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Abstract. Sometimes, natural frequency of beams is not within the allowable range
despite the appropriate shear and bending design. Every so often, structural designers
face cases in which it is not possible to increase the beam height. Steel cable is utilized
in this research to control the natural frequency of beam due to its important advantages
such as low weight, small cross-sectional area, and high tensile strength. For the �rst
time, theoretical relations were developed to calculate the rate of increase in pre-tensioning
force of steel cables under external loading based on the method of least work. Moreover,
the natural frequency of steel beams with di�erent support conditions without cable and
with di�erent patterns of cable was calculated based on Rayleigh's method. To verify
the theoretical relations involved, the steel beam was modeled using ABAQUS software.
The obtained results showed that the theoretical relations could appropriately predict
the natural frequency of beams with di�erent support conditions and cable patterns. In
addition, simply supported and �xed supported beams were prestressed with V-shaped and
modi�ed V-shaped patterns of the cable. According to the obtained results, the modi�ed
V-shaped pattern of the cable was more e�cient than the V-shaped pattern.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Reckoned as important components of a structure,
cables are materials that can tolerate tensile force and
generally increase the sti�ness and bearing capacity
of a structure [1]. Nowadays, cables are increasingly
used in structures. Hou and Tagawa applied cable-
cylinder bracing to the seismic retro�tting of steel

exural frames. From their viewpoint, through this
retro�tting method, the lateral strength of the storey
increases without decreasing the ductility of 
exural
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frame [2]. Fanaie et al. presented theoretical relations
for the cable-cylinder bracing system using a rigid
steel cylinder. They veri�ed the results using �nite
element ABAQUS software [3]. They also studied
seismic behavior of steel 
exural frames strengthened
with cable-cylinder bracing and obtained reasonable
results [4]. Giaccu investigated the non-linear dynamic
behavior of pre-tensioned-cable cross-braced structures
in the presence of slackening in the braces. They
concluded that there was a direct correlation between
equivalent frequency and slackening in the braces [5].

Pre-tensioning of steel beams through high-
strength cables is one of the most e�cient methods for
reducing the required steel and increasing their bearing
capacity. The pre-tensioning technique was primarily
used for reinforced concrete structures; however, for the
�rst time, it was utilized by Dischinger and Magnel
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for steel beams. Pre-tensioned steel structures are
constructed all over the world, especially in America,
Russia, and Germany. This fact shows the greater
structural and economic merits of prestressed steel
beams than non-prestressed ones. The pre-tensioning
technique is appropriate for constructing new struc-
tures and strengthening the existing ones [6].

Some researchers have studied prestressed beams
using tendons. Le et al. experimentally evaluated
the application of either unbonded Carbon Fibre Re-
inforced Polymer (CFRP) tendons or steel tendons
to precast T-section segmental concrete beams and
tested them under cyclic loads. They concluded that
CFRP tendons could easily replace steel tendons so
that beams could achieve both high strength and duc-
tility capacity [7]. Pisani analyzed simply supported
concrete beams externally prestressed under sustained
loads and introduced two numerical methods to de-
scribe the time evolution of both stress distribution
and displacement of a simply supported concrete beam
externally prestressed. Besides, they presented an
example to verify the precision of the methods [8]. Lou
et al. numerically studied the 
exural response of con-
tinuous externally �ber reinforced polymer prestressed
concrete beams with various linearly transformed cable
pro�les. They observed that the cable shift by linear
transformation did not a�ect the basic performance at
all stages of loading up to failure and the secondary
moments varied linearly with the cable shift [9]. Nie
et al. presented theoretical relations to calculate the
de
ection as well as yield and ultimate moments of
simply supported prestressed steel-concrete compos-
ite beam, considering the slip e�ect. They veri�ed
the suggested formulas with experimental results [10].
Zhou et al. conducted an experimental study and
applied the numerical model of prestressed composite
beams subjected to �re and positive moment. They
observed that the �re resistance of composite beams
prestressed with external tendons was highly in
uenced
by the stress in the cable strands [11]. Troitsky
evaluated the behavior of prestressed steel beam using
cables and observed an increase in the sti�ness and a
decrease in the deformation of the beam [6]. Belletti
and Gasperi studied the behavior of prestressed sim-
ply supported steel I-shaped beams by tendons with
focus on two parameters: the number of deviators
and the value of prestressing force [12]. Park et al.
analytically and experimentally evaluated the 
exural
behavior of steel I-beam prestressed with externally
unbonded tendons. They observed a considerable
increase in the yielding and ultimate bearing capacity
of steel I-beam [13]. Kambal and Jia derived a �nite-
element formulation to investigate the e�ectiveness
of applying the prestressing technique with respect
to the 
exural behavior of a simply supported steel
box girder and they veri�ed it based on experimental

results [14]. Zhang examined the analytical solutions of
the symmetric and antisymetric elastic lateral-torsional
buckling of prestressed steel I-beams with rectilinear
tendons under equal end moments and veri�ed the
correctness of the analytical solutions based on the
solutions simulated using ANSYS [15].

A number of researchers have investigated the
dynamic behavior of pre-tensioned beams. Noble
et al. studied the results of dynamic impact testing
on externally axially loaded steel Rectangular Hollow
Sections (RHSs) and compared the response to those
of externally post-tensioned steel RHSs. Moreover,
they tested the validity of the \compression-softening"
e�ect for post-tensioned sections. They concluded
that the \compression-softening" theory was not valid
for pre- or post-tensioned sections [16]. Cao et
al. investigated the vibration performance of the
arch prestressed concrete truss girder subjected to
the on-site heel-drop and jumping impact tests and
carried out theoretical analyses. They concluded that
the theoretical fundamental natural frequency was in
general agreement with the experimental result [17].
Miyamoto et al. studied the dynamic behavior of the
pre-tensioned simply supported composite beam with
external tendon. They derived the natural frequency
equation of the pre-tensioned beam based on the

exural vibration equation and veri�ed the predicted
equation by comparing it with the results of the
dynamic experiment [18]. Park et al. analytically
and experimentally studied the strengthening e�ect
of bridges using external pre-tensioned tendons and
concluded that strengthening would reduce the mid-
span de
ection by 10{24% [19].

To control the natural frequency of the beam,
structural designers have faced cases in which it is not
possible to increase the beam height due to architec-
tural limitations, or cases in which beam frequency
limitation was not considered during design and the
problem of vibration was observed after implementa-
tion. In this study, the natural frequency of steel beams
was evaluated without cable and with various support
conditions and di�erent cable patterns.

The increase in pre-tensioning force of steel ca-
ble subjected to external loading is determined using
method of least work. Then, Rayleigh's method is
applied to developing the natural frequency relations
of steel beam equipped with the cable. In order to
validate the obtained natural frequency relations, the
results of theoretical relations are compared with those
of �nite element model of the beams.

2. Pre-tensioning symmetric I-shaped steel
beam with steel cable

Symmetric I-shaped steel beam was considered in
di�erent support conditions, namely simply supported
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Figure 1. Prestressed symmetric I-shaped steel beams
with steel cable under external loading: (a) Simply
supported beam along with V-shaped cable pattern, (b)
simply supported beam along with modi�ed V-shaped
cable pattern, (c) �xed supported beam along with
V-shaped cable pattern, and (d) �xed supported beam
along with modi�ed V-shaped cable pattern.

and �xed supported beams. As shown in Figure 1,
prestressed cables with di�erent patterns were used on
both sides of beam web subjected to external loading.
In the frequency analysis, beam movement is of back
and forth types; therefore, as observed in the �gure,
regarding the V-shaped pattern, the cable was �xed at
both ends to one of the 
ange (top or bottom) of the
beam on both sides of the web. Then, in the middle of
the beam, it passes through the reel on the another

ange causing the pattern with two inclined cables.
Moreover, in the modi�ed V-shaped pattern, the cable
remains �xed at both ends to the one of 
ange (top or
bottom) of the beam on both sides of the web and then,
it passes through two reels on another 
ange producing
a pattern with one horizontal cable in the middle and
two inclined ones on each side.

