = M 01(q)

p�0 and

L(p) = M 01(q)
�0 , where q = Q (p).

3.4. Residual life functions
The nth moment mn(z) of residual life for X with the
NFKBIII distribution is given below:

mn (z) = E [ (X � z)njX > z]

=
1

S (z)

1Z
z

(x� z)sf(x)dx;

mn (z) =
1

S (z)

nX
s=0

(ns )(�z)n�sEX>z (Xs) ;

mn (z) =
1

S (z)

nX
s=0

(ns )(�z)n�s�


s
�X̀
=0

� s
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

B

"

�
b� � z�
z� � a�

��
; 1� �

�
;
�


+
�
�

#
: (21)

The residual life (MRL) function m1(z) of a component
at time z, or the average remaining lifetime, is also
called life expectancy given by:

m1 (z) =
1

S (z)

1X
s=0

�1
s
�
(�z)1�s�



s
�X̀
=0

� s
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

B

"

�
b� � z�
z� � a�

��
; 1� �

�
;
�


+
�
�

#
: (22)

The nth moment of reverse residual life Mn(z) for X
with the NFKBIII distribution is:

Mn (z) = E [(z �X)n=X � z]

=
1

F (z)

zZ
a

(z � x)nf(x)dx;

Mn (z) =
1

F (z)

nX
s=0

(�1)s (ns )zn�sEX�z (Xs) ;

Mn (z) =
1

F (z)

nX
s=0

(�1)s (ns )zn�s
�
�


s
�X̀
=0

�
s
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

�
�
B
�

1� �
�
;
�


+
�
�

�
�B

"

�
b� � z�
z� � a�

��
; 1� �

�
;
�


+
�
�

#��
:
(23)

The waiting time z for the failure of a component with a
condition that this failure would occur at the interval
[0; z] is called mean waiting time or mean inactivity
time. The waiting time z for the failure of a component
X with the NFKBIII distribution is de�ned by:

M1 (z) =
1

F (z)

1X
s=0

(�1)s
�1
s
�
z1�s

�
�


s
�X̀
=0

� s
�
`

�
(a� � b�)`b(r��`)

1X
�=0

(�1)�(`)�
�
�

�!

�
�
B
�

1� �
�
;
�


+
�
�

�
�B

"

�
b� � z�
z� � a�

��
; 1� �

�
;
�


+
�
�

#��
:
(24)

3.5. Stress-strength reliability for the
NFKBIII distribution

Let X1 be strength and X2 be stress and X1 follow
NFKBIII distribution (�1; �; ; �; a; b) and X2 follow
NFKBIII distribution (�2; �; ; �; a; b). Then R =

Pr (X2 < X1) =
bR
a
fx1 (x)Fx2 (x) dx is the reliability

parameter [32]. The reliability of the component is
computed as follows:

R =
bZ
a

�1� (b� � a�2)�x�
(b� � x�)��1

(x� � a�)�+1

"
1 + 

�
b� � x�
x� � a�

��#��1
 �1

"
1 + 

�
b� � x�
x� � a�

��#��2


dx;

R =
�1

�1 + �2
: (25)

Therefore, R is independent of a; b; �; � and .
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3.6. Estimation of multicomponent
stress-strength system reliability with
NFKBIII distribution

Consider a system that has m identical components out
of which s components are functioning. The strengths
of m components are Xi; i = 1; 2:::m with common cdf
F , while the stress Y imposed on the components has
cdf G. The strengths Xi; i = 1; 2:::m and stress Y are
i.i.d. distributed. The probability that system operates
properly is reliability of the system, i.e.:

Rs;m = P [strengths (Xi; i = 1; 2:::m) > stress (Y )]

Rs;m = P [at the minimum \s" of (Xi; i = 1; 2:::m)

exceed Y ]: (26)

Rs;m=
mX
l=s

�
m
l

� 1Z
�1

[1� F (y)]l[F (y)]m�l

dG(y): [33] (27)

