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1. Introduction

Reckoned as important components of a structure,

Abstract. Sometimes, natural frequency of beams is not within the allowable range
despite the appropriate shear and bending design. Every so often, structural designers
face cases in which it is not possible to increase the beam height. Steel cable is utilized
in this research to control the natural frequency of beam due to its important advantages
such as low weight, small cross-sectional area, and high tensile strength. For the first
time, theoretical relations were developed to calculate the rate of increase in pre-tensioning
force of steel cables under external loading based on the method of least work. Moreover,
the natural frequency of steel beams with different support conditions without cable and
with different patterns of cable was calculated based on Rayleigh’s method. To verify
the theoretical relations involved, the steel beam was modeled using ABAQUS software.
The obtained results showed that the theoretical relations could appropriately predict
the natural frequency of beams with different support conditions and cable patterns. In
addition, simply supported and fixed supported beams were prestressed with V-shaped and
modified V-shaped patterns of the cable. According to the obtained results, the modified
V-shaped pattern of the cable was more efficient than the V-shaped pattern.
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frame [2]. Fanaie et al. presented theoretical relations
for the cable-cylinder bracing system using a rigid
steel cylinder. They verified the results using finite

cables are materials that can tolerate tensile force and
generally increase the stiffness and bearing capacity
of a structure [1]. Nowadays, cables are increasingly
used in structures. Hou and Tagawa applied cable-
cylinder bracing to the seismic retrofitting of steel
flexural frames. From their viewpoint, through this
retrofitting method, the lateral strength of the storey
increases without decreasing the ductility of flexural
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element ABAQUS software [3]. They also studied
seismic behavior of steel flexural frames strengthened
with cable-cylinder bracing and obtained reasonable
results [4]. Giaccu investigated the non-linear dynamic
behavior of pre-tensioned-cable cross-braced structures
in the presence of slackening in the braces. They
concluded that there was a direct correlation between
equivalent frequency and slackening in the braces [5].
Pre-tensioning of steel beams through high-
strength cables is one of the most efficient methods for
reducing the required steel and increasing their bearing
capacity. The pre-tensioning technique was primarily
used for reinforced concrete structures; however, for the
first time, it was utilized by Dischinger and Magnel
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for steel beams. Pre-tensioned steel structures are
constructed all over the world, especially in America,
Russia, and Germany. This fact shows the greater
structural and economic merits of prestressed steel
beams than non-prestressed ones. The pre-tensioning
technique is appropriate for constructing new struc-
tures and strengthening the existing ones [6].

Some researchers have studied prestressed beams
using tendons. Le et al. experimentally evaluated
the application of either unbonded Carbon Fibre Re-
inforced Polymer (CFRP) tendons or steel tendons
to precast T-section segmental concrete beams and
tested them under cyclic loads. They concluded that
CFRP tendons could easily replace steel tendons so
that beams could achieve both high strength and duc-
tility capacity [7]. Pisani analyzed simply supported
concrete beams externally prestressed under sustained
loads and introduced two numerical methods to de-
scribe the time evolution of both stress distribution
and displacement of a simply supported concrete beam
externally prestressed. Besides, they presented an
example to verify the precision of the methods [8]. Lou
et al. numerically studied the flexural response of con-
tinuous externally fiber reinforced polymer prestressed
concrete beams with various linearly transformed cable
profiles. They observed that the cable shift by linear
transformation did not affect the basic performance at
all stages of loading up to failure and the secondary
moments varied linearly with the cable shift [9]. Nie
et al. presented theoretical relations to calculate the
deflection as well as yield and ultimate moments of
simply supported prestressed steel-concrete compos-
ite beam, considering the slip effect. They verified
the suggested formulas with experimental results [10].
Zhou et al. conducted an experimental study and
applied the numerical model of prestressed composite
beams subjected to fire and positive moment. They
observed that the fire resistance of composite beams
prestressed with external tendons was highly influenced
by the stress in the cable strands [11]. Troitsky
evaluated the behavior of prestressed steel beam using
cables and observed an increase in the stiffness and a
decrease in the deformation of the beam [6]. Belletti
and Gasperi studied the behavior of prestressed sim-
ply supported steel I-shaped beams by tendons with
focus on two parameters: the number of deviators
and the value of prestressing force [12]. Park et al.
analytically and experimentally evaluated the flexural
behavior of steel I-beam prestressed with externally
unbonded tendons. They observed a considerable
increase in the yielding and ultimate bearing capacity
of steel I-beam [13]. Kambal and Jia derived a finite-
element formulation to investigate the effectiveness
of applying the prestressing technique with respect
to the flexural behavior of a simply supported steel
box girder and they verified it based on experimental

results [14]. Zhang examined the analytical solutions of
the symmetric and antisymetric elastic lateral-torsional
buckling of prestressed steel I-beams with rectilinear
tendons under equal end moments and verified the
correctness of the analytical solutions based on the
solutions simulated using ANSYS [15].

A number of researchers have investigated the
dynamic behavior of pre-tensioned beams. Noble
et al. studied the results of dynamic impact testing
on externally axially loaded steel Rectangular Hollow
Sections (RHSs) and compared the response to those
of externally post-tensioned steel RHSs. Moreover,
they tested the validity of the “compression-softening”
effect for post-tensioned sections. They concluded
that the “compression-softening” theory was not valid
for pre- or post-tensioned sections [16]. Cao et
al.  investigated the vibration performance of the
arch prestressed concrete truss girder subjected to
the on-site heel-drop and jumping impact tests and
carried out theoretical analyses. They concluded that
the theoretical fundamental natural frequency was in
general agreement with the experimental result [17].
Miyamoto et al. studied the dynamic behavior of the
pre-tensioned simply supported composite beam with
external tendon. They derived the natural frequency
equation of the pre-tensioned beam based on the
flexural vibration equation and verified the predicted
equation by comparing it with the results of the
dynamic experiment [18]. Park et al. analytically
and experimentally studied the strengthening effect
of bridges using external pre-tensioned tendons and
concluded that strengthening would reduce the mid-
span deflection by 10-24% [19].

To control the natural frequency of the beam,
structural designers have faced cases in which it is not
possible to increase the beam height due to architec-
tural limitations, or cases in which beam frequency
limitation was not considered during design and the
problem of vibration was observed after implementa-
tion. In this study, the natural frequency of steel beams
was evaluated without cable and with various support
conditions and different cable patterns.

The increase in pre-tensioning force of steel ca-
ble subjected to external loading is determined using
method of least work. Then, Rayleigh’s method is
applied to developing the natural frequency relations
of steel beam equipped with the cable. In order to
validate the obtained natural frequency relations, the
results of theoretical relations are compared with those
of finite element model of the beams.

2. Pre-tensioning symmetric I-shaped steel
beam with steel cable

Symmetric I-shaped steel beam was considered in
different support conditions, namely simply supported
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Figure 1. Prestressed symmetric I-shaped steel beams
with steel cable under external loading: (a) Simply
supported beam along with V-shaped cable pattern, (b)
simply supported beam along with modified V-shaped
cable pattern, (c) fixed supported beam along with
V-shaped cable pattern, and (d) fixed supported beam
along with modified V-shaped cable pattern.

and fixed supported beams. As shown in Figure 1,
prestressed cables with different patterns were used on
both sides of beam web subjected to external loading.
In the frequency analysis, beam movement is of back
and forth types; therefore, as observed in the figure,
regarding the V-shaped pattern, the cable was fixed at
both ends to one of the flange (top or bottom) of the
beam on both sides of the web. Then, in the middle of
the beam, it passes through the reel on the another
flange causing the pattern with two inclined cables.
Moreover, in the modified V-shaped pattern, the cable
remains fixed at both ends to the one of flange (top or
bottom) of the beam on both sides of the web and then,
it passes through two reels on another flange producing
a pattern with one horizontal cable in the middle and
two inclined ones on each side.

The following assumptions are taken into account
to analyze the prestressed symmetric I-shaped steel
beams with steel cable:

1. The materials of steel beam and cable are linearly
elastic;

2. The deformations are small;
3. Shear deformation is neglected;

4. The friction loss in the region of the cable deforma-
tion and the relaxation of steel cable are ignored;

5. Steel beam section is rolled; therefore, it is compact.

3. Natural frequency

The natural frequency of systems with distributed
mass and rigidity, which are usually considered as
single-degree-of-freedom systems and also known as
generalized single degree of freedom systems, can be
calculated using Rayleigh’s method. This method is
based on the principle of conservation of energy. The
principle of conservation of energy states that the
total energy in a freely vibrating undamped system is
constant (i.e., it does not vary with time).