The following assumptions are taken into account
to analyze the prestressed symmetric I-shaped steel
beams with steel cable:

1. The materials of steel beam and cable are linearly
elastic;

2. The deformations are small;

3. Shear deformation is neglected;

4. The friction loss in the region of the cable deforma-
tion and the relaxation of steel cable are ignored;

5. Steel beam section is rolled; therefore, it is compact.

3. Natural frequency

The natural frequency of systems with distributed
mass and rigidity, which are usually considered as
single-degree-of-freedom systems and also known as
generalized single degree of freedom systems, can be
calculated using Rayleigh's method. This method is
based on the principle of conservation of energy. The
principle of conservation of energy states that the
total energy in a freely vibrating undamped system is
constant (i.e., it does not vary with time).

4. Calculating the natural circular frequency
of beam by Rayleigh's method

The simple harmonic motion of a beam under free
vibration can be de�ned as follows:

u(x; t) = zo (x) sin!nt0; (1)

where  (x) is an assumed shape function de�ning the
form of de
ections and satisfying the displacement
boundary conditions. The shape function can be
determined from de
ections using a selected set of
static forces. One common selection of these forces
is the weight of structure applied in an appropriate
direction. Moreover, zo is the amplitude of generalized
coordinate z(t) and !n is the natural circular frequency
of beam. The velocity of beam is equal to the following:

_u(x; t) = !nzo (x) cos!nt0: (2)

The maximum potential energy of the system over a
vibration cycle is equal to its strain energy associated
with the maximum displacement uo(x):

ESo =
Z L

0

1
2

EI(x) [u00o(x)]2 dx: (3)

The maximum kinematic energy of the system over
a vibration cycle is associated with the maximum
velocity _uo(x):

EKo =
Z L

0

1
2
m(x) [ _uo(x)]2 dx: (4)

Through Eqs. (1) and (2), the maximum displacement
uo(x) and maximum velocity _uo(x) are de�ned as
follows:

uo(x) = zo (x); (5)

_uo(x) = !nzo (x) = !nuo(x): (6)

The natural circular frequency of beams is obtained
by replacing Eqs. (5) and (6) in Eqs. (3) and (4);
besides, by using the principle of conservation of
energy, equating the maximum strain energy, ESo, to
maximum kinematic energy EKo gives:

!2
n =

R L
0 EI(x) [ 00(x)]2 dxR L
0 m(x) [ (x)]2 dx

; (7)

where m(x) is the mass per unit length of the beam,
EI(x) 
exural rigidity, and L the beam length.

Eq. (7) is Rayleigh's quotient for a system with
distributed mass and rigidity. Rayleigh's method can
be used to calculate the natural frequency of beam with
di�erent support conditions without cable and di�erent
patterns of cable.
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4.1. Calculating the natural frequency of the
simply supported beam without cable

To determine the shape function of the simply sup-
ported beam, as shown in Figure 2(a), the boundary
conditions are as follows:

uo(0) = uo(lb) = 0; u0o
�
lb
2

�
= 0:

With this limitation, two di�erent shape functions can
be assumed.

4.1.1. Calculating the natural frequency of the simply
supported beam based on the assumed shape
function

The hypothetical shape function satisfying the dis-
placement boundary conditions is considered as follows:

 (x) = sin
�x
lb
: (8)

The natural circular frequency of the simply supported
beam is obtained using Rayleigh's quotient formula
(Eq. (7)) by replacing the assumed shape function
according to Eq. (8) as follows:

!2
n =

R lb
0 EI(x) [ 00(x)]2 dxR lb
0 m(x) [ (x)]2 dx

=
(EI )b

R lb
0

���2

l2b
sin �x

lb

�2
dx

qD
g

R lb
0

�
sin �x

lb

�2
dx

=
�4(EI )bg
l4bqD

! !n =
�2

l2b

s
(EI )bg
qD

; (9)

where m(x) is the mass per unit length equal to qD
g (qD

is the uniform dead load per unit length and g is the
gravity acceleration), lb is the beam length, and (EI )b
is the 
exural rigidity of the beam.

The natural frequency of the simply supported
beam is obtained using the natural circular frequency
formula (Eq. (9)) as follows:

Figure 2. (a) De
ection curve of the simply supported
beam. (b) Simply supported beam subjected to vertical
structural weight.

f =
!n
2�

=
�

2l2b

s
(EI )bg
qD

: (10)

4.1.2. Calculating the natural frequency of the simply
supported beam based on the shape function
resulting from the de
ection curve

A possible approach is to select the shape function
based on the de
ection curve due to static force. The
bending moment equation of the simply supported
beam due to vertical structural weight (as in Fig-
ure 2(b)) in order to determine the de
ection curve
is as follows:

M(x) =
qDlbx

2
� qDx2

2
: (11)

The internal bending moment is equal to:

M(x) = �(EI )bu00o(x): (12)

By replacing Eq. (11) in Eq. (12) and imposing bound-
ary conditions, the de
ection curve is obtained as
follows:

uo(x)=
5qDl4b

384(EI )b

"
16
5

�
x
lb

�
� 32

5

�
x
lb

�3

+
16
5

�
x
lb

�4
#
:
(13)

If the de
ection in the mid-span of the simply sup-
ported beam (as Figure 2(a)) is assumed as the ampli-
tude of generalized coordinate zo = uo

� lb
2

�
= 5qDl4b

384(EI )b ,
the shape function is obtained as follows:

 (x) =
16
5

�
x
lb

�
� 32

5

�
x
lb

�3

+
16
5

�
x
lb

�4

: (14)

The natural circular frequency of the simply supported
beam using Rayleigh's quotient formula (Eq. (7)) by re-
placing the obtained shape function from the de
ection
curve according to Eq. (14) is obtained as follows:

!2
n =

R lb
0 EI(x) [ 00(x)]2 dxR lb
0 m(x) [ (x)]2 dx

=
(EI )b

R lb
0

�� 192x
5l3b

+ 192x2

5l4b

�2
dx

qD
g

R lb
0

�
16
5

�
x
lb

�� 32
5

�
x
lb

�3
+ 16

5

�
x
lb

�4
�2

dx

=
3024(EI )bg

31l4bqD
! !n =

12
l2b

s
21(EI )bg

31qD
: (15)

Then, the natural frequency of the simply supported
beam is obtained as follows:

f =
!n
2�

=
6
�l2b

s
21(EI )bg

31qD
: (16)
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4.2. Calculating the natural frequency of the
�xed supported beam without cable

To determine the shape function of the �xed supported
beam, as shown in Figure 3(a), the boundary condi-
tions are given below:

uo(0)=uo(lb) = 0; u0o(0)=u0o
�
lb
2

�
=u0o(lb)=0:

Considering this limitation, two di�erent shape func-
tions can be assumed.

4.2.1. Determining the natural frequency of the �xed
supported beam based on assumed shape
function

The assumed shape function satisfying the displace-
ment boundary conditions is considered as follows:

 (x) = 1� cos
2�x
lb

: (17)

The natural circular frequency of the �xed supported
beam using Rayleigh's quotient formula (Eq. (7)) by
replacing the assumed shape function according to
Eq. (17) is obtained as follows:

!2
n =

R lb
0 EI(x) [ 00(x)]2 dxR lb

0 m(x)[ (x)]2dx

=
(EI )b

R lb
0

�
4�2

l2b
cos 2�x

lb

�2
dx

qD
g

R lb
0

�
1� cos 2�x

lb

�2
dx

=
16�4(EI )bg

3l4bqD

! !n =
4�2

l2b

s
(EI )bg

3qD
:

(18)

Then, the natural frequency of the �xed supported
beam is obtained as follows:

f =
!n
2�

=
2�
l2b

s
(EI )bg

3qD
: (19)

Figure 3. (a) De
ection curve of �xed supported beam.
(b) Fixed supported beam subjected to vertical structural
weight.