Let X � NFKBIII (�1; �; ; �; a; b) and Y �
NFKBIII (�2; �; ; �; a; b) such that �1; and �2 be
unknown shape parameters and a; b be common lo-
cation parameters. X and Y are independently dis-
tributed. The reliability that system operates properly
with respect to the multicomponent stress strength for
the NFKBIII distribution is given below:

Rs;m=
mX̀
=s

�
m
`

� bZ
a

0@1�
"

1+
�
b� � y�
y� � a�

��#��1

1A`

0@"1 + 
�
b� � y�
y� � a�

��#��1

1A(m�`)

�2� (b� � a�)�y�
(b� � y�)��1

(y� � a�)�+1"
1 + 

�
b� � y�
y� � a�

��#��2
 �1

dy:

Letting:"
1 + 

�
b� � y�
y� � a�

��#��2


= u;

we obtain:

Rs;m =
mX̀
=s

�
m
`

� 1Z
0

�
1� u��` u�(m�`)du;

where � = �2
�1
: Again letting u� = w; we reach:

Rs;m =
mX̀
=s

�
m
`

� 1Z
0

(1� u)` w(m�`) 1
�
w

1
��1dw:

Rs;m =
1
�

mX̀
=s

�
m
`

�
B
�
1 + `; m+

1
�
� `
�
; (28)

is the reliability of multicomponent stress-strength
model [33].

4. Characterizations

In this section, two essential characterizations of the
NFKBIII distribution are planned via (i) conditional
expectation and (ii) ratio of truncated moments.

4.1. Characterization based on conditional
expectation

Here, the NFKBIII distribution is characterized via
conditional expectation.

Proposition 4.1.1. Let X : 
 ! (a; b) be a
continuous random variable with cdf F (x), 0 < F (x) <
1 for x � a); then, for � > , X has cdf (4) if and only
if:

E

"�
X� � a�
b� �X�

��������X < z

#
=

1
(�� )"

1 + �
�
z� � a�
b� � z�

���#
; for z > a: (29)

Proof. If Eq. (5) is pdf of X, then:

E

"�
b� �X�

X� � a�
�������X < z

#

= (F (z))�1
zZ
a

�
b� � x�
x� � a�

��
f (x) dx

= (F (z))�1
zZ
a

�
b� � x�
x� � a�

��
� �

� (b� � a�)

�x��1 (b� � x�)��1

(x� � a�)�+1

"
1+

�
b��x�
x��a�

��#���1

dx:

Integrating and simplifying, we arrive at:

E

"�
b� �X�

X� � a�
�������X < z

#
=

1
(�� )"

1 + �
�
b� � z�
z� � a�

��#
; for z > a:
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Conversely, if Proposition 4.1.1 holds, then:
zZ
a

�
b� � x�
x� � a�

��
f (x) dx =

F (z)


�
�
 � 1

�
"

1 + �
�
b� � z�
z� � a�

��#
: (30)

Di�erentiating Eq. (30) with respect to t, we achieve:�
b� � z�
z� � a�

��
f (z) =

f (z)
(�� )

"
1 + �

�
b� � z�
z� � a�

��#
� F (z)


�
�
 �1

� "�� (b��a�)�x��1 (b��z�)��1

(z��a�)�+1

#
:

After simpli�cation and integration, we work out:

F (z) =

"
1 + 

�
b� � z�
z� � a�

��#��
; z � a:

4.2. Characterization of the NFKBIII
distribution through ratio of truncated
moments

The NFKBIII distribution is characterized using the-
orem G [34] from a simple relationship between two
truncated moments of functions of X.