4, Calculating the natural circular frequency
of beam by Rayleigh’s method

The simple harmonic motion of a beam under free
vibration can be defined as follows:

w(z,t) = 2,0 (x) sinwyt’, (1)

where ¥(z) is an assumed shape function defining the
form of deflections and satisfying the displacement
boundary conditions. The shape function can be
determined from deflections using a selected set of
static forces. One common selection of these forces
is the weight of structure applied in an appropriate
direction. Moreover, z, is the amplitude of generalized
coordinate z(t) and w, is the natural circular frequency
of beam. The velocity of beam is equal to the following:

w(z,t) = wp 2o () coswpt'. (2)

The maximum potential energy of the system over a
vibration cycle is equal to its strain energy associated
with the maximum displacement u,(z):

L

1

E%:/’gmmwmm%w (3)
0

The maximum kinematic energy of the system over

a vibration cycle is associated with the maximum

velocity i, (x):

L
Fr, = /0 %m(ﬂc) fio ()] da. (4)

Through Egs. (1) and (2), the maximum displacement
uo(x) and maximum velocity 4,(z) are defined as
follows:

uo(z) = 209(2), (5)
Uo(2) = Wnzow(x) = Wauo(x). (6)

The natural circular frequency of beams is obtained
by replacing Eqs. (5) and (6) in Egs. (3) and (4);
besides, by using the principle of conservation of
energy, equating the maximum strain energy, Fg,, to
maximum kinematic energy Ex, gives:

L " 2
B @) .

o m) @) de

where m(x) is the mass per unit length of the beam,
EI(z) flexural rigidity, and L the beam length.

Eq. (7) is Rayleigh’s quotient for a system with
distributed mass and rigidity. Rayleigh’s method can
be used to calculate the natural frequency of beam with
different support conditions without cable and different
patterns of cable.
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4.1. Calculating the natural frequency of the
simply supported beam without cable

To determine the shape function of the simply sup-

ported beam, as shown in Figure 2(a), the boundary

conditions are as follows:

Iy
= ! —_— =
=0, uo<2> 0.

With this limitation, two different shape functions can
be assumed.

0(0) = uo(lp)

4.1.1. Calculating the natural frequency of the simply
supported beam based on the assumed shape
function

The hypothetical shape function satisfying the dis-

placement boundary conditions is considered as follows:

Y(x) = sin —. (8)

The natural circular frequency of the simply supported
beam is obtained using Rayleigh’s quotient formula
(Eq. (7)) by replacing the assumed shape function
according to Eq. (8) as follows:

o _Jo' Bl) [0 @) da
Syt m(@) [ ()] de

n

l’ 772 : ™ 2
(E[) ! (—ﬁ Sin I) d.T _ 7T4(E[)bg
2 =
Q?D Ol" (sin %) dx lyap
2 EI
= T [ B (9)
lb 4D

where m(x) is the mass per unit length equal to & (gp
is the uniform dead load per unit length and ¢ is the
gravity acceleration), I, is the beam length, and (ET),
is the flexural rigidity of the beam.

The natural frequency of the simply supported
beam is obtained using the natural circular frequency
formula (Eq. (9)) as follows:

(EDy

uo 20

Iy
(a)

4D

(b)

Figure 2. (a) Deflection curve of the simply supported
beam. (b) Simply supported beam subjected to vertical
structural weight.

Wn T (El)bg

fZQW_@ qp

(10)

4.1.2. Calculating the natural frequency of the simply
supported beam based on the shape function
resulting from the deflection curve

A possible approach is to select the shape function
based on the deflection curve due to static force. The
bending moment equation of the simply supported
beam due to vertical structural weight (as in Fig-
ure 2(b)) in order to determine the deflection curve
is as follows:

gpbyx qpa?

M = 11
(@) = = 5 (11)
The internal bending moment is equal to:

M(z) = —(ED)yuq (). (12)

By replacing Eq. (11) in Eq. (12) and imposing bound-
ary conditions, the deflection curve is obtained as

follows:
16<lb> 32(@):16(@)41 »

If the deflection in the mid-span of the simply sup-
ported beam (as Figure 2(a)) is assumed as the ampli-

by = 5qply
2) = B84(EI);>
the shape function is obtained as follows:

=230 26w

The natural circular frequency of the simply supported
beam using Rayleigh’s quotient formula (Eq. (7)) by re-
placing the obtained shape function from the deflection
curve according to Eq. (14) is obtained as follows:

5(][)[21

wo(*) =333 (ET),

tude of generalized coordinate z, = u, (

L2 o ) [0 @) de
b m@) ) de

2
Ly 192z 19222

(EI)b 0 ( 503 5I dx

N 2
ap (b (16 (=) _32 (2" 16 (=
g JO 5 ly 5 5 Iy

3024(EI)ug _ 12 [2U(El)g
= s —

n 15
310%qp =2\ s (15)

Then, the natural frequency of the simply supported
beam is obtained as follows:

wn _ 6 [21(E)bg

= == 16
! 2 7l 31qp (16)
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4.2. Calculating the natural frequency of the
fized supported beam without cable

To determine the shape function of the fixed supported

beam, as shown in Figure 3(a), the boundary condi-

tions are given below:

w0 =) =0, u0)=i, (%) =it =0,

Considering this limitation, two different shape func-
tions can be assumed.

4.2.1. Determining the natural frequency of the fized
supported beam based on assumed shape
function

The assumed shape function satisfying the displace-

ment boundary conditions is considered as follows:

P(x) =1— cos Z;T—x (17)
b

The natural circular frequency of the fixed supported

beam using Rayleigh’s quotient formula (Eq. (7)) by

replacing the assumed shape function according to

Eq. (17) is obtained as follows:

o o Bl) [0 (@) du

n

l .
Jo' m(@)[(2)]Pdx
EI by [ arx? 27z 2d
B (S eos %) 1ri(mrg
- 2 - 4
qTD fol" (1 — cos ZZT—I”C> dx 3lyqp
4r? [(El)g

Then, the natural frequency of the fixed supported
beam is obtained as follows:

_Wwn 21 (EI)bg. (19)

f_27r_ 12 3¢p
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Figure 3. (a) Deflection curve of fixed supported beam.

(b) Fixed supported beam subjected to vertical structural
weight.

4.2.2. Calculating the natural frequency of the fized
supported beam based on the shape function
obtained from the elastic curve

The bending moment equation of the fixed supported

beam due to vertical structural weight (as in Fig-

ure 3(b)) in order to determine the deflection curve
is given below:

qpl  gqplyx  gqpa?
M(z) = — 12b-+ S (20)

The internal bending moment is equal to:
M(z) = —(ED)yuq (). (21)

By replacing Eq. (20) in Eq. (21) and imposing bound-
ary conditions, the deflection curve is obtained as

follows:
z\? z\* z\*
16— ) =32+ )+16 (=) |.(22)
Iy ly ly
If the deflection at the mid-span of the fixed supported
beam (as in Figure 3(a)) is assumed as a amplitude

4
Qle
384(ED); > the

Uo(x) = _aoly
T 384(EDD,

of generalized coordinate z, = u, (%) =

shape function is obtained as follows:

W(x) = 16 (i)z ~ 32 (i)g +16 <i>4 (23)

The natural circular frequency of the fixed supported
beam using Rayleigh’s quotient formula (Eq. (7)) by re-
placing the shape function obtained from the deflection
curve according to Eq. (23) is obtained as follows:

o 3 El@) [0 ()] do

w, =

2

dx

(EI), U (Q _ 1920 4 1020°

i Iy b

gp v T 2 T 3 T 4 ?
a [ (16(15) _ 32 (ﬁ) +16(E) ) dz

_SO0A(EDg | _ 6 [14(EDug 2
Itap T ap

Then, the natural frequency of the fixed supported
beam is obtained as follows:

w3 [14(El)ug
F= o2 w2\ qp (25)

4.3. Calculating the natural frequency of the
simply supported beam with V-shaped
cable pattern

One possible approach to selecting the shape function
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Figure 4. Simply supported beam with the V-shaped
cable pattern.

in order to calculate natural frequency of the beam
with cable using Rayleigh’s method is based on the
deflection curve due to static force. Omne common
selection of these forces is the weight of structure
applied in the vertical direction.

The cable length increased by Al and its pre-
tensioning force, F;, increased by AF' in beams with
cable under uniform dead load. Given that the struc-
ture is statically indeterminate, the static equilibrium
equations are not enough to calculate AF. The rate
of increase in the force in the cable can be calculated
using the method of least work.