4.2.2. Calculating the natural frequency of the �xed
supported beam based on the shape function
obtained from the elastic curve

The bending moment equation of the �xed supported
beam due to vertical structural weight (as in Fig-
ure 3(b)) in order to determine the de
ection curve
is given below:

M(x) = �qDl2b
12

+
qDlbx

2
� qDx2

2
: (20)

The internal bending moment is equal to:

M(x) = �(EI )bu00o(x): (21)

By replacing Eq. (20) in Eq. (21) and imposing bound-
ary conditions, the de
ection curve is obtained as
follows:

uo(x)=
qDl4b

384(EI )b

"
16
�
x
lb

�2

�32
�
x
lb

�3

+16
�
x
lb

�4
#
: (22)

If the de
ection at the mid-span of the �xed supported
beam (as in Figure 3(a)) is assumed as a amplitude
of generalized coordinate zo = uo

� lb
2

�
= qDl4b

384(EI )b , the
shape function is obtained as follows:

 (x) = 16
�
x
lb

�2

� 32
�
x
lb

�3

+ 16
�
x
lb

�4

: (23)

The natural circular frequency of the �xed supported
beam using Rayleigh's quotient formula (Eq. (7)) by re-
placing the shape function obtained from the de
ection
curve according to Eq. (23) is obtained as follows:

!2
n =

R lb
0 EI(x) [ 00(x)]2 dxR lb
0 m(x) [ (x)]2 dx

=
(EI )b

R lb
0

�
32
l2b
� 192x

l3b
+ 192x2

l4b

�2
dx

qD
g

R lb
0

�
16
�
x
lb

�2� 32
�
x
lb

�3
+ 16

�
x
lb

�4
�2

dx

=
504(EI )bg
l4bqD

! !n =
6
l2b

s
14(EI )bg

qD
: (24)

Then, the natural frequency of the �xed supported
beam is obtained as follows:

f =
!n
2�

=
3
�l2b

s
14(EI )bg

qD
: (25)

4.3. Calculating the natural frequency of the
simply supported beam with V-shaped
cable pattern

One possible approach to selecting the shape function
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Figure 4. Simply supported beam with the V-shaped
cable pattern.

in order to calculate natural frequency of the beam
with cable using Rayleigh's method is based on the
de
ection curve due to static force. One common
selection of these forces is the weight of structure
applied in the vertical direction.

The cable length increased by �l and its pre-
tensioning force, Fpt, increased by �F in beams with
cable under uniform dead load. Given that the struc-
ture is statically indeterminate, the static equilibrium
equations are not enough to calculate �F . The rate
of increase in the force in the cable can be calculated
using the method of least work.

Regarding the simply supported beam with V-
shaped pattern cable, as shown in Figure 4, the increase
in pre-tensioning force of the steel cable is equal to
�F . Therefore, the axial force of the beam is equal
to �F cos �. Moreover, with regard to the symmetry
of the structure and loading (as in Figure 4), the
maximum strain energy of the simply supported beam
with V-shaped pattern of cable including strain energy
resulting from bending and axial force of the beam
and strain energy from axial force of the cable can be
obtained for half of the beam. By duplicating it, the
maximum strain energy for the whole beam is obtained
as follows:

ESo =2� 1
2(EI )b

Z lb
2

0
M(x)2dx+ 2� �F 2lc

2(AE)c

+
(�F cos �)2lb

2(AE)b
; (26)

where lb and lc are the lengths of beam and inclined
cable, Ab and Ac are cross-section areas of beam and
cable on both sides of the web, Eb and Ec are the elas-
ticity moduli of beam and cable, respectively, and Ib is
the moment of inertia of beam, � is the angle of inclined
cable with the horizontal axis, and M(x) is the bending
moment of the simply supported beam with the V-
shaped pattern of cable in the range of 0 � x � lb

2 .
Due to the symmetry of structure and loading,

the bending moment diagram for the right half of the
beam is exactly similar to the left half of the beam;
therefore, the bending moment of the simply supported
beam with the V-shaped pattern of the cable under
uniform distributed dead load for the half of the beam
is determined as follows:

For the 0 � x � lb
2 region:

M(x)=�F cos �y0��F sin �x+
qDlbx

2
� qDx2

2
; (27)

where qD is the uniform distributed dead load per unit
length and y0 is the distance of neutral axis to the
connection point of steel cable to the beam 
ange (half
of the height of beam web).

By replacing Eq. (27) in Eq. (26), the maximum
strain energy equation is obtained as follows:

ESo =2� 1
2(EI )b

Z lb
2

0

 
�F cos �y0 ��F sin �x

+
qDlbx

2
� qDx2

2

!2

dx+ 2� �F 2lc
2(AE)c

+
(�F cos �)2lb

2(AE)b
=

1
(EI )b

�
q2
Dl5b
240

+
�F 2l3b sin2 �

24
+

�F 2lby2
0 cos2 �

2

� �F 2l2by0 sin � cos �
4

� 5qD�Fl4b sin �
192

+
qD�Fl3by0 cos �

12

�
+

�F 2lc
(AE)c

+
�F 2lb cos2 �

2(AE)b
:

(28)

Calculating the rate of increase in the pre-tensioning
force of the cable (�F ) through the method of least
work, the relation of the whole strain energy is di�er-
entiated with respect to �F and the obtained result
equates to zero:

@ESo
@(�F )

= 0: (29)

The relation used for calculating the increase of pre-
tensioning force of the cable (�F ) is obtained by
Eq. (30), in which � is given in Eq. (31) (Eqs. (30)
and (31) are shown in Box I). By replacing Eq. (30) in
Eq. (28), the maximum strain energy of the beam ESo
is obtained as follows:

ESo =
q2
D

960(EI )b

(
4l5b + 40�2l3b sin2 �

+ 480�2lby2
0 cos2 � � 240�2l2by0 sin � cos �

�25�l4b sin �+80�l3by0 cos �+
960�2(EI )blc

(AE)c

+
480�2Iblb cos2 �

Ab

)
=

q2
D�

960(EI )b
: (32)
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�F =
5qDl4b sin � � 16qDl3by0 cos �

16
�
l3b sin2 � + 12lby2

0 cos2 � � 6l2by0 sin � cos � + 24(EI )blc
(AE)c + 12Iblb cos2 �

Ab

� = qD�; (30)

where:

� =
5l4b sin � � 16l3by0 cos �

16
�
l3b sin2 � + 12lby2

0 cos2 � � 6l2by0 sin � cos � + 24(EI)blc
(AE)c + 12Iblb cos2 �

Ab

� : (31)

Box I

In Eq. (32), � is as follows:

� =4l5b + 40�2l3b sin2 � + 480�2lby2
0 cos2 �

� 240�2l2by0 sin � cos � � 25�l4b sin �

+ 80�l3by0 cos � +
960�2(EI )blc

(AE)c

+
480�2Iblb cos2 �

Ab
: (33)

With regard to the symmetry of structure and loading,
the maximum kinematic energy of the simply sup-
ported beam with the V-shaped pattern of cable can
be determined through Eq. (4) and by replacing the
maximum velocity according to Eq. (6) for half of the
beam; in addition, by duplicating it, the maximum
kinematic energy is determined for the whole beam as
follows:

EKo = 2�
Z lb

2

0

1
2
m(x) ( _uo(x))2 dx

=
Z lb

2

0
m(x)(!nuo(x))2dx; (34)

where m(x) is mass per unit length of the beam equal
to qD

g (mass of cable is neglected) and uo(x) is the
de
ection curve of the simply supported beam with the
V-shaped cable pattern for 0 � x � lb

2 .
To determine the de
ection curve, the internal

bending moment should be equal to:

M(x) = �(EI )bu00o(x): (35)

The de
ection curve in Eq. (35) should satisfy the
displacement boundary conditions. For the simply
supported beam with the V-shaped pattern of cable,
the boundary conditions for half of the beam are:

uo(0) = 0; u0o
�
lb
2

�
= 0:

By replacing Eq. (27) in Eq. (35) and imposing the
above boundary conditions, the de
ection curve for half
of the beam is obtained as follows:

uo(x) =
1

(EI )b

�
qDl3bx

24
� �Fl2b sin �x

8

+
�Flby0 cos �x

2
� �Fy0 cos �x2

2

+
�F sin �x3

6
� qDlbx3

12
+
qDx4

24

�
: (36)

By replacing Eq. (36) in Eq. (34), the maximum
kinematic energy equation of the beam is obtained as
follows:

EKo=!2
n
qD
g

Z lb
2

0

�
1

( EI )b

�
qDl3bx

24
� �Fl2b sin �x

8

+
�Flby0 cos �x

2
� �Fy0 cos �x2

2

+
�F sin �x3

6
� qDlbx3

12
+
qDx4

24

��2

dx

=!2
n

qD
(EI )2

bg

�
31q2

Dl9b
725760

+
17�F 2l7b sin2 �

40320

+
�F 2l5by2

0 cos2 �
240

� 61�F 2l6by0 sin � cos �
23040

�277qD�Fl8b sin �
1032192

+
17qD�Fl7by0 cos �

20160

�
: (37)