Proposition 4.2.1. Let X : 
 ! (a; b) be a
continuous random variable. Let:

h1 (x) =
1
�

"
1 + 

�
b� � x�
x� � a�

��#� +1

; x > a;

and:

h2 (x) = 2��1
�
b� � x�
x� � a�

��"
1 + 

�
b� � x�
x� � a�

��#� +1

;

x > a:

According to theorem G, the random variable X has
pdf (5) if and only if that the function p(x) has the

form of p (x) =
�
x��a�
b��x�

��
; x > a:

Proof. For random variable X with pdf (5), we get:

(1�F (x))E (h1 (x)jX � x)=
�
b��x�
x��a�

��
; x>a;

(1�F (x))E (h2 (x)jX � x)=
�
b��x�
x��a�

�2�

; x>a;

E[h1 (x)jX � x]
E[h2 (x)jX � x]

= p (x) =
�
x� � a�
b� � x�

��
; x > a;

and:

p0 (x)=�� (b��a�)x��1(x��a�)��1(b��x�)���1;

x > a:

The di�erential equation s0 (x) = p0(x)h2(x)
p(x)h2(x)�h1(x) =

2� (b� � a�) �x��1

(b��x�)2

h
x��a�
b��x�

i�1
has solution s (x) =

ln
�
x��a�
b��x�

�2�
; x > a. Thus, in the light of theorem

G, X has pdf (5).

Corollary 4.2.1. Let X : 
 ! (a; b) be a continuous
random variable and let:

h2 (x) = 2��1
�
b� � x�
x� � a�

��"
1 + 

�
b� � x�
x� � a�

��#� +1

;

x > a:

The pdf of X is (5) if and only if there exist functions
p(x) and h1(X) (de�ned in theorem G), satisfying the
di�erential equation:

p0 (x)
p (x)h2 (x)� h1 (x)

= �� (b� � a�)
�x��1

(b� � x�)2

�
x� � a�
b� � x�

���1
"

1 + 
�
b� � x�
x� � a�

��#� �
� 1

:
(31)

Remarks 4.2.1. The solution of Eq. (31) is:

p (x) =
�
x� � a�
b� � x�

�2��Z �
��� (b� � a�)

�x��1

(b� � x�)2

�
x� � a�
b� � x�

����1

"
1 + 

�
b� � x�
x� � a�

��#� �
� 1

h1 (x)
�
dx
�

+D;

where D is constant.

5. Maximum likelihood estimation

In this section, estimates of parameters are derived us-
ing the maximum likelihood method. The log likelihood
function for the NFKBIII distribution with the vector
of parameters � = (a; b; �; �; ; �) is:

lnL (xi;�) = n ln�+ n ln� + n ln (b� � a�)

� (� + 1)
nX
i=1

ln (x�i � a�) + (� � 1)
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nX
i=1

ln (b� � x�i )�
�
�


+ 1
�

nX
i=1

ln

"
1 + 

�
b� � x�i
x�i � a�

��#
; (32)

where a and b are assumed known, since the min-
imum and maximum likelihood values are equal to
minimum and maximum order statistics. The MLEs
of the parameters for the NFKBIII distribution can be
computed using a solution to the following nonlinear
equations:

@ lnL
@�

=
n
�
� 1


nX
i=1

ln

"
1 + 

�
b� � x�i
x�i � a�

��#
= 0;

(33)

@ lnL
@�

=
n
�
�

nX
i=1

ln (x�i � a�) +
nX
i=1

ln (b� � x�i )

+ (�+ )

"
1 + 

�
b� � x�i
x�i � a�

��#�1�
b� � x�i
x�i � a�

��
ln
�
b� � x�i
x�i � a�

�
= 0; (34)

@ lnL
@

= ��2
nX
i=1

ln

"
1 + 

�
b� � x�i
x�i � a�

��#
�
�
�


+ 1
� nX
i=1

�
b� � x�i
x�i � a�

��
"

1 + 
�
b� � x�i
x�i � a�

��#�1

= 0; (35)

@ lnL
@�

= n
�
b� ln b� a� ln a

b� � a�
�

� (� + 1)
nX
i=1

�
x�i lnxi � a� ln a

x�i � a�
�

+ (� � 1)
nX
i=1

�
b� ln b� x�i lnxi

b� � x�i
�

� (�+ )�
nX
i=1

(a� ln a+ b� ln b� 2x�i lnxi)

"�
b� � x�i
x�i � a�

���
+ 

#�1

: (36)

Eqs. (33){(36) can be solved either directly or using
the R (optim and maxLik functions), SAS (PROC

NLMIXED), Ox program (sub-routine Max BFGS), or
using non-linear optimization approaches such as the
quasi-Newton procedure.