Regarding the simply supported beam with V-
shaped pattern cable, as shown in Figure 4, the increase
in pre-tensioning force of the steel cable is equal to
AF. Therefore, the axial force of the beam is equal
to AF cosf. Moreover, with regard to the symmetry
of the structure and loading (as in Figure 4), the
maximum strain energy of the simply supported beam
with V-shaped pattern of cable including strain energy
resulting from bending and axial force of the beam
and strain energy from axial force of the cable can be
obtained for half of the beam. By duplicating it, the
maximum strain energy for the whole beam is obtained
as follows:

b
_ 1 z 5 AF?l,
ESO—2Xm/O M(I') dx+2><2(AE)C
(AF cos )2l
~ 000 7 - 2
2(AE), (26)

where [, and [. are the lengths of beam and inclined
cable, A, and A. are cross-section areas of beam and
cable on both sides of the web, E}, and E. are the elas-
ticity moduli of beam and cable, respectively, and I, is
the moment of inertia of beam, 6 is the angle of inclined
cable with the horizontal axis, and M (x) is the bending
moment of the simply supported beam with the V-
shaped pattern of cable in the range of 0 < z < %”

Due to the symmetry of structure and loading,
the bending moment diagram for the right half of the
beam is exactly similar to the left half of the beam;
therefore, the bending moment of the simply supported
beam with the V-shaped pattern of the cable under
uniform distributed dead load for the half of the beam
is determined as follows:

For the 0 <z < %’ region:

gplyx _gpa®

M(z)=AF cosByo—AF sinfx+ 5

, (27)
where ¢p is the uniform distributed dead load per unit
length and yo is the distance of neutral axis to the
connection point of steel cable to the beam flange (half
of the height of beam web).

By replacing Eq. (27) in Eq. (26), the maximum
strain energy equation is obtained as follows:

iy

1 >
Egy =2 %X ———— AF cosfyo — AF sin @
S X Q(Ef)b/o ( COS Yo Ssmmox

2
gplyr  qpa? AF?],
— 2
+ 5 5 ) dr +2 x S(AE).

(AFcos6)?l, 1 {qulg

2(AE), (EI), | 240
AF?Bsin® 0 AF?l,y3 cos® 6
24 2
B AF?[Zyosin 6 cosf B 5¢p AFI} sin 6
4 192
+qDAFl§y0 COSG} AF?l, AF?l,cos?d
12 (AB). T 2B

Calculating the rate of increase in the pre-tensioning
force of the cable (AF) through the method of least
work, the relation of the whole strain energy is differ-
entiated with respect to AF and the obtained result
equates to zero:

8Es,
B(AF)

= 0. (29)

The relation used for calculating the increase of pre-
tensioning force of the cable (AF) is obtained by
Eq. (30), in which p is given in Eq. (31) (Egs. (30)
and (31) are shown in Box I). By replacing Eq. (30) in
Eq. (28), the maximum strain energy of the beam FEg,
is obtained as follows:

2

dp 5 273 2.2
Eg, =——=—<4] 40071 0
s 960(EI),,{ b+ 20l sin

+ 4804 I3 cos? 6 — 240 7y, sin 6 cos 6

. 960,12 ET), 1.
—25ul} sin @4-80ul3yo cos -+ l(LA(E)C)b

480211, cos? 6 2
L 480u7 Ll cos } qp 3 (32)

A, = 960(EI )y’
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5qply sin@ — 16gpl3yo cosd

A= 24(EI )yl Llcoszoy P (30)
16 (1§ sin® 6 + 121,53 cos? 6 — GlZyy sin 6 cos ¢ + 24Tl 4 120lycostl)
where:
50} sin @ — 163yo cos b
K= s - 2 , y 24(EDyle | 12000520\ (31)
16 (l'b sin” 0 + 12l,y5 cos? 6 — 6lyyo sin 6 cos ) + = 7z + =47 )
Box 1

In Eq. (32), 3 is as follows: () = 1 {qDlicv _ AFsinbx

B =4} + 40021 sin® 0 + 480 1,y3 cos® 6 (BD)y | 24 8

AF1 0 AF Oz
— 2402 12yq sin 6 cos § — 25l sin 6 + by; cosvr _ Yo ;08 <

96042(ET )y,
+ 80ul}yg cos 6 + W
48021y, cos? f
i e A
Ay

With regard to the symmetry of structure and loading,
the maximum kinematic energy of the simply sup-
ported beam with the V-shaped pattern of cable can
be determined through Eq. (4) and by replacing the
maximum velocity according to Eq. (6) for half of the
beam; in addition, by duplicating it, the maximum
kinematic energy is determined for the whole beam as
follows:

(33)

iy

Exo=2x /07 %m(a:) (ito(2))? dx:

Hy
2

_ /0 (@) (wn(2))2d, (34)

where m(z) is mass per unit length of the beam equal
to 22 (mass of cable is neglected) and uo(z) is the
deflection curve of the simply supported beam with the
V-shaped cable pattern for 0 < z < %’

To determine the deflection curve, the internal
bending moment should be equal to:

M(z) = —(EI)puq(x). (35)
The deflection curve in Eq. (35) should satisfy the
displacement boundary conditions. For the simply

supported beam with the V-shaped pattern of cable,
the boundary conditions for half of the beam are:

u,(0) = 0, u, <l2b> =0.

By replacing Eq. (27) in Eq. (35) and imposing the
above boundary conditions, the deflection curve for half
of the beam is obtained as follows:

36
6 12 24 (36)
By replacing Eq. (36) in Eq. (34), the maximum
kinematic energy equation of the beam is obtained as
follows:

AF sin 23 3 gplya® qu4]

]) 5
Y / ¥ 1 [gpBz  AFEsingr
ko= | \(ED, | 24 8
AFyqg cos 6>

AFlyy cosfr
+ 2 2

AF sin 023 Iy 41\?
N sin Az _qu:L"_Fqu}) du

6 12 24
_p2 1 31¢3hl)  1TAF?1] sin® 0
"(EI)2g | 725760 40320

AF?Py3cos’f  61AF?18yqsinf cosd
240 23040

_277qDAFl§ sinf 17gpAF1]yo cosb (37)
1032192 20160

By replacing Eq. (30) in Eq. (37), the maximum
kinematic energy equation of the beam F, is obtained
as follows:

2 q%

D [19841)
46448640(EI)2g { b

EI\'O =W

+ 19584%1] sin® @ + 193536% 1) yg cos® 6

— 122976% 15 yo sin 6 cos § — 12465l sin 6

3
39168l 0=} ormetn @y
+89168uljyo cos O} =), e B ETEy ()

In Eq. (38), v is as follows:
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v =198419 +195844°1] sin® +193536°1;y5 cos” 6
— 1229764215y sin 6 cos 6 — 1246515 sin 6

+ 39168 ul] yo cos b. (39)

The natural circular frequency of the simply supported
beam with the V-shaped pattern of the cable using
Rayleigh’s method and the principle of conservation of
energy is obtained as follows:

» _ A8384(ED)gB

w’ll

21(EI
o = 48y | 2LEDvB.

(40)
any any

Then, the natural frequency of the simply supported
beam with the V-shaped pattern of the cable is deter-
mined as follows:

_wa _ 24 [21(E)yg8
== (41)

4.4. Calculating the natural frequency of the
simply supported beam with the modified
V-shaped pattern of the cable

Concerning the simply supported beam with the mod-
ified V-shaped pattern of the cable, as shown in
Figure 5, the force of horizontal cable should be equal
to the horizontal component of the force of the inclined
cable to keep the bending moment continuous in the
slope change region of the cable. Therefore, if increase
in pre-tensioning force of steel cable is assumed as AF
in the slope parts, then it will be equal to AF cosé in
the horizontal part; hence, the axial force of the beam
is equal to AF cosé.

In addition, regarding symmetry of the structure
and loading (as in Figure 5), the maximum strain
energy of the simply supported beam with the modified
V-shaped pattern of the cable for the whole beam is
obtained as follows:

1 ¢ 2 * 2
Es, =2 x 2<E1)b{/0 M;(x) da:—l—/a My(z) dx}

AF?l,  (AF cos6)?(ly — 2a)
HERETVY z(AE)f
(AF cos )2l
2AE), (42)
Wl [ JJ Ll 0]
g JN‘A‘
0—/ le 2
IR | Sp— )
A a ~" | B
b |

Figure 5. Simply supported beam along with the
modified V-shaped cable pattern.

where a is the distance of support to the point of change
in the cable slope (horizontal projection of inclined
cable), and M;(z) and Ms(x) are the bending moments
of the simply supported beam along with the modified
V-shaped pattern of the cable for 0 < 2z < a and
a<x< %, respectively.