By replacing Eq. (30) in Eq. (37), the maximum
kinematic energy equation of the beam EKo is obtained
as follows:

EKo =!2
n

q3
D

46448640(EI )2
bg
�

1984l9b

+ 19584�2l7b sin2 � + 193536�2l5by
2
0 cos2 �

� 122976�2l6by0 sin � cos � � 12465�l8b sin �

+39168�l7by0 cos �
	

=!2
n

q3
D


46448640(EI )2
bg
: (38)

In Eq. (38), 
 is as follows:
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=1984l9b+19584�2l7b sin2 �+193536�2l5by
2
0 cos2 �

� 122976�2l6by0 sin � cos � � 12465�l8b sin �

+ 39168�l7by0 cos �: (39)

The natural circular frequency of the simply supported
beam with the V-shaped pattern of the cable using
Rayleigh's method and the principle of conservation of
energy is obtained as follows:

!2
n =

48384(EI )bg�
qD


! !n = 48

s
21(EI )bg�

qD

: (40)

Then, the natural frequency of the simply supported
beam with the V-shaped pattern of the cable is deter-
mined as follows:

fn =
!n
2�

=
24
�

s
21(EI )bg�

qD

: (41)

4.4. Calculating the natural frequency of the
simply supported beam with the modi�ed
V-shaped pattern of the cable

Concerning the simply supported beam with the mod-
i�ed V-shaped pattern of the cable, as shown in
Figure 5, the force of horizontal cable should be equal
to the horizontal component of the force of the inclined
cable to keep the bending moment continuous in the
slope change region of the cable. Therefore, if increase
in pre-tensioning force of steel cable is assumed as �F
in the slope parts, then it will be equal to �F cos � in
the horizontal part; hence, the axial force of the beam
is equal to �F cos �.

In addition, regarding symmetry of the structure
and loading (as in Figure 5), the maximum strain
energy of the simply supported beam with the modi�ed
V-shaped pattern of the cable for the whole beam is
obtained as follows:

ESo = 2� 1
2(EI)b

(Z a

0
M1(x)2dx+

Z lb
2

a
M2(x)2dx

)
+ 2� �F 2lc

2(AE )c
+

(�F cos �)2(lb � 2a)
2(AE )c

+
(�F cos �)2lb

2(AE )b
; (42)

Figure 5. Simply supported beam along with the
modi�ed V-shaped cable pattern.

where a is the distance of support to the point of change
in the cable slope (horizontal projection of inclined
cable), and M1(x) and M2(x) are the bending moments
of the simply supported beam along with the modi�ed
V-shaped pattern of the cable for 0 � x � a and
a � x � lb

2 , respectively.
Due to symmetry of the structure and loading, the

bending moment of the simply supported beam with
the modi�ed V-shaped pattern of the cable subjected
to uniform distributed dead load for half of the beam
is obtained as follows:

For 0 � x � a:

M1(x)=�F cos �y0��F sin �x+
qDlbx

2
� qDx2

2
:
(43)

For a � x � lb
2 :

M2(x) = ��F cos �y0 +
qDlbx

2
� qDx2

2
: (44)

By replacing Eqs. (43) and (44) in Eq. (42), the
maximum strain energy is obtained as follows:

ESo =2� 1
2(EI)b

(Z a

0

 
�F cos �y0 ��F sin �x

+
qDlbx

2
� qDx2

2

!2

dx+
Z lb

2

a

 
��F cos �y0

+
qDlbx

2
� qDx2

2

!2

dx

)
+ 2� �F 2lc

2(AE )c

+
(�F cos �)2(lb � 2a)

2(AE )c
+

(�F cos �)2lb
2(AE )b

=
1

(EI)b

(
q2
Dl5b
240

+
�F 2a3 sin2 �

3

+
�F 2lby2

0 cos2 �
2

��F 2y0a2 sin � cos �

+
qD�Fa4 sin �

4
� qD�Flba3 sin �

3

� 2qD�Fy0a3 cos �
3

+ qD�Flby0a2 cos �

� qD�Fl3by0 cos �
12

)
+

�F 2lc
(AE )c

+
�F 2(lb � 2a) cos2 �

2(AE)c
+

�F 2lb cos2 �
2(AE )b

: (45)

The increase in pre-tensioning force of the cable (�F )
calculated through the method of least work is de�ned
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�F =
�3qDa4 sin � + 4qDlba3 sin � + 8qDy0a3 cos � � 12qDlby0a2 cos � + qDl3by0 cos �

4
�

2a3 sin2 � + 3lby2
0 cos2 � � 6y0a2 sin � cos � + 3(EI)b

(AE )c [2lc + (lb � 2a) cos2 �] + 3Iblb cos2 �
Ab

� = qD�; (46)

where:

� =
�3a4 sin � + 4lba3 sin � + 8y0a3 cos � � 12lby0a2 cos � + l3by0 cos �

4
�

2a3 sin2 � + 3lby2
0 cos2 � � 6y0a2 sin � cos � + 3(EI)b

(AE)c [2lc + (lb � 2a) cos2 �] + 3Iblb cos2 �
Ab

� : (47)

Box II

by Eq. (46), in which � is obtained by Eq. (47)
(Eqs. (46) and (47) are shown in Box II). By replacing
Eq. (46) in Eq. (45), the maximum strain energy of the
beam ESo is obtained as follows:

ESo =
q2
D

240(EI)b

(
l5b + 80�2a3 sin2 �

+ 120�2lby2
0 cos2 � � 240�2y0a2 sin � cos �

+60�a4 sin � � 80�lba3 sin ��160�y0a3 cos �

+ �lby0a2 cos � � 20�l3by0 cos �

+
120�2(EI)b

(AE )c

�
2lc + (lb � 2a) cos2 �

�
+

120�2Iblb cos2 �
Ab

)
=

q2
D�

240(EI)b
: (48)

In Eq. (48), � is as follows:

� =l5b + 80�2a3 sin2 � + 120�2lby2
0 cos2 �

� 240�2y0a2 sin � cos � + 60�a4 sin �

� 80�lba3 sin � � 160�y0a3 cos �

+ �lby0a2 cos � � 20�l3by0 cos �

+
120�2(EI)b

(AE )c

�
2lc + (lb � 2a) cos2 �

�
+

120�2Iblb cos2 �
Ab

: (49)

Regarding the symmetry of structure and loading, the
maximum kinematic energy of the simply supported
beam with the modi�ed V-shaped cable pattern for the
whole beam is obtained as follows:

EKo =2�
�Z a

0

1
2
m(x) ( _uo1(x))2 dx

+
Z lb

2

a

1
2
m(x) ( _uo2(x))2 dx

�
=
Z a

0
m(x)(!nuo1(x))2dx+

Z lb
2

a
m(x)(!nuo2(x))2dx;

(50)

where uo1(x) and uo2(x) are the de
ection curves of the
simply supported beam with the modi�ed V-shaped
cable pattern for the 0 � x � a and a � x � lb

2 ,
respectively.