6. Simulation study

In this section, the behavior of the MLEs of the
NFKBIII parameters was assessed with respect to
sample size n. The steps for simulation to assess
the behavior are as follows. Generate 10000 samples
of sizes n from the NFKBIII distribution using the
inverse cdf method. Calculate the MLEs for 10000
samples, say (â; b̂; �̂; �̂; ̂; �̂) for i = 1; 2; :::; 10000, using
the non-linear optimization technique with constraints
matching the range of parameters. Herein, (0.10, 4,
1.2, 0.4, 1.1, 1.2), (0.5, 5, 1.5, 0.5, 1.3, 1.5), and (1, 6,
2, 0.8, 1.5, 1.75) are taken as the true parameter values
(a; b; �; �; ; �). Calculate the means, biases, and Mean
Squared Errors (MSEs) of MLEs.

For this purpose, we have chosen various arbitrary
parameters and n = 50; 100; 150 sample sizes. All
codes are written in R and the results are summarized
in Table 3. The results clearly show that when the
sample size n increases, the estimated MSE decreases
and estimated biases drops to zero. MSE of estimated
parameters increases as the shape parameter rises.
This reveals that MLEs for NFKBIII distribution are
reliable.

7. Applications

The potentiality and utility of using NFKBIII distri-
bution were established by applying it to two datasets:
failure times of devices [35] data and maximum an-
nual ood discharges. The NFKBIII distribution
was compared with KMBIII, NKBIII, KBIII, NIKL,
KIL, Modi�ed Burr XII (MBXII), Burr XII (BXII),
Modi�ed Burr III (MBIII), Burr III (BIII), Weibull dis-
tribution, and inverse Weibull distribution. R-package
was applied to computing goodness of �t criteria such
as \Cramer-von Mises (W �), Anderson Darling (A�),
Kolmogorov-Smirnov statistics with p-values [KS(p-
values], Akaike Information Criterion (AIC), Consis-
tent Akaike Information Criterion (CAIC), Bayesian
Information Criterion (BIC), Hannan-Quinn Informa-
tion Criterion (HQIC)" and estimate of likelihood
ratio statistics (�`) values for times to failures of 50
components, and maximum annual ood discharges.
Chen and Balakrishnan [36] described the statistics W �
and A� in detail.

The best model is that for which the values of
goodness of �t criteria are smaller. The MLEs for
unknown parameters and goodness of �t criteria values
for the NFKBIII, KMBIII, NKBIII, KBIII, NIKL,
KIL, MBXII, BXII, MBIII, BIII, Weibull and inverse
Weibull models are computed.
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Table 3. Means, bias, and MSEs of the New Family of Kies Burr III (NFKBIII) distribution (0.10, 4, 1.2, 0.4, 1.1, 1.2),
(0.5, 5, 1.5, 0.5, 1.3, 1.5), and (1, 6, 2, 0.8, 1.5, 1.75).

Sample Statistics a = 0:10 b = 4 � = 1:2 � = 0:4  = 1:1 � = 1:2

n = 50
Means 0.1002 3.9997 1.2416 0.4132 1.2034 1.2803
Bias 2e-04 {3e-04 0.0416 0.0132 0.1034 0.0803
MSE 0 0 0.011 0.0015 0.027 0.0215

n = 100
Means 0.10 4 1.2191 0.4099 1.1843 1.2772
Bias 0 0 0.0191 0.0099 0.0843 0.0772
MSE 0 0 0.0046 7e-04 0.018 0.0193

n = 150
Means 0.1 4 1.2092 0.4083 1.1722 1.2714
Bias 0 0 0.0092 0.0083 0.0722 0.0714
MSE 0 0 0.0024 4e-04 0.0133 0.0165