Due to symmetry of the structure and loading, the
bending moment of the simply supported beam with
the modified V-shaped pattern of the cable subjected
to uniform distributed dead load for half of the beam
is obtained as follows:

For0 <z <a:
I 2
Ml(fﬁ)ZAFCOSHyO—AFSin9$+qD bT 4D .
2wy

Foraga;g%:

gl gpa®
2 2

By replacing Egs. (43) and (44) in Eq. (42), the

maximum strain energy is obtained as follows:

1 a
AF cosByy — AF sin 6x
2(E b{/o ( v

N\ 2 by
I 2 2
4 b o ) dx+/ (-AFCOSHyo

Ms(xz) = —AF cosfyy +

(44)

Eso =2 X

2 2

2
2 AFQ

2 2 2(AE).
(AF cos0)2(l, —2a)  (AF cos9)?l,
2(AFE). 2(AE),
_ 1 Jai N AF2%a3sin® 6
(ED), | 240 3
27 22 a2
+ w — AF%yya®sin 6 cos §

N gpAFa*sinf  gpAFlya®siné

4 3
2¢pAFypa®
_ 2 %Oa cosf + qDAFlby0a2 cos 6
B qpAFByg cosb AF?],
12 (4E),
AF?(l, — 2a)cos? 6 AF?l, cos? 6 (45)
2(AD). 2(AE),

The increase in pre-tensioning force of the cable (AF)
calculated through the method of least work is defined
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—3gpa*siné + 4qplya® sin 6 + 8qpyoa® cos 8 — 12qplyyoa® cos b + qpliyy cosh

4 (2@3 sin’ @ + 3lpy2 cos? 0 — 6yga® sinf cos b + ?ﬁ‘%]))’p [21. + (Ip — 2a) cos? 6] + W

AF =

) =qpp, (46)

where:

—3a*sin 0 + 4l,a® sin 6 + 8yga® cos§ — 121,ypa® cos b + [Fyo cos b

p= ; , 20\’
4 (2@3 sin? 6 + 31,2 cos2 @ — 6yoa? sin § cos O + ?(fb{))’ [2l. + (I, — 2a) cos? 0] + W)

Box II

by Eq. (46), in which p is obtained by Eq. (47) % ] )
(Egs. (46) and (47) are shown in Box IT). By replacing + / im(x) (tto2(2)) dl’}
Eq. (46) in Eq. (45), the maximum strain energy of the ¢

beam Eg, is obtained as follows: U,

= [ m) @) ot ma)un()Pir

2 a
Es, -9 {l? + 80p2a® sin” @ (50)
240(ED where 4,1 (x) and u,o(z) are the deflection curves of the
. . simply supported beam with the modified V-shaped
+ 1204 lyyj cos® § — 2401 yoa® sin @ cos f cable pattern for the 0 < # < ¢ and a < z < %,

respectively.
To determine the deflection curve, the internal
bending moment should be equal to:

+60pa’ sin @ — 80ulya® sin 6 —160uy0a® cos @

+ plyyoa® cos§ — 20ulyg cos 6

M () = —(EI)yug, (2), (51)
120p2(EI), .
(4E), [t (b = 20)cosf] Ma(z) = —(EDyuly (). (52)
) ) , The deflection curve in Egs. (51) and (52) should satisfy
n 12042 Iyl cos® 0 _ aphs . (48) the displacement boundary conditions. For the simply
Ay 240(ED)y supported beam with the modified V-shaped cable
pattern, the boundary conditions for half of the beam
In Eq. (48), 3 is as follows: are as follows:
l
B =1} + 80ua®sin?  + 1202 1,y3 cos® O U61(0) =0, ul, (5) =0,
2 2 . 4 .
— 240u°yoa” sin 6 cos B + 60ua”™ sin 6 ot (@) = ugs(a), u(a) = uly(a).
— 80ulya® sin @ — 160puyga’ cos 6 By replacing Eqs. (43) and (44) in Egs. (51) and
(52) and imposing the above boundary conditions, the
+ plyyoa® cos 6 — 20pl3yo cos @ deflection curve for half of the beam is obtained as
follows:
12002 (E
(ZE()CDb [QIC + (I — 2a) cos? 9] For0<z <a:
o (2) 1 [gplixz AFa?sinfz
120427, 2 ol = -
n O Ipl, cos 9. (49) (ED), 24 2
Ay
AFlyyo cos Oz
Regarding the symmetry of structure and loading, the +2AFypacos bz — 5
maximum kinematic energy of the simply supported
beam with the modified V-shaped cable pattern for the AFyq cos 02 N AF sin 023
whole beam is obtained as follows: - 2 6

“1 . 2 aplyz®  qpa*
By =2 - , - .
I X {/0 2m(a;)(u 1(x)) dx 12 + o1 (53)
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1 AFa?sin 6
~ (EI), 3

+ AFyya® cos

qpl3x  AFlyyo cosbz
24 2

AFyq cos 0z lyx’ x4
+ Yo _ 4ok n 4D . (54)

2 12 24

By replacing Egs. (53) and (54) in Eq. (50), the
maximum kinematic energy of the beam is obtained
as follows:

@ 1
Ereo =212 /
! g { o \(BD)s

qDlgx AFa?sin Oz

24 2
AFI 0

+ 2AFyga cos fx — w

AFyq cos 022 N AFsinfz®  gplyz®

2 6 12
gpzt ’ E3 1 AFa?sin @
D
d _

T D x+/a ((EI),, 3

qpliz  AFlyygcosbz

AFyya®
+ Yoa” cos B + 21 >

2
AFyycosb2?  qplyx®  qpa*
+ 2 T T |

_2 4o ) Blabl}  2AF2a"sin®f
" (El)}g | 725760 35

AF?y2a® cos® 0

AF2[,a% sin?
_|_

18 B 2
TAF?lysa* cos® 0 AF?3y2a? cos? 6
12 12
AF?2y2 cos’ 0 41AF?ygaSsinf cosf
240 120
11AF?l,y0a® sin @ cos §
30
N AF%3yga®sinfcos® qpAFaSsinf
36 2880
qpAFl,a"sind  gpAFI3a®sin6
840 360
gpAFa*sind  gpAFyga” cosb

360 B 1260

gpAFlyyoa® cos b qDAFl yoa™* cos b
360 144

qpAFByoa® cosf 17qpAFI]yy cost }
120 20160 (55)

By replacing Eq. (46) in Eq. (55), the maximum
kinematic energy of the beam FEp, is obtained as
follows:

q3

Ego=w?—"32D
K ”725760(E'I

{311) — 414724%a" sin” 6

+ 40320p%1,a° sin® 6 — 362880u2yZa® cos® §
+ 42336012 lyyaa* cos® @

— 604804 3 yaa® cos® O + 3024413 ya cos® O
+ 247968 1% yoa’ sin @ cos 6

— 2661124%1y10a° sin @ cos 0

+ 2016042} yoa® sin 6 cos § + 252ua® sin 6
— 864pulya” sin 6 + 2016l a” sin 6

— 2016l a® sin 6 — 576uyoa’ cos b

+ 2016, y0a® cos @ — 5040ul3yoa* cos @
+60481ul5yoa’ cos§ — 612ul] yo cos 0}

_2_ by
" 725760( EI )29
In Eq. (56
v =311}

), v is as follows:

— 41472p%a" sin® 6 4 40320421,a° sin? @
— 362880 yaa’ cos® O + 42336042 l,yZa* cos® 6
— 604804 3y2a® cos® O + 3024413 y2 cos® O

+ 24796812 yoa® sin A cos H

—2661124°l,y0a® sin 6 cos @

+ 2016042 3y0a sin @ cos @ + 252pa® sin 6

— 864pulya” sin 6 + 2016l a® sin 6

— 2016l a® sin § — 576 u30a’ cos b

+ 20164y y0a’ cos @ — 5040ul3yoa* cos @

+ 6048l yoa® cos @ — 612ul; o cos 6. (57)
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The natural circular frequency of the simply supported
beam with the modified V-shaped cable pattern using
Rayleigh’s method and the principle of conservation of
energy is obtained as follows:

o = 12, AEDbgB gy

) _ 3024(ED)wgf
ap7 qgp”

wn
The natural frequency of the simply supported beam
with the modified V-shaped cable pattern is obtained
as follows:

_wn _ 6 [21(E@)sgf
In= oy = o PR (59)

4.5. Calculating the natural frequency of the
fized supported beam with the V-shaped
pattern of cable

In the fixed supported beam along with the V-shaped

cable pattern, as shown in Figure 6, an increase in

the pre-tensioning force of steel cable is equal to AF.

Therefore, the axial force of the beam is equal to

AF cosé.