To determine the de
ection curve, the internal
bending moment should be equal to:

M1(x) = �(EI )bu00o1(x); (51)

M2(x) = �(EI )bu00o2(x): (52)

The de
ection curve in Eqs. (51) and (52) should satisfy
the displacement boundary conditions. For the simply
supported beam with the modi�ed V-shaped cable
pattern, the boundary conditions for half of the beam
are as follows:

uo1(0) = 0; u0o2
�
lb
2

�
= 0;

uo1(a) = uo2(a); u0o1(a) = u0o2(a):

By replacing Eqs. (43) and (44) in Eqs. (51) and
(52) and imposing the above boundary conditions, the
de
ection curve for half of the beam is obtained as
follows:

For 0 � x � a:

uo1(x) =
1

(EI )b

�
qDl3bx

24
� �Fa2 sin �x

2

+ 2�Fy0a cos �x� �Flby0 cos �x
2

��Fy0 cos �x2

2
+

�F sin �x3

6

�qDlbx3

12
+
qDx4

24

�
: (53)
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For a � x � lb
2 :

uo2(x) =
1

(EI )b

�
��Fa3 sin �

3
+ �Fy0a2 cos �

+
qDl3bx

24
� �Flby0 cos �x

2

+
�Fy0 cos �x2

2
� qDlbx3

12
+
qDx4

24

�
: (54)

By replacing Eqs. (53) and (54) in Eq. (50), the
maximum kinematic energy of the beam is obtained
as follows:

EKo =!2
n
qD
g

(Z a

0

 
1

(EI )b

"
qDl3bx

24
� �Fa2 sin �x

2

+ 2�Fy0a cos �x� �Flby0 cos �x
2

� �Fy0 cos �x2

2
+

�F sin �x3

6
� qDlbx3

12

+
qDx4

24

#!2

dx+
Z lb

2

a

 
1

(EI )b

"
��Fa3 sin �

3

+ �Fy0a2 cos � +
qDl3bx

24
� �Flby0 cos �x

2

+
�Fy0 cos �x2

2
� qDlbx3

12
+
qDx4

24

#!2

dx

9=;
=!2

n
qD

(EI )2
bg

(
31q2

Dl9b
725760

� 2�F 2a7 sin2 �
35

+
�F 2lba6 sin2 �

18
� �F 2y2

0a5 cos2 �
2

+
7�F 2lby2

0a4 cos2 �
12

� �F 2l3by2
0a2 cos2 �
12

+
�F 2l5by2

0 cos2 �
240

+
41�F 2y0a6 sin � cos �

120

� 11�F 2lby0a5 sin � cos �
30

+
�F 2l3by0a3 sin � cos �

36
+
qD�Fa8 sin �

2880

� qD�Flba7 sin �
840

+
qD�Fl3ba5 sin �

360

� qD�Fl5ba3 sin �
360

� qD�Fy0a7 cos �
1260

+
qD�Flby0a6 cos �

360
� qD�Fl3by0a4 cos �

144

+
qD�Fl5by0a2 cos �

120
� 17qD�Fl7by0 cos �

20160

)
:
(55)

By replacing Eq. (46) in Eq. (55), the maximum
kinematic energy of the beam EKo is obtained as
follows:

EKo =!2
n

q3
D

725760(EI )2
bg
�

31l9b � 41472�2a7 sin2 �

+ 40320�2lba6 sin2 � � 362880�2y2
0a

5 cos2 �

+ 423360�2lby2
0a

4 cos2 �

� 60480�2l3by
2
0a

2 cos2 � + 3024�2l5by
2
0 cos2 �

+ 247968�2y0a6 sin � cos �

� 266112�2lby0a5 sin � cos �

+ 20160�2l3by0a3 sin � cos � + 252�a8 sin �

� 864�lba7 sin � + 2016�l3ba
5 sin �

� 2016�l5ba
3 sin � � 576�y0a7 cos �

+ 2016�lby0a6 cos � � 5040�l3by0a4 cos �

+6048�l5by0a2 cos � � 612�l7by0 cos �
	

=!2
n

q3
D


725760(EI )2
bg
: (56)

In Eq. (56), 
 is as follows:


 =31l9b � 41472�2a7 sin2 � + 40320�2lba6 sin2 �

� 362880�2y2
0a

5 cos2 � + 423360�2lby2
0a

4 cos2 �

� 60480�2l3by
2
0a

2 cos2 � + 3024�2l5by
2
0 cos2 �

+ 247968�2y0a6 sin � cos �

� 266112�2lby0a5 sin � cos �

+ 20160�2l3by0a3 sin � cos � + 252�a8 sin �

� 864�lba7 sin � + 2016�l3ba
5 sin �

� 2016�l5ba
3 sin � � 576�y0a7 cos �

+ 2016�lby0a6 cos � � 5040�l3by0a4 cos �

+ 6048�l5by0a2 cos � � 612�l7by0 cos �: (57)
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The natural circular frequency of the simply supported
beam with the modi�ed V-shaped cable pattern using
Rayleigh's method and the principle of conservation of
energy is obtained as follows:

!2
n =

3024(EI )bg�
qD


! !n = 12

s
21(EI )bg�

qD

: (58)

The natural frequency of the simply supported beam
with the modi�ed V-shaped cable pattern is obtained
as follows:

fn =
!n
2�

=
6
�

s
21(EI )bg�

qD

: (59)

4.5. Calculating the natural frequency of the
�xed supported beam with the V-shaped
pattern of cable

In the �xed supported beam along with the V-shaped
cable pattern, as shown in Figure 6, an increase in
the pre-tensioning force of steel cable is equal to �F .
Therefore, the axial force of the beam is equal to
�F cos �.

Moreover, regarding the symmetry of structure
and loading (as in Figure 6), the maximum strain
energy of the �xed supported beam with the V-shaped
cable pattern for the whole beam is determined as
follows:

ESo =2� 1
2(EI)b

Z lb
2

0
M(x)2dx+ 2� �F 2lc

2(AE )c

+
(�F cos �)2lb

2(AE )b
; (60)

where M(x) is the bending moment of the �xed
supported beam with the V-shaped cable pattern for
0 � x � lb

2 .
It should be mentioned that the �xed supported

beam along with the V-shaped pattern of the cable
has two degrees of indeterminacy (the increase in pre-
tensioning force of the cable, �F , and the moment
at �xed end, M). The increase in the pre-tensioning
force of the steel cable and the �xed end moment can
be calculated using the method of least work. Thus,
the bending moment of the �xed supported beam with
the V-shaped pattern of the cable subjected to uniform

Figure 6. Fixed supported beam along with the
V-shaped cable pattern .

distributed dead load for the half of beam is obtained
as follows:

For 0 � x � lb
2 :

M(x) =�M + �F cos �y0 ��F sin �x

+
qDlbx

2
� qDx2

2
; (61)

where M is the moment at the �xed end.
By replacing Eq. (61) in Eq. (60), the maximum

strain energy formula is obtained as follows:

ESo =2� 1
2(EI )b

Z lb
2

0

 
�M + �F cos �y0

��F sin �x+
qDlbx

2
� qDx2

2

!2

dx

+ 2� �F 2lc
2(AE )c

+
(�F cos �)2lb

2(AE )b

=
1

(EI )b

(
q2
Dl5b
240

+
�F 2l3b sin2 �

24

+
�F 2lby2

0 cos2 �
2

� �F 2l2by0 sin � cos �
4

� 5qD�Fl4b sin �
192

+
qD�Fl3by0 cos �

12

+
M�Fl2b sin �

4
�M�Flby0 cos � � qDMl3b

12

+
M2lb

2

)
+

�F 2lc
(AE )c

+
�F 2lb cos2 �

2(AE )b
: (62)

Calculating the moment at the �xed end (M) through
the method of least work, the relation of the whole
strain energy is di�erentiated with respect to M and
the obtained result equates to zero:
@ESo
@M

= 0: (63)

The calculated bending moment at the �xed end (M)
is determined as follows:

M =
qDl2b
12
� �Flb sin �

4
+ �Fy0 cos �: (64)

To calculate the increase of pre-tensioning force of cable
(�F ) through the method of least work, the relation
of the whole strain energy is di�erentiated with respect
to �F and the obtained result equates to zero:

@ESo
@(�F )

= 0: (65)

The calculated increase of pre-tensioning force of the
cable (�F ) is obtained through Eq. (64) as follows:
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�F =
qDl4b sin �

4
�
l3b sin2 �+ 96(EI )blc

(AE )c + 48Iblb cos2 �
Ab

�=qD�:
(66)

In Eq. (66), � is as follows:

� =
l4b sin �

4
�
l3b sin2 � + 96(EI )blc

(AE )c + 48Iblb cos2 �
Ab

� : (67)

If sin � = 2y0
lc and cos � = lb

2lc are replaced in Eq. (64)
(as in Figure 6), the �xed end moment will be the �xed
end moment of the beam without cable as follows:

M =
qDl2b
12

: (68)

By replacing Eqs. (66) and (68) into Eq. (62), the
maximum strain energy of the beam ESo is obtained
as follows:

ESo =
q2
D

2880(EI )b

(
2l5b + 120�2l3b sin2 �

+ 1440�2lby2
0 cos2 � � 720�2l2by0 sin � cos �

� 15�l4b sin � +
2880�2(EI )blc

(AE )c

+
1440�2Iblb cos2 �

Ab

)
=

q2
D�

2880(EI )b
: (69)

In Eq. (69), � is as follows:

� =2l5b + 120�2l3b sin2 � + 1440�2lby2
0 cos2 �

� 720�2l2by0 sin � cos � � 15�l4b sin �

+
2880�2(EI )blc

(AE )c
+

1440�2Iblb cos2 �
Ab

: (70)

Regarding the symmetry of structure and loading, the
maximum kinematic energy of the �xed support beam
with the V-shaped pattern of the cable for the whole
beam is obtained as follows:

EKo =2�
Z lb

2

0

1
2
m(x) ( _uo(x))2 dx

=
Z lb

2

0
m(x)(!nuo(x))2dx; (71)

where uo(x) is the de
ection curve of the �xed sup-
ported beam with the V-shaped cable pattern in the
range of 0 � x � lb

2 .
The bending moment of the �xed supported beam

with the V-shaped pattern of the cable subjected to
uniformly distributed dead load in order to determine

the de
ection curve for the half of beam and by
replacing Eq. (68) is as follows:

M(x) =�M + �F cos �y0 ��F sin �x+
qDlbx

2

� qDx2

2
= �qDl2b

12
+ �F cos �y0

��F sin �x+
qDlbx

2
� qDx2

2
: (72)

To determine the de
ection curve, the internal bending
moment should be equal to:

M(x) = �(EI )bu00o(x): (73)

The de
ection curve in Eq. (73) should satisfy the
displacement boundary conditions. For the �xed sup-
ported beam with the V-shaped pattern of the cable,
boundary conditions for the half of the beam are:

uo(0) = 0; u0o(0) = u0o
�
lb
2

�
= 0:

By replacing Eq. (72) in Eq. (73) and imposing the
above boundary conditions, the de
ection curve for the
half of the beam is obtained as follows:

uo(x) =
1

(EI )b

�
qDl2bx2

24
� �Fy0 cos �x2

2

+
�F sin �x3

6
� qDlbx3

12
+
qDx4

24

�
: (74)

By replacing Eq. (74) in Eq. (71), the maximum
kinematic energy of the beam is obtained as follows:

EKo =!2
n
qD
g

Z lb
2

0

 
1

(EI )b

"
qDl2bx2

24
� �Fy0 cos �x2

2

+
�F sin �x3

6
� qDlbx3

12
+
qDx4

24

#!2

dx

=!2
n

qD
(EI )2

bg

(
q2
Dl9b

725760
+

�F 2l7b sin2 �
32256

+
�F 2l5by2

0 cos2 �
640

� �F 2l6by0 sin � cos �
2304

+
37qD�Fl8b sin �

3096576
� 29qD�Fl7by0 cos �

322560

)
: (75)

By replacing Eq. (66) in Eq. (75), the maximum
kinematic energy formula is obtained as follows:

EKo=!2
n

q3
D

46448640(EI )2
bg
f64l9b + 1440�2l7b sin2 �

+72576�2l5by
2
0 cos2 ��20160�2l6by0 sin � cos �
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+ 555�l8b sin � � 4176�l7by0 cos �g

=!2
n

q3
D


46448640(EI )2
bg
: (76)

In Eq. (76), 
 is given as follows:


 =64l9b + 1440�2l7b sin2 � + 72576�2l5by
2
0 cos2 �

� 20160�2l6by0 sin � cos � + 555�l8b sin �

� 4176�l7by0 cos �: (77)

The natural circular frequency of the �xed supported
beam with the V-shaped pattern of the cable using
Rayleigh's method and the principle of conservation of
energy is obtained as follows:

!2
n =

16128(EI )bg�
qD


! !n = 48

s
7(EI )bg�
qD


: (78)

The natural frequency of the �xed supported beam
with the V-shaped pattern of the cable is obtained as
follows:

fn =
!n
2�

=
24
�

s
7(EI )bg�
qD


: (79)

4.6. Calculating the natural frequency of the
�xed supported beam with the modi�ed
V-shaped pattern of the cable

In the �xed supported beam with the modi�ed V-
shaped pattern of the cable, as shown in Figure 7,
assuming increase in the pre-tensioning force of steel
cable to be equal to �F in the inclined parts, increase
in the pre-tensioning force of the cable in the horizontal
part is �F cos �.

Therefore, the axial force of the beam is equal to
�F cos �. Regarding the symmetry of structure and
loading (as in Figure 7), the maximum strain energy of
the �xed supported beam with the modi�ed V-shaped
pattern of the cable for the whole beam is obtained as
follows:

ESo =2� 1
2(EI )b

�Z a

0
M1(x)2dx+

Z lb
2

a
M2(x)2dx

�
+ 2� �F 2lc

2(AE )c
+

(�F cos �)2(lb � 2a)
2(AE )c

+
(�F cos �)2lb

2(AE )b
; (80)

where M1(x) and M2(x) are the bending moments of
the �xed supported beam with the modi�ed V-shaped
pattern of the cable in the 0 � x � a and a � x � lb

2
ranges.

It should be mentioned that the �xed supported
beam with the modi�ed V-shaped pattern of the cable
has two degrees of indeterminacy with an increase in

the pre-tensioning force of the cable (�F ) and the
moment at the �xed end (M). An increase in the pre-
tensioning force of the steel cable and �xed end moment
can be calculated using the method of least work.
Thus, the bending moment of the �xed supported beam
with the modi�ed V-shaped pattern of the cable is
obtained subjected to uniformly distributed dead load
for the half of beam as follows:

For the 0 � x � a range:

M1(x) =�M + �F cos �y0 ��F sin �x

+
qDlbx

2
� qDx2

2
: (81)

For the a � x � lb
2 range:

M2(x) = �M ��F cos �y0 +
qDlbx

2
� qDx2

2
: (82)

By replacing Eqs. (81) and (82) in Eq. (80), the
maximum strain energy is obtained as follows:

ESo =2� 1
2(EI )b

(Z a

0

 
�M + �F cos �y0

��F sin �x+
qDlbx

2
� qDx2

2

!2

dx

+
Z lb

2

a

 
�M ��F cos �y0 +

qDlbx
2

� qDx2

2

!2

dx

9=;+ 2� �F 2lc
2(AE )c

+
(�F cos �)2(lb � 2a)

2(AE )c
+

(�F cos �)2lb
2(AE )b

=
1

(EI )b

(
q2
Dl5b
240

+
�F 2a3 sin2 �

3

+
�F 2lby2

0 cos2 �
2

��F 2y0a2 sin � cos �

Figure 7. Fixed supported beam along with the modi�ed
V-shaped pattern of cable.
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+
qD�Fa4 sin �

4
� qD�Flba3 sin �

3

� 2qD�Fy0a3 cos �
3

+ qD�Flby0a2 cos �

� qD�Fl3by0 cos �
12

+M�Fa2 sin �

� 4M�Fy0a cos � +M�Flby0 cos �

� qDMl3b
12

+
M2lb

2

)
+

�F 2lc
(AE)c

+
�F 2(lb � 2a) cos2 �

2(AE )c
+

�F 2lb cos2 �
2(AE )b

: (83)

To calculate the moment at the �xed end (M) through
the method of least work, the relation of the whole
strain energy is di�erentiated with respect to M and
the obtained result equates to zero:
@ESo
@M

= 0: (84)

The calculated bending moment at the �xed end (M)
is obtained as follows:

M =
qDl2b
12
� �Fa2 sin �

lb
+

4�Fy0a cos �
lb

��Fy0 cos �: (85)

To calculate the increase in the pre-tensioning force
of cable (�F ) through the method of least work, the
relation of whole strain energy is di�erentiated with
respect to �F and the obtained result equates to zero:

@ESo
@(�F )

= 0: (86)

Using Eq. (85), the calculated increase in the pre-
tensioning force of the cable (�F ) is obtained through

Eq. (87), in which � is given by Eq. (88) (Eqs. (87) and
(88) are shown in Box III).