Sample Statistics a = 0:5 b = 5 � = 1:5 � = 0:5  = 1:3 � = 1:5

n = 50
Means 0.5015 4.9989 1.5386 0.5069 1.4244 1.6339
Bias 0.0015 {0.0011 0.0386 0.0069 0.1244 0.1339
MSE 3e-04 0 0.0232 0.001 0.0456 0.0418

n = 100
Means 0.5003 4.9997 1.519 0.5011 1.4072 1.6386
Bias 3e-04 {3e-04 0.019 0.0011 0.1072 0.1386
MSE 0 0 0.0095 2e-04 0.0298 0.0402

n = 150
Means 0.5001 4.9999 1.5108 0.5 1.3944 1.6333
Bias 1e-04 {1e-04 0.0108 0 0.0944 0.1333
MSE 0 0 0.0049 0 0.0237 0.0357

Sample Statistics a = 1:0 b = 6 � = 2:0 � = 0:8  = 1:5 � = 1:75

n = 50
Means 1.0619 5.84 2.0538 0.8496 1.7006 1.8917
Bias 0.0619 {0.16 0.0538 0.0496 0.2006 0.1417
MSE 0.0119 0.0908 0.0365 0.0125 0.0835 0.0652

n = 100
Means 1.0177 5.9591 2.0144 0.8182 1.6366 1.8777
Bias 0.0177 {0.0409 0.0144 0.0182 0.1366 0.1277
MSE 0.0026 0.0218 0.0205 0.0041 0.0586 0.0542

n = 150
Means 1.0073 5.9861 2.0003 0.81 1.6132 1.8685
Bias 0.0073 {0.0139 3e-04 0.01 0.1132 0.1185
MSE 8e-04 0.0066 0.0116 0.0018 0.0417 0.0426

7.1. Times to failure
The times to failures of 50 components [35] are 0.10,
0.20, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18,
21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67,
67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85,
85, 86, 86. The Aarset dataset is recognized as bathtub
shaped.

The MLEs along with standard errors (in paren-

theses) and goodness of �t criteria such as W �, A�, KS
(p-values) are summarized in Table 4. The values of
goodness-of-�t criteria such as AIC, CAIC, BIC, HQIC,
and �` are written in Table 5.

The NFKBIII distribution is best �tted than
KMBIII, NKBIII, KBIII, NIKL, KIL, MBXII, BXII,
MBIII, BIII, Weibull distribution, and inverse Weibull
distribution because the values of all criteria are smaller
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Table 4. MLEs and their standard errors (in parentheses) for times to failure of devices.
Model � �  � a b W � A� KS (p-value)

NFKBIII 115364.0
(379.4410)

4.956983
(0.3467780)

4889524
(16199.92)

4.722609
(0.7202355)

0.10 86 0.0454792 0.414671 0.076 (0.9445)

KMBIII 1.5122204
(0.9932218)

0.6942384
(0.2090516)

2.2315263
(2.7777485)

| 0.10 86 0.05448629 0.4984068 0.0777
(0.9343)

NKBIII 2.9425405
(2.26453756)

0.587427
(0.08992104)

| 0.0244289
(0.53930075)

0.10 86 0.05219844 0.4703996 0.0778
(0.9332)

KBIII 1.0520786
(0.1653031)

0.5805595
(0.0747764)

| 1 0.10 86 0.06114472 0.5322372 0.0744
(0.9531)

NKIL 0.7396103
(0.5740525)

1 | 1.0210726
(0.8272429)

0.10 86 0.07033046 0.5912904 0.2278
(0.0137)

KIL 0.7542468
(0.108866)

1 1 1 0.10 86 0.07026344 0.5906328 0.228
(0.01359)

MBXII 171.999510
(202.1714396)

5.275727
(0.9105317)

4243.399938
(5424.6188490)

| | | 1.298802 6.86492 0.3558
(6.342e-06)

BXII 0.2454656
(0.06939703)

1.2600795
(0.32079056)

1 | | | 1.09 33 5.850392 0.3336
(2.941e-05)

MBIII 455699.1
(23876.41)