Moreover, regarding the symmetry of structure
and loading (as in Figure 6), the maximum strain
energy of the fixed supported beam with the V-shaped
cable pattern for the whole beam is determined as
follows:

Iy
1 2 AF?]
Egy =2 X ——— M(z)%dx + 2 x °
o =2 gy [, M) 2(AF).
(AF cos )2l

where M(x) is the bending moment of the fixed
supported beam with the V-shaped cable pattern for
0<z<lb

It should be mentioned that the fixed supported
beam along with the V-shaped pattern of the cable
has two degrees of indeterminacy (the increase in pre-
tensioning force of the cable, AF, and the moment
at fixed end, M). The increase in the pre-tensioning
force of the steel cable and the fixed end moment can
be calculated using the method of least work. Thus,
the bending moment of the fixed supported beam with
the V-shaped pattern of the cable subjected to uniform

4D

‘N.A.

0 — 7

3 \\\}M X

AMAVIANANY

=

11)/2 I lb/2
Iy

b

Yo
}
B

Figure 6. Fixed supported beam along with the
V-shaped cable pattern .

distributed dead load for the half of beam is obtained
as follows:

For 0 <z < %
M(z)=—M + AF cos0yy — AFsin 0z

gplyr  qpa’
2 2
where M is the moment at the fixed end.
By replacing Eq. (61) in Eq. (60), the maximum
strain energy formula is obtained as follows:

(61)

i

1 2
Ego =2 X ——— —-M + AF 0
s X Q(El)b/o ( + cos Byg

2
2
— AFsinfz + 4ol _ dpt ) dx
2 2
2 2
49X AF?l.  (AFcos6)?l,
2(AE). 2(AE),

_ 1 qungAF?lgsin?e
(EI), | 240 24

AF?lyygcos® 8 AF?1yq sin cos §

2 4
5¢pAFlsing  qpAFygcost
192 12
MAFI?sin6 M3
+7bsm—MAFlbyo cosd — 4%
4 12
M?1 AF?l,  AF?] 29
2y b CO8 (62)
5 4E). * T 2(4E),

Calculating the moment at the fixed end (M) through
the method of least work, the relation of the whole
strain energy is differentiated with respect to M and
the obtained result equates to zero:

dEs,

oM
The calculated bending moment at the fixed end (M)
is determined as follows:
qpl}  AFl,sinf

12 4

To calculate the increase of pre-tensioning force of cable
(AF) through the method of least work, the relation
of the whole strain energy is differentiated with respect
to AF and the obtained result equates to zero:

dEs,

A(AF)
The calculated increase of pre-tensioning force of the
cable (AF) is obtained through Eq. (64) as follows:

= 0. (63)

M =

+ AFyg cosb. (64)

= 0. (65)
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I}sin@
AF = . (lf sin? O+ g%;z)izc N 48[”125052 0) ZQDM.(%)
In Eq. (66), 1 is as follows:
[}sinf . -
(13 sin? 0 + 96(E]))bl T 4811,1250529)

If sinf = Zlﬂ and cosf = ﬁ are replaced in Eq. (64)
(as in Figure 6), the fixed end moment will be the fixed

end moment of the beam without cable as follows:

_ aol}

L. (68)

By replacing Eqgs. (66) and (68) into Eq. (62), the

maximum strain energy of the beam FEg, is obtained
as follows:

2
ESO = 9D

——D 9% + 120421} sin? §
2880(EI),,{ b+ 120p70 sin

+ 144002 lyy3 cos? 6 — 72042 12 yq sin 6 cos 8

288012 (EI )y,

— 15ul; sin 6
WS T ),
144O,u2Iblb cos? 6 a3 8 (69)
A, = 2880(EI),
In Eq. (69), 5 is as follows:
B =217 + 1204213 sin”® 6 + 1440 1,y2 cos® 6
— 720p° 2y sin § cos @ — 15l sin 6
2880u2(EI)yl.  1440u%Iyl, cos? 6 (70)
(AE)C Ab ’

Regarding the symmetry of structure and loading, the
maximum kinematic energy of the fixed support beam
with the V-shaped pattern of the cable for the whole
beam is obtained as follows:

Ly

Exo =2 x /0 ’ %m(m) (i1 (2))2 d

b

:/07 m(z)(wauo(2))?da, (71)

where u,(x) is the deflection curve of the fixed sup-
ported beam with the V-shaped cable pattern in the
range of 0 <z < &.

The bending moment of the fixed supported beam
with the V-shaped pattern of the cable subjected to
uniformly distributed dead load in order to determine

the deflection curve for the half of beam and by
replacing Eq. (68) is as follows:

l
M(z)=— M+ AF cosfyo — AF sinfz + QD;Q:
I L/ SN P
5 T 1o cos 8y
1 2
— AFsinfg 4 122% _ 9D (72)

2 2

To determine the deflection curve, the internal bending
moment should be equal to:

M(x) = ~(EI)yul(x). (73)

The deflection curve in Eq. (73) should satisfy the
displacement boundary conditions. For the fixed sup-
ported beam with the V-shaped pattern of the cable,
boundary conditions for the half of the beam are:

l
u(0) =0,  u'(0)=u/ (2”) =0.
By replacing Eq. (72) in Eq. (73) and imposing the
above boundary conditions, the deflection curve for the
half of the beam is obtained as follows:

() = 1 [gpliz®>  AFycosfz®
U (EDy | 24 2
AFsinfz®  qplya® qpa?
T 12 24 } (74)

By replacing Eq. (74) in Eq. (71), the maximum
kinematic energy of the beam is obtained as follows:

W
4D 1
Em—w2
K g9 Jo ((E-Ub

qplBz?®  AFygcosfx?
24 2

2
AFsinfz®  gplya® g¢pat
T 12 T )™

—2 4D q%)ll?
" (EI)Zg ) 725760

AF?]sin” @
32256

AF?Bydcos’ 0 AF?8ygsinf cosd
640 2304

37gpAF[Fsind  29qp AF Iy cosf (73)
3096576 322560

By replacing Eq. (66) in Eq. (75), the maximum
kinematic energy formula is obtained as follows:

qD 9 2
Ero=w?—— 1D 16419 4 14404217 sin? 0
! “46448640(]5)])2 {6415 + 1440,171; sio

+725761% 132 cos® 6 —20160u>15 yo sin 6 cos 6
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+ 555ul® sin 6 — 417617 yo cos 6}

_2_ a7
" 46448640(EL)Zg’

In Eq. (76), v is given as follows:
v =641 + 1440421} sin® 8 + 72576° 13 y2 cos 6

— 2016041870 sin 6 cos 8 + 555ul5 sin @

— 41764l yo cos B. (77)

The natural circular frequency of the fixed supported
beam with the V-shaped pattern of the cable using
Rayleigh’s method and the principle of conservation of
energy is obtained as follows:

(78)
qgp7y aqp7y

The natural frequency of the fixed supported beam
with the V-shaped pattern of the cable is obtained as
follows:

_wn _ 24 [T(El)ygb
Jn= 2r oW a7y (79)

4.6. Calculating the natural frequency of the
fized supported beam with the modified
V-shaped pattern of the cable

In the fixed supported beam with the modified V-

shaped pattern of the cable, as shown in Figure 7,

assuming increase in the pre-tensioning force of steel

cable to be equal to AF in the inclined parts, increase
in the pre-tensioning force of the cable in the horizontal
part is AF cos®f.

Therefore, the axial force of the beam is equal to

AF cosf. Regarding the symmetry of structure and

loading (as in Figure 7), the maximum strain energy of

the fixed supported beam with the modified V-shaped
pattern of the cable for the whole beam is obtained as
follows:

_ 1 ¢ 2 * 2
Es, =2 x 2(E1)b{/0 M (x) dx~|—/a Ms(z) da:}

Loy AF?l, N (AF cos8)2(l, — 2a)
2(AE). 2(AE).
(AF cos )2l

where M, (z) and Ms(x) are the bending moments of
the fixed supported beam with the modified V-shaped
pattern of the cable in the 0 <z < gand a <z < %”
ranges.

It should be mentioned that the fixed supported
beam with the modified V-shaped pattern of the cable
has two degrees of indeterminacy with an increase in

the pre-tensioning force of the cable (AF) and the
moment at the fixed end (M). An increase in the pre-
tensioning force of the steel cable and fixed end moment
can be calculated using the method of least work.
Thus, the bending moment of the fixed supported beam
with the modified V-shaped pattern of the cable is
obtained subjected to uniformly distributed dead load
for the half of beam as follows:

For the 0 < x < a range:

Mi(z) == M 4+ AF cosfyy — AF sinfx

gl gpa®

81
+ 5 (81)
For thea <z < % range:

l 2
Msy(z) = —M — AF cos 0y + ot 4T (82)

2 2

By replacing Eqs. (81) and (82) in Eq. (80), the
maximum strain energy is obtained as follows:

1 a
Eg, =2 % 5(ED); {/0 (—M + AF cosfyg

— AFsinfx +

2
aplyx  qpa? d
2 2

143
2

z l
+/ (—M — AF cosfyo + DT

2

2
2 2

qpT AF?l,

> > dr p +2 % AR,

(AF cos0)%(l, — 2a)
2(AR).