By replacing Eqs. (85) and (87) in Eq. (83), the
maximum strain energy of the beam ESo is obtained
as follows:

ESo =
q2
D

1440(EI )blb

(
l6b � 720�2a4 sin2 �

+ 480�2lba3 sin2 � � 11520�2y2
0a

2 cos2 �

+ 5760�2lby2
0a cos2 � + 5760�2y0a3 sin � cos �

� 2880�2lby0a2 sin � cos � + 360�lba4 sin �

� 480�l2ba
3 sin � + 120�l3ba

2 sin �

� 960�lby0a3 cos � + 1440�l2by0a2 cos �

� 480�l3by0a cos �

+
720�2(EI )blb

(AE )c
[2lc + (lb � 2a) cos2 �]

+
720�2Ibl2b cos2 �

Ab

)
=

q2
D�

1440(EI )blb
: (89)

In Eq. (89), � is as follows:

� =l6b � 720�2a4 sin2 � + 480�2lba3 sin2 �

� 11520�2y2
0a

2 cos2 � + 5760�2lby2
0a cos2 �

+5760�2y0a3sin � cos ��2880�2lby0a2sin � cos �

+ 360�lba4 sin � � 480�l2ba
3 sin �

+ 120�l3ba
2 sin � � 960�lby0a3 cos �

�F =
�3qDlba4 sin �+4qDl2ba3 sin ��qDl3ba2 sin �+8qDlby0a3 cos ��12qDl2by0a2 cos �+4qDl3by0a cos �

4

0BB@�3a4 sin2 � + 2lba3 sin2 � � 48y2
0a

2 cos2 � + 24lby2
0a cos2 � + 24y0a3 sin � cos �

� 12lby0a2 sin � cos � +
3lb(EI )b
(AE )c

�
2lc + (lb � 2a) cos2 �

�
+

3Ibl2b cos2 �
Ab

1CCA
= qD�;

(87)

where:

� =
�3lba4 sin � + 4l2ba3 sin � � l3ba2 sin � + 8lby0a3 cos � � 12l2by0a2 cos � + 4l3by0a cos �

4

0BB@�3a4 sin2 � + 2lba3 sin2 � � 48y2
0a

2 cos2 � + 24lby2
0a cos2 � + 24y0a3 sin � cos � � 12lby0a2 sin � cos �

+
3lb(EI )b
(AE )c

�
2lc + (lb � 2a) cos2 �

�
+

3Ibl2b cos2 �
Ab

1CCA
:

(88)

Box III



2766 N. Fanaie and F. Partovi/Scientia Iranica, Transactions A: Civil Engineering 27 (2020) 2752{2774

+ 1440�l2by0a2 cos � � 480�l3by0a cos �

+
720�2(EI)blb

(AE )c
[2lc + (lb � 2a) cos2 �]

+
720�2Ibl2b cos2 �

Ab
: (90)

Regarding symmetry of the structure and loading, the
maximum kinematic energy of the �xed supported
beam with the modi�ed V-shaped pattern of the cable
for the whole beam is obtained as follows:

EKo =2�
�Z a

0

1
2
m(x) ( _uo1(x))2 dx

+
Z lb

2

a

1
2
m(x) ( _uo2(x))2 dx

)
=
Z a

0
m(x)(!nuo1(x))2dx

+
Z lb

2

a
m(x)(!nuo2(x))2dx; (91)

where uo1(x) and uo2(x) are the de
ection curves of
the �xed supported beam with the modi�ed V-shaped
pattern of the cable in the 0 � x � a and a � x � lb

2
ranges, respectively.

By replacing Eq. (85) in Eqs. (81) and (82), the
bending moment of the �xed supported beam with
the modi�ed V-shaped pattern of the cable under
uniformly distributed dead load in order to determine
the de
ection curve for the half of beam is obtained as
follows:

For the 0 � x � a range:

M1(x) =�M + �F cos �y0 ��F sin �x

+
qDlbx

2
� qDx2

2
= �qDl2b

12
+

�Fa2 sin �
lb

� 4�Fy0a cos �
lb

+ 2�F cos �y0

��F sin �x+
qDlbx

2
� qDx2

2
: (92)

For the a � x � lb
2 range:

M2(x) =�M ��F cos �y0 +
qDlbx

2
� qDx2

2

=� qDl2b
12

+
�Fa2 sin �

lb
� 4�Fy0a cos �

lb

+
qDlbx

2
� qDx2

2
: (93)

By determining the de
ection curve, the internal bend-
ing is equal to:

M1(x) = �(EI )bu00o1(x); (94)

M2(x) = �(EI )bu00o2(x): (95)

The de
ection curve in Eqs. (94) and (95) should satisfy
the displacement boundary conditions. For the �xed
supported beam with the modi�ed V-shaped pattern
of the cable, the boundary conditions for the middle
beam are:

uo1(0) = 0; u0o1(0) = u0o2
�
lb
2

�
= 0;

uo1(a) = uo2(a); u0o1(a) = u0o2(a):

By replacing Eqs. (92) and (93) in Eqs. (94) and
(95) and imposing the above boundary conditions, the
de
ection curve for half of beam is obtained as follows:

For the 0 � x � a range:

uo1(x) =
1

(EI )b

"
qDl2bx2

24
� �Fa2 sin �x2

2lb

+
2�Fy0a cos �x2

lb
��Fy0 cos �x2

+
�F sin �x3

6
� qDlbx3

12
+
qDx4

24

#
: (96)

For the a � x � lb
2 range:

uo2(x) =
1

(EI )b

"
��Fa3 sin �

3
+ �Fy0a2 cos �

+
�Fa2 sin �x

2
� 2�Fy0a cos �x

� �Fa2 sin �x2

2lb
+

2�Fy0a cos �x2

lb

+
qDl2bx2

24
� qDlbx3

12
+
qDx4

24

#
: (97)

By replacing Eqs. (96) and (97) in Eq. (91), the
maximum kinematic energy formula of the beam is
obtained as follows:

EKo =!2
n
qD
g

(Z a

0

 
1

(EI )b

"
qDl2bx2

24
� �Fa2 sin �x2

2lb

+
2�Fy0a cos �x2

lb
��Fy0 cos �x2
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By replacing Eq. (87) in Eq. (98), the maximum kine-
matic energy of the beam EKo is obtained as follows:

EKo =!2
n

q3
D

725760(EI )2
b lbg
fl10
b � 10080�2a8 sin2 �
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In Eq. (99), 
 is as follows:


 =l10
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�241920�2l3by
2
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3 cos2 �+48384�2l4by
2
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2 cos2 �

+ 64512�2y0a7 sin � cos �

+ 80640�2lby0a6 sin � cos �

� 241920�2l2by0a5 sin � cos �

+ 141120�2l3by0a4 sin � cos �

� 24192�2l4by0a3 sin � cos � + 252�lba8 sin �

� 864�l2ba
7 sin � + 840�l3ba

6 sin �

� 336�l6ba
3 sin � + 108�l7ba

2 sin �

� 576�lby0a7 cos � + 2016�l2by0a6 cos �

� 2016�l3by0a5 cos � + 1008�l6by0a2 cos �

� 432�l7by0a cos �: (100)

The natural circular frequency of the �xed supported
beam with the modi�ed V-shaped pattern of the
cable using Rayleigh's method and the principle of
conservation of energy is obtained as follows:

!2
n =

504(EI )bg�
qD


! !n = 6

s
14(EI )bg�

qD

: (101)

The natural frequency of the �xed supported beam
with the modi�ed V-shaped pattern of the cable is
obtained as follows:

fn =
!n
2�

=
3
�

s
14(EI )bg�

qD

: (102)

5. Finite element modeling of steel beams
prestressed with steel cable

Simply supported and �xed supported beams were
designed based on Load and Resistance Factor Design
(LRFD) method using AISC360-10 code [20]. Then,
the natural frequency of the simply supported beam

was obtained based on the assumed shape function and
also the shape function obtained from the elastic de
ec-
tion curve corresponding to Eqs. (10) and (16); in addi-
tion, the natural frequency of the �xed supported beam
was obtained based on the assumed shape function and
the shape function derived from the elastic de
ection
curve corresponding to Eqs. (19) and (25), respectively.
The beams were designed such that their natural fre-
quency would be smaller than the minimum permissible
frequency of 5 Hz. Table 1 shows the beam properties
with di�erent support conditions and their natural fre-
quencies based on di�erent assumed shape functions. It
should be noted that the length of loading span was 1.5
m for the beams with di�erent support conditions; dead
and live loads were 450 and 200 kg/m2 respectively.