3.224871
(0.08486702)

1959580
(13762.39)

| | | 0.3964946 2.474767 0.1614
(0.1478)

BIII 4.1810540
(0.63742201)

0.5766612
(0.05248543)

1 | | | 0.94 56 985 5.177504 0.2656
(0.001724)

Weibull 0.0272128
(0.39009785)

0.9476152
(0.04439031)

| | | | 0.4949391 3.001556 0.1933
(0.04769)

Inverse
Weibull

2.6499805
(0.39009785)

0.4634121
(0.04439031)

| | | | 1.039875 5.565583 0.2856
(0.0005731)

Table 5. Goodness-of-�t statistics for times to failure of devices.

Model AIC CAIC BIC HQIC �`
NFKBIII 403.3062 404.2365 410.791 406.1348 197.6531
KMBIII 408.9108 409.4563 414.5244 411.0322 201.4554
NKBIII 407.7712 408.3166 413.3848 409.8926 200.8856
KBIII 407.3655 407.6322 411.1079 408.7798 201.6828
NIKL 427.3011 427.5677 431.0435 428.7153 211.6505
KIL 425.3018 425.3887 427.173 426.0089 211.6509
MBXII 577.3329 577.8546 583.069 579.5172 285.6664
BXII 548.6714 548.9267 552.4954 550.1276 272.3357
MBIII 478.7943 479.316 484.5304 480.9786 236.3972
BIII 525.2932 525.5485 529.1172 526.7494 260.6466
Weibull 485.9593 486.2146 489.7833 487.4155 240.9796
Inverse Weibull 533.973 534.2283 537.797 535.4292 264.9865

for the NFKBIII distribution. We can identify that
the NFKBIII distribution closely �ts the empirical data
(Figure 3).

7.2. Maximum annual ood discharges
The data of maximum annual ood discharges (1000

ft3/sec) of the North Saskatchewan River (Edmon-
ton) over a 47-year survey are: 19.885, 20.940,
21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500,
28.100, 28.600, 30.200, 30.380, 31.500, 32.600, 32.680,
34.400, 35.347, 35.700, 38.100, 39.020, 39.200, 40.000,
40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300,
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Figure 3. Fitted pdf, cdf, survival, and pp plots of the New Family of Kies Burr III (NFKBIII) distribution for device
failure times.

Table 6. MLEs and their standard errors (in parentheses) for maximum annual ood discharges.
Model � �  � a b W � A� K-S (p-value)

NFKBIII 0.30254078
(1.6306527)

1.70483835
(0.4027486)

0.35210310
(1.9110147)

0.02101155
(2.8260695)

19.885 185.560 0.01576999 0.125909 0.0571
(0.9982)

KMBIII 0.005113609
(0.002923934)

8.889992999
(NAN)

0.133291960
(0.041725229)

1 19.885 185.560 0.611651 3.719855 0.2657
(0.003024)

NKBIII 0.005549908
(0.003225763)

67.49297076
(40.584567979)

1 1.619899847
(0.042015909)

19.885 185.560 0.3781306 2.386018 0.3031
(0.0004277)

KBIII 0.1659637
(0.05820467)

3.0726999
(0.99621453)

1 1 19.885 185.560 0.1799505 1.224586 0.2379
(0.01094)

NKIL 0.7983516990
(0.1614468)

1 1 0.0000000001
(0.2410621)

19.885 185.560 0.01863201 0.1529237 0.239
(0.01046)

KIL 0.4679514
(0.06899535)

1 1 1 19.885 185.560 0.03613052 0.2757191 0.2982
(0.0005609)

MBXII 0.0113894
(0.01673093)

124.9109988
(760.63939777)

5.4099658
(37.86181308)

| | | 0.05350551 0.3691381 0.5461
(7.386e-13)

BXII 0.07560631
(0.3409857)

3.48218254
(15.7016695)

1 | | | 0.05340923 0.368504 0.5449
(8.376e-13)

MBIII 6107.715659
(12522.06)

2.447060
(0.5375678)