(AF cos )2l
2(AD),

1 i +AFQa?’Sin29
~ (EIy | 240 3

AF?1,y2 cos? 6
2

3¢¢¢f¢¢¢¢&

le Yo

— AF?ypa%sinf cos

\
\

JN.A.

ANMAANANNY
B}

v r
A«—a——l«lb—za I a B

Figure 7. Fixed supported beam along with the modified
V-shaped pattern of cable.
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gpAFa*sing  gpAFlya®sind
4 3

2¢p AFyga® cos b
3

+ gpAFl,yea® cos

qpAFByg cosf

2 .
12 + MAFa”sin®

—4MAFygacosd + MAFI,y, cos 6

L AP
(AE).

_ qDMlg M2lb
12 2

AF?(ly, — 2a)cos? 0  AF?l,cos?6
2(AE). 2(AE),
To calculate the moment at the fixed end (M) through
the method of least work, the relation of the whole
strain energy is differentiated with respect to M and
the obtained result equates to zero:

aESo
oM

The calculated bending moment at the fixed end (M)
is obtained as follows:

(83)

=0. (84)

qpl?  AFa*sinf  4AFypacosf
=26 _ +
12 lb lb
— AFyg cos. (85)

To calculate the increase in the pre-tensioning force
of cable (AF) through the method of least work, the
relation of whole strain energy is differentiated with
respect to AF and the obtained result equates to zero:

dFEs,

O(AF)
Using Eq. (85), the calculated increase in the pre-
tensioning force of the cable (AF) is obtained through

=0. (86)

Eq. (87), in which p is given by Eq. (88) (Egs. (87) and
(88) are shown in Box III).

By replacing Eqgs. (85) and (87) in Eq. (83), the
maximum strain energy of the beam Eg, is obtained
as follows:

2

9)
Egy=— D
50 T1440(EI )1,

{lg — 720p%a* sin® 6

+ 4804%1ya® sin® 0 — 11520py3a® cos® 0

+ 576012 lyy2a cos® O + 5760uyoa’ sin 6 cos 6
— 288012 lyyoa® sin 6 cos 6 + 360ul,a’ sin @

— 480ul7a® sin @ + 12013 a” sin 6

— 960ulyyoa® cos @ + 1440ulyoa’ cos 6

— 480ul}yoa cos b
72012 (EI)l .
éLA(E)C)bb[ZlC + (Iy — 2a) cos® 6]
N 72002 1,17 cos® 6 _ oY . (89)
A, 1440(ET )31,

In Eq. (89), § is as follows:
B =1¢ — 720p%a* sin® 6 4 4804°1,a® sin” 6
— 11520p°y2a® cos® O + 57604 lyyia cos® O
+ 576042 yoa’sin 6 cos @ — 288021, y0a’sin 6 cos 6
+ 360ulya® sin 6 — 480ul?a® sin 6

+ 120pl3a® sin @ — 960ulyyoa® cos 6

AF— —3gplya* sin 0+4qplia® sin @ —qplia® sin 0+8qplyyoa® cos 8 —12qplFyoa’ cos 0+4qplyyoacosd
—3a*sin? 6 + 20,a” sin® @ — 48yZa’ cos? O + 24l,yia cos? § + 24yoa® sin 6 cos 6 QDM(S?)
4 . .
. 3l (ET . 31,12 cos? 6
— 12l,y0a? sin @ cos § + (iE‘)zb [2[c + (Iy — 2a) cos® 9] + %
where:
B —3lya*sinf + 47a® sin 0 — [3a? sin 6 + 8l,yoa® cos§ — 1202 yga’ cosf + 4l3yoa cos b
n= —3a*sin” 0 + 2l,a® sin? 6 — 48yaa? cos® 6 + 24,y a cos® O + 24yea® sin @ cos 6 — 12,yea” sin @ cos 6 (88)
4 .
3, (EI . 31,12 cos? 0
+ (il(E)C)b [2lc + (I, — 2a) cos® 8] + 20l 08 7

Box 111
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+ 1440pl3yoa® cos @ — 480ul3yoa cos @

72012 (ED)yl

(AE). [21. + (I, — 2a) cos? 6]

72002 1,17 cos® 0

+ A4, .

Regarding symmetry of the structure and loading, the

maximum kinematic energy of the fixed supported

beam with the modified V-shaped pattern of the cable
for the whole beam is obtained as follows:

Ero =2 x {/0 %m(m) (101 (2))? da

(90)

¥ 1 . 2
—l—/a §m(a;) (oo () da:}

-/ () @ntion ()

b

4 [ mle) o), (91)
where u,1(2) and uss(z) are the deflection curves of
the fixed supported beam with the modified V-shaped
pattern of the cable in the 0 <z <acand a <z < %’
ranges, respectively.

By replacing Eq. (85) in Eqgs. (81) and (82), the
bending moment of the fixed supported beam with
the modified V-shaped pattern of the cable under
uniformly distributed dead load in order to determine
the deflection curve for the half of beam is obtained as
follows:

For the 0 < x < a range:
Mi(z) =— M + AF cosfyg — AF sinfz

L 4ol apr® _ qpl} AFa®sing

2 2 12 Iy

B 4AFypacosb

i + 2AF cos 6y
b

gplyz qpz?

— AFsin6 92
sinfz + = 5 (92)
For the a <z < %” range:
l 2
Ms(z) =— M — AF cosfyo + % - %
__aply | AFa*sinf 4AFypacosf
12 Iy ly
l 2
qpyr  qpZx (93)

2 2

By determining the deflection curve, the internal bend-
ing is equal to:

Mi () = —(EDyul) (), (04)
Ma(a) = —(EDyul(a). (95)

The deflection curve in Eqgs. (94) and (95) should satisfy
the displacement boundary conditions. For the fixed
supported beam with the modified V-shaped pattern
of the cable, the boundary conditions for the middle
beam are:

l
4o (0) = 0, a0 =ty (%) =0

o1 (a) = uea(a),  u,(a) = uy(a).

By replacing Eqs. (92) and (93) in Egs. (94) and
(95) and imposing the above boundary conditions, the
deflection curve for half of beam is obtained as follows:

For the 0 < x < a range:

1 |gpliz*  AFa”sinfa?
ED), | 24 2,

Uo1 () :(

2A Fyga cos Oz
4 227 Yod CosTr

7 — AFyq cos 62°
b

AFsinfz3  gplyz®  gpa?
6 12 24

For thea <z < %’ range:

1| AFa?sind

AFyya? 0
£, 3 + Yoa~ COS

oo () :(

AFa?sin Ox
+ -

5 — 2AFysacosbz

_ AFa®sin §? N 2A Fyga cos x>
2l ly

qplZa?  gqplya®  gpa?
24 12 24

(97)

By replacing Eqs. (96) and (97) in Eq. (91), the
maximum kinematic energy formula of the beam is
obtained as follows:

. e 1
Ero :w2q£ /
Ko ="y { o \ (B

2A Fyga cos x>
-
b

qlea;2 AFa?sin 0z
24 20,

— AFyq cos 02>
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2
AFsinfz®  qplya®  qpat
Y T Tal|)®

N /lﬂb 1 AFa?siné
“ (EI), 3
AFa?siné
+ AFyga® cosf + %
AF 2 o3 2
— 2AFypacosfx — Aba’ sinfa”
2l
. 2AFypa cos Hx2 . qlex B gplyz®
Iy 24 12
qpzt ’ 5 4D aply
+ dr p = w;, 5 Db
24 (EI)2g) 725760
B AF?a®sin’ 0 B AF?a7 sin” 0
721, 42
N AF?lyaSsin®  AF?[asin”

18 36
AF?a*sin® 0 2AF?y3a cos? 0
240 151,

_ 2AF?yga’ cos®d  AFlLyga’ cos® 6
15 2
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By replacing Eq. (87) in Eq. (98

qDAFl yoa® cos b

qpAFBysa® cos

360 720

B gpAF8ysacost
1680
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(98)

}, the maximum kine-

matic energy of the beam Ej, is obtained as follows:

Ero, =w

3
2

nm{l — 100804 a® sin® @
— 1728042 1ya” sin? 6 4 40320421265 sin? @
— 201604213 a® sin® § 4 3024,%1}a* sin” @

— 96768 yaa’ cos® #—967681°1,y2a® cos’
+ 362880122 y2a* cos® 0

— 241920121} y3a® cos? 6

+ 48384, %I}y a® cos® O

+ 645122 y0a” sin 6 cos 6

+ 80640421 yoa® sin @ cos 6

— 241920123 yoa® sin @ cos 6

+ 14112012 yoa® sin 6 cos 6

— 2419241} y0a® sin 6 cos 6

+ 252ulya® sin § — 864puia” sin 6

+ 840ul3a’ sin § — 336l a® sin @

+ 108ul] a® sin @ — 576ulyyoa’ cos 6

+ 20162 yoa® cos 6 — 2016l yoa® cos O
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In Eq. (99
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), v is as follows:
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—2419204° 3yaa® cos® 044838421} yia® cos? 6
+ 6451212 yga” sin cos @

+ 80640121, yoa® sin 6 cos 6

— 2419204%12y0a” sin 6 cos 0

+ 141120p% 3 yoa® sin 6 cos 6

— 241924 I}y a® sin 6 cos § + 252ulya® sin 6

— 864pl2a” sin @ + 840pl3a® sin 6

— 336180 sin @ + 108l a® sin 6

— 576ulyyoa’ cos@ + 2016l y0a’ cos @

— 2016l yoa® cos § + 1008ullysa? cos O

— 432ull yoa cos 6. (100)

The natural circular frequency of the fixed supported
beam with the modified V-shaped pattern of the
cable using Rayleigh’s method and the principle of
conservation of energy is obtained as follows:

s _ S0A(ED)g8

n

(101)
qp7Y qp7y

The natural frequency of the fixed supported beam
with the modified V-shaped pattern of the cable is
obtained as follows:

2w \/ qn7Y

5. Finite element modeling of steel beams
prestressed with steel cable

Simply supported and fixed supported beams were
designed based on Load and Resistance Factor Design
(LRFD) method using AISC360-10 code [20]. Then,
the natural frequency of the simply supported beam

was obtained based on the assumed shape function and
also the shape function obtained from the elastic deflec-
tion curve corresponding to Eqs. (10) and (16); in addi-
tion, the natural frequency of the fixed supported beam
was obtained based on the assumed shape function and
the shape function derived from the elastic deflection
curve corresponding to Egs. (19) and (25), respectively.
The beams were designed such that their natural fre-
quency would be smaller than the minimum permissible
frequency of 5 Hz. Table 1 shows the beam properties
with different support conditions and their natural fre-
quencies based on different assumed shape functions. It
should be noted that the length of loading span was 1.5
m for the beams with different support conditions; dead
and live loads were 450 and 200 kg/m? respectively.

The beams with different support conditions
without cables and with different patterns of cables
were modeled using ABAQUS finite element software.
Figure 8 shows the finite element model of the beam
with different patterns of cables. The beams and
cables were modeled in 3-dimentional coordinates with
shell and truss elements (as wire), respectively. The
weld’s connector was used to connect the cable to
one of flange of the beam at two ends to constrain
their corresponding degree of freedom. Moreover, the
coupling constraint was applied to connect the cable
to another flange of the beam so as to model the
performance of the deviator. Uniformly distributed
load was applied as a surface traction type on the top
flange. Predefined field tool was used to create the
initial pre-tensioning stress in the cable, too. In this
research, mesh size was used as 5% of beam length.
Figure 9 shows the position of cables in beams with
different support conditions.

To better illustrate the behavior of beam with
different support conditions and different patterns of
the cable, first, it was modeled using the software
without cable and then again, with different cable
patterns; the obtained results were compared with each
other.

The steel material of beams considered in this
research was ST-37, yield stress 240 MPa, modulus of
elasticity of steel 200 GPa, and Poisson’s ratio 0.3. The
material of the steel cable was found in accordance with

Table 1. Properties and natural frequency of beams with different support conditions.

Natural Natural
frequency frequency Allowable
Beam span .
Cross-section based on based on shape natural
Type of beam length . .
(m) of beam assumptive function of the frequency
m
shape function deflection curve (Hz)
(Hz) (Hz)
Simply supported beam 4.5 IPE180 4.80 4.81 5
Fixed supported beam 10.8 IPE300 4.85 4.78 5
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Figure 8. Finite element model of the beam along with different patterns of cable: (a) Simply supported beam along with
the V-shaped pattern of cable, (b) simply supported beam along with the modified V-shaped pattern of cable, (c) fixed
supported beam along with the V-shaped pattern of cable, and (d) fixed supported beam along with the modified

V-shaped pattern of cable.

2.25 m—l—— 2.25 m
4.5 m
(a)
5.4 m I 5.4 m
10.8 m,

()
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Figure 9. The locations of cables in the beams: (a) Simply supported beam along with the V-shaped pattern of cable, (b)
simply supported beam along with the modified V-shaped pattern of cable, (c) fixed supported beam along with the
V-shaped pattern of cable, and (d) fixed supported beam along with the modified V-shaped pattern of cable.

the ASTM A416M standard [21]. Then, 7-wire strand
(grade 270 (1860)) was considered for the steel cable
with low relaxation, minimum ultimate strength (f,,)
of 270 ksi (1860 MPa), minimum yield strength at 1%
extension of 52.74 kip (234.6 KN), elasticity modulus
of 28.5 x 10° psi (196501.8 MPa), and Poisson’s ratio
of 0.3.

6. Verification of theoretical relations of
natural frequency with results of ABAQUS
models

Frequency analysis of ABAQUS software was applied

so as to analyze the beams with different support
conditions (Table 1) without cable and with different
patterns of the cable. The 7-wire strand steel cable
with low relaxation was considered for beams with
different support conditions as two cables on each side
of the beam web with a cross-sectional area of 140 mm?
in accordance with ASTM A416M standards. As a
result, the entire steel cable cross-section was equal
to 560 mm?2. Pre-tensioning of the steel cable was
considered as 600 MPa. Controlling the accuracy of
theoretical relations, the natural frequency obtained
through modeling was compared to those of the the-
oretical relations for the beams with different support
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Table 2. Natural frequency values obtained from modeling and theoretical equations for the beams with different support

conditions without cable and with different cable patterns.

Natural

Natural frequency of

beam obtained from

frequency of Allowable
4 y theoretical equations (Hz) natural
Type of beam beam obtained
. Based on Based on shape frequency
from modeling ) ]
assumptive function of the (Hz)
(Hz) . .
shape function deflection curve
Without cable 4.74 4.80 4.81
With V-shaped
impl 4.83 — 4.84
Simply cable pattern
supported 5

beam

With modified

V-shaped cable 5.22 — 4.98

pattern

Without cable 4.61 4.85 4.78

With V-st d
Fixed i ymehabe 4.83 — 1.86

cable pattern

supported 5

beam

With modified

V-shaped cable 4.92 — 4.90

pattern

conditions and different patterns of cable. The results
of the natural frequency obtained through modeling
were compared with:

1. Those of Egs. (10), (16), (41), and (59) for simply
supported beams without cable and with different
cable patterns;

2. With those of Egs. (19), (25), (79), and (102)
for fixed supported beams without cable and with
different cable patterns, as shown in Table 2.

According to Table 2, the theoretical relations
could properly predict the natural frequency of the
beam. Moreover, it was observed that the natu-
ral frequency of the beam increased when the pre-
tensioned steel cable rather than the beam without
cable was used; therefore, using cable increases the
natural frequency of the beam with different support
conditions. In addition, the natural frequency of the
simply supported and fixed supported beam with the
modified V-shaped pattern of cable was found greater
than that with the V-shaped cable pattern. As a result,
the modified V-shaped cable pattern is proposed as
a more appropriate pattern than the V-shaped cable
pattern due to more suitable results observed.

7. The effects of horizontal cable length on
natural frequency of simply supported and
fixed supported beams along with the
modified V-shaped cable pattern

Eqgs. (59) and (102) were employed to calculate the nat-
ural frequency of simply supported and fixed supported
beams along with the modified V-shaped cable pattern
for 560 mm? cross-section of steel cable and at different
horizontal cable lengths (I, — 2a of Figures 5 and 7).
Figures 10 and 11 depict the curves of the natural

5.25
5.20
5.15
5.10
5.05
5.00

4.95
4.84
4.90 (0, 4.84)

(3.9, 5.193)

Natural frequency (Hz)

(4.5, 4.81)

0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Horizontal cable length (m)

4.5 5.0

Figure 10. Natural frequency of simply supported beam
along with the modified V-shaped pattern of cable for
different horizontal cable lengths.
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4.92
4.90 (0, 4.86)
4.88
4.86
4.84
4.82
4.80
4.78

(3.4, 4.896)

(10.8, 4.78)

Natural frequency (Hz)

4.76
0 2 4 6 8 10 12

Horizontal cable length (m)
Figure 11. Natural frequency of fixed supported beam

along with the modified V-shaped pattern of cable for
different horizontal cable lengths.

frequency of the simply supported and fixed supported
beams along with the modified V-shaped cable patterns
for various lengths of the horizontal cable.

According to Figures 10 and 11, if the horizon-
tal cable length for the simply supported and fixed
supported beams along with the modified V-shaped
pattern of cable is zero, their natural frequencies are
4.84 Hz and 4.86 Hz, respectively. These values are the
result of natural frequency of simply supported and
fixed supported beams along with the V-shaped cable
pattern (Table 2). Natural frequency increases with
an increase in the horizontal cable length. Finally,
for horizontal cable lengths of 3.9 m and 3.4 m, the
values of natural frequency are maximum at 5.193 Hz
and 4.896 Hz, respectively, for the simply supported
and fixed supported beams along with the modified
V-shaped cable pattern. Since then, the natural
frequency of the beam reduces with an increase in
the horizontal cable length. The mentioned values of
natural frequency are 4.81 Hz and 4.78 Hz, respectively,
when the lengths of horizontal cable and beam are
alike. These values are the result of natural frequency
of simply supported and fixed supported beams with-
out cable (Table 2). The reason is that for keeping
the bending moment in the slope change region of the
cable continuous, the force of horizontal cable should
be equal to the horizontal component of the inclined
cable force. Therefore, if the inclined cable becomes
vertical in its special status (in the case the horizontal
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cable length is equal to that of the beam length), the
horizontal component of the vertical cable force equates
to zero; consequently, the force of the horizontal cable
becomes zero. As the length of the vertical cable,
which is equal to the distance between two flanges of
the beam, remains constant, no force is exerted on the
length of the cable. Therefore, the cable has no effect
on the beam behavior and the natural frequency of the
beam is exactly similar to that of the beam without
cable.

8. Seunsitivity analysis on the cross-section of
steel cable

To apply sensitivity analysis to the cross-section of the
steel cable, different amounts of the 7-wire strand steel
cable cross-section with low relaxation were considered
for beams with different support conditions as an equal
number of cables on both sides of the beam web with
an area of 140 mm? in accordance with ASTM A416
standard and stable pre-tensioned stress of 600 MPa.
Tables 3 and 4 present the natural frequency of the
beams with different support conditions and different
patterns of the cable modeled using ABAQUS software
for different cross-sections of the steel cable.

According to Tables 3 and 4, natural frequency
of the beams with different support conditions and
different patterns of cable increased with an increase
in steel cable cross-section area due to the increase in
stiffness in the beam along with cable.

9. Sensitivity analysis on the pre-tensioning
stress of the steel cable

To perform sensitivity analysis on the pre-tensioning
stress of the steel cable, the 7-wire strand steel cable
of beams with different support conditions with low
relaxation was used in the form of four cables on each
side of the beam web with an area of 140 mm? in accor-
dance with the ASTM A16M standard. As a result, the
overall steel cable cross-section is equal to 1120 mm?.
Table 5 presents the values of natural frequency of the

beams with different support conditions and various

Table 3. Natural frequency results of simply supported beam along with different patterns of cable used in sensitivity

analysis on the cross-section area of steel cable.

. Natural frequency of
Total cross-section .
simply supported beam
area of steel cable .
along with the V-shaped

Natural frequency of
Allowable

simply supported beam
natural

along with modified

2 fi H
(mm?®) cable pattern (Hz) V-shaped cable pattern (Hz) requency (Hz)
280 4.79 5.00 5
560 4.83 5.22 5
840 4.86 5.40 5
1120 4.89 5.56 5
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Table 4. Natural frequency results of fixed supported beam along with different patterns of cable used in sensitivity

analysis on the cross-section area of steel cable.

. Natural frequency of
Total cross-section
fixed supported beam
area of steel cable

along with the V-shaped

Natural frequency of
Allowable

fixed supported beam
natural

along with modified

2 f H
(mm?) cable pattern (Hz) V-shaped cable pattern (Hz) requency (Hz)
280 4.72 4.77 5
560 4.83 4.92 5
840 4.94 5.06 5
1120 5.04 5.21 5

Table 5. Natural frequency results of beams with different support conditions and different cable patterns used in

sensitivity analysis on the cable pre-tensioning stress.

Type of beam

Cable Allowable
pre-tensioning natural
stress (MPa) frequency
400 600 800 (Hz)

Simply supported beam

Along with the V-shaped pattern 4839 4.89 4.89

5

Along with the modified V-shaped cable pattern 5.56  5.56  5.56

Fixed supported beam

Along with the V-shaped cable pattern 5.04 5.04 5.04

[

Along with the modified V-shaped cable pattern 5.21 521 5.21

patterns of the cable modeled using ABAQUS software
for different values of pre-tensioning of the steel cable.

According to Table 5, the natural frequency of
beams with different support conditions and different
patterns of cable remained stable with an increase in
the pre-tensioning stress of steel cable.

10. Conclusion

Due to their low weights, small cross-sections, and high
tensile strengths, cables can be proper alternatives for
pre-tensioning the steel beams subjected to external
loads. In this research, cables were employed to
prestress the beams with different support conditions
in which the natural frequency was not within the
allowable range despite their appropriate design under
bending and shear. Theoretical equations were used to
calculate the rate of increase in pre-tensioning force of
the cable as well as the natural frequency of the simply
supported and fixed supported beams with and without
cable. The results obtained from the finite element
model and theoretical equations are briefly summarized
as follows:

1. The moment at the end of the fixed supported
beam with the V-shaped pattern of cable was equal

to that at the end of the beam without cable
((1112;)7 however, in the fixed supported beam along
with the modified V-shaped pattern of cable, the
moment at fixed end was dependent on external

loading and total force of the cable, too;

2. Comparison between the results of theoretical equa-
tions and those of finite element model demon-
strated that the theoretical equations developed
in this article could properly predict the natu-
ral frequency of the simply supported and fixed
supported beams without cable and along with
different patterns of cable;

3. Adding cable to the beam resulted in increasing
the natural frequency of the beam with different
support conditions and different patterns of cable;

4. The natural frequency of the simply supported and
fixed supported beams along with the modified V-
shaped cable pattern was higher than that with
the V-shaped pattern. Therefore, the modified V-
shaped pattern of cable can be a more appropriate
pattern;

5. The effects of horizontal cable length on the natural
frequency of simply supported and fixed supported
beams along with the modified V-shaped pattern
of cable were studied. According to the obtained
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results, if the length of horizontal cable remains
equal to zero, the natural frequency of beam along
with the V-shaped pattern of cable was obtained.
If the length of horizontal cable increased, natural
frequency increased. With an increase in the length
of horizontal cable, natural frequency decreased,
too. When the lengths of the horizontal cable and
beam were equal, the natural frequency results of
the simply supported and fixed supported beams
without cable were obtained;

In beams with different support conditions and
different patterns of cable, the natural frequency
increased upon increasing the cross-section of steel
cable, considering equal pre-tensioning. Moreover,
proper values of steel cable cross-sections were ob-
tained, as per which the natural frequency criterion
of beams with different support conditions and
different patterns of cable was satisfied;

By increasing the pre-tensioning in the steel cables
of equal cross-sections, the natural frequency of
the beams with different support conditions and

different patterns of cable was found constant.

Nomenclature

u(x,t) Simple harmonic motion of a beam
under free vibration

U(x) Shape function

Zo Amplitude of generalized coordinate
z(t)

Wn Natural circular frequency

Es, Maximum strain energy

o () Maximum displacement

Er, Maximum kinematic energy

m(x) Mass per unit length of the beam

El(x) Flexural rigidity

L Beam length

qp Uniform distributed dead load per unit
length

g Gravity acceleration

fn Natural frequency

M(x) Bending moment

Fp Pre-tensioning force of the steel cable

AF Increase in pre-tensioning force of the
steel cable

Al Increase in length of steel cable

ly Beam length

l. Inclined cable length

Ay Cross-section area of beam

A, Cross-section area of cable on both

sides of the web

E, Elasticity modulus of beam

E. Elasticity modulus of cable

I Moment of inertia of beam

0 Angle of inclined cable with the
horizontal axis

2o Distance of neutral axis to the
connection point of steel cable to the
beam flange (half of the height of beam
web)
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