1.738394
(1616.620)

| | | 0.01920378 0.1367274 0.0701
(0.9725)

BIII 6106.072865
(6901.9841287)

2.447011
(0.3285967)

1 | | | 0.01920334 0.1367219 0.0701
(0.9724)

Weibull 0.002567956
(0.000497175)

1.489705016
(0.054448946)

| | | | 0.2385166 1.511058 0.1981
(0.04618)

Inverse Weibull 6098.970551
(6310.531373)

2.446713
(0.301231)

| | | | 0.0192021 0.1367111 0.0701
(0.9725)

50.330, 51.442, 57.220, 58.700, 58.800, 61.200, 61.740,
65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600,
109.700, 121.970, 121.970, 185.560.

The MLEs along with standard errors (in paren-
theses) and goodness of �t criteria such as W �, A�, KS

(p-values) are summarized in Table 6. The values of
goodness-of-�t criteria such as AIC, CAIC, BIC, HQIC,
and �` are written in Table 7.

The NFKBIII distribution is best �tted than
KMBIII, NKBIII, KBIII, NIKL, KIL, MBXII, BXII,
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Table 7. Goodness-of-�t statistics for maximum annual ood discharges.

Model AIC CAIC BIC HQIC �`
NFKBIII 407.7306 408.7062 415.0452 410.4707 199.8653

KMBIII 519.4343 520.0057 524.9202 521.4894 256.7171

NKBIII 434.2349 434.8064 439.7209 436.29 214.1175

KBIII 423.3242 423.6033 426.9815 424.6943 209.6621

NKIL 423.6303 423.9093 427.2875 425.0003 209.8151

KIL 437.3848 437.3848 437.4757 439.2134 217.6924

MBXII 595.1127 595.6582 600.7263 597.2341 294.5564

BXII 592.772 593.0386 596.5144 594.1862 294.386

MBIII 436.2281 436.7736 441.8417 438.3495 215.1141

BIII 434.2277 434.4944 437.9701 435.642 215.1139

Weibull 458.1291 458.3958 461.8715 459.5434 227.0646

Inverse Weibull 434.2272 434.4938 437.9696 435.6414 215.1136

Figure 4. Fitted pdf, cdf, survival, and pp plots of the New Family of Kies Burr III (NFKBIII) distribution for maximum
annual ood discharges.

MBIII, BIII, Weibull distribution, and inverse Weibull
distributions as the values of all criteria are smaller
for the NFKBIII distribution. We can identify that
the NFKBIII distribution closely �ts empirical data
(Figure 4).

8. Conclusion remarks

This study derived the New Family of Kies Burr III
(NFKBIII) distribution from the T-X family technique,
transformation, and compounding mixture of distribu-
tions. The NFKBIII density had arc, J, reverse-J, U,
bimodal, left-skewed, right-skewed, and symmetrical
shapes. The hazard rate function for the NFKBIII dis-
tribution was characterized by increasing, decreasing,

increasing-decreasing-increasing, and bathtub shapes.
Di�erent statistical properties including quantile func-
tion, sub-models, ordinary moments, moments of or-
der statistics, incomplete moments, mean deviations,
inequality curves, moments for residual life functions,
and reliability measures were derived. Two characteri-
zations of the NFKBIII distribution were studied. The
Maximum Likelihood Estimates (MLE) for unknown
parameters of NFKBIII distribution were computed.
A simulation study was carried out to evaluate the
behavior of the maximum likelihood estimators. The
potentiality and utility of the NFKBIII distribution
were demonstrated via its applications to times to
failures of 50 devices and maximum annual ood
discharges. The adequacy of the NFKBIII distribution



2570 F.A. Bhatti and M. Ahmad/Scientia Iranica, Transactions E: Industrial Engineering 27 (2020) 2555{2571

was tested by di�erent goodness-of-�t criteria. The
goodness-of-�t statistics showed that the NFKBIII
distribution was the best �t model. It was shown that
the NFKBIII distribution was empirically the best for
lifetime applications.
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