The beams with di�erent support conditions
without cables and with di�erent patterns of cables
were modeled using ABAQUS �nite element software.
Figure 8 shows the �nite element model of the beam
with di�erent patterns of cables. The beams and
cables were modeled in 3-dimentional coordinates with
shell and truss elements (as wire), respectively. The
weld's connector was used to connect the cable to
one of 
ange of the beam at two ends to constrain
their corresponding degree of freedom. Moreover, the
coupling constraint was applied to connect the cable
to another 
ange of the beam so as to model the
performance of the deviator. Uniformly distributed
load was applied as a surface traction type on the top

ange. Prede�ned �eld tool was used to create the
initial pre-tensioning stress in the cable, too. In this
research, mesh size was used as 5% of beam length.
Figure 9 shows the position of cables in beams with
di�erent support conditions.

To better illustrate the behavior of beam with
di�erent support conditions and di�erent patterns of
the cable, �rst, it was modeled using the software
without cable and then again, with di�erent cable
patterns; the obtained results were compared with each
other.

The steel material of beams considered in this
research was ST-37, yield stress 240 MPa, modulus of
elasticity of steel 200 GPa, and Poisson's ratio 0.3. The
material of the steel cable was found in accordance with

Table 1. Properties and natural frequency of beams with di�erent support conditions.

Type of beam
Beam span

length
(m)

Cross-section
of beam

Natural
frequency
based on

assumptive
shape function

(Hz)

Natural
frequency

based on shape
function of the
de
ection curve

(Hz)

Allowable
natural

frequency
(Hz)

Simply supported beam 4.5 IPE180 4.80 4.81 5

Fixed supported beam 10.8 IPE300 4.85 4.78 5
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Figure 8. Finite element model of the beam along with di�erent patterns of cable: (a) Simply supported beam along with
the V-shaped pattern of cable, (b) simply supported beam along with the modi�ed V-shaped pattern of cable, (c) �xed
supported beam along with the V-shaped pattern of cable, and (d) �xed supported beam along with the modi�ed
V-shaped pattern of cable.

Figure 9. The locations of cables in the beams: (a) Simply supported beam along with the V-shaped pattern of cable, (b)
simply supported beam along with the modi�ed V-shaped pattern of cable, (c) �xed supported beam along with the
V-shaped pattern of cable, and (d) �xed supported beam along with the modi�ed V-shaped pattern of cable.

the ASTM A416M standard [21]. Then, 7-wire strand
(grade 270 (1860)) was considered for the steel cable
with low relaxation, minimum ultimate strength (fpu)
of 270 ksi (1860 MPa), minimum yield strength at 1%
extension of 52.74 kip (234.6 KN), elasticity modulus
of 28:5 � 106 psi (196501.8 MPa), and Poisson's ratio
of 0.3.

6. Veri�cation of theoretical relations of
natural frequency with results of ABAQUS
models

Frequency analysis of ABAQUS software was applied

so as to analyze the beams with di�erent support
conditions (Table 1) without cable and with di�erent
patterns of the cable. The 7-wire strand steel cable
with low relaxation was considered for beams with
di�erent support conditions as two cables on each side
of the beam web with a cross-sectional area of 140 mm2

in accordance with ASTM A416M standards. As a
result, the entire steel cable cross-section was equal
to 560 mm2. Pre-tensioning of the steel cable was
considered as 600 MPa. Controlling the accuracy of
theoretical relations, the natural frequency obtained
through modeling was compared to those of the the-
oretical relations for the beams with di�erent support
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Table 2. Natural frequency values obtained from modeling and theoretical equations for the beams with di�erent support
conditions without cable and with di�erent cable patterns.

Type of beam

Natural
frequency of

beam obtained
from modeling

(Hz)

Natural frequency of
beam obtained from

theoretical equations (Hz)
Allowable
natural

frequency
(Hz)

Based on
assumptive

shape function

Based on shape
function of the
de
ection curve

Simply
supported

beam

Without cable 4.74 4.80 4.81

5

With V-shaped

cable pattern
4.83 | 4.84

With modi�ed

V-shaped cable

pattern

5.22 | 4.98

Fixed
supported

beam

Without cable 4.61 4.85 4.78

5

With V-shaped

cable pattern
4.83 | 4.86

With modi�ed

V-shaped cable

pattern

4.92 | 4.90

conditions and di�erent patterns of cable. The results
of the natural frequency obtained through modeling
were compared with:

1. Those of Eqs. (10), (16), (41), and (59) for simply
supported beams without cable and with di�erent
cable patterns;

2. With those of Eqs. (19), (25), (79), and (102)
for �xed supported beams without cable and with
di�erent cable patterns, as shown in Table 2.

According to Table 2, the theoretical relations
could properly predict the natural frequency of the
beam. Moreover, it was observed that the natu-
ral frequency of the beam increased when the pre-
tensioned steel cable rather than the beam without
cable was used; therefore, using cable increases the
natural frequency of the beam with di�erent support
conditions. In addition, the natural frequency of the
simply supported and �xed supported beam with the
modi�ed V-shaped pattern of cable was found greater
than that with the V-shaped cable pattern. As a result,
the modi�ed V-shaped cable pattern is proposed as
a more appropriate pattern than the V-shaped cable
pattern due to more suitable results observed.

7. The e�ects of horizontal cable length on
natural frequency of simply supported and
�xed supported beams along with the
modi�ed V-shaped cable pattern

Eqs. (59) and (102) were employed to calculate the nat-
ural frequency of simply supported and �xed supported
beams along with the modi�ed V-shaped cable pattern
for 560 mm2 cross-section of steel cable and at di�erent
horizontal cable lengths (lb � 2a of Figures 5 and 7).
Figures 10 and 11 depict the curves of the natural

Figure 10. Natural frequency of simply supported beam
along with the modi�ed V-shaped pattern of cable for
di�erent horizontal cable lengths.
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Figure 11. Natural frequency of �xed supported beam
along with the modi�ed V-shaped pattern of cable for
di�erent horizontal cable lengths.

frequency of the simply supported and �xed supported
beams along with the modi�ed V-shaped cable patterns
for various lengths of the horizontal cable.

According to Figures 10 and 11, if the horizon-
tal cable length for the simply supported and �xed
supported beams along with the modi�ed V-shaped
pattern of cable is zero, their natural frequencies are
4.84 Hz and 4.86 Hz, respectively. These values are the
result of natural frequency of simply supported and
�xed supported beams along with the V-shaped cable
pattern (Table 2). Natural frequency increases with
an increase in the horizontal cable length. Finally,
for horizontal cable lengths of 3.9 m and 3.4 m, the
values of natural frequency are maximum at 5.193 Hz
and 4.896 Hz, respectively, for the simply supported
and �xed supported beams along with the modi�ed
V-shaped cable pattern. Since then, the natural
frequency of the beam reduces with an increase in
the horizontal cable length. The mentioned values of
natural frequency are 4.81 Hz and 4.78 Hz, respectively,
when the lengths of horizontal cable and beam are
alike. These values are the result of natural frequency
of simply supported and �xed supported beams with-
out cable (Table 2). The reason is that for keeping
the bending moment in the slope change region of the
cable continuous, the force of horizontal cable should
be equal to the horizontal component of the inclined
cable force. Therefore, if the inclined cable becomes
vertical in its special status (in the case the horizontal

cable length is equal to that of the beam length), the
horizontal component of the vertical cable force equates
to zero; consequently, the force of the horizontal cable
becomes zero. As the length of the vertical cable,
which is equal to the distance between two 
anges of
the beam, remains constant, no force is exerted on the
length of the cable. Therefore, the cable has no e�ect
on the beam behavior and the natural frequency of the
beam is exactly similar to that of the beam without
cable.

8. Sensitivity analysis on the cross-section of
steel cable

To apply sensitivity analysis to the cross-section of the
steel cable, di�erent amounts of the 7-wire strand steel
cable cross-section with low relaxation were considered
for beams with di�erent support conditions as an equal
number of cables on both sides of the beam web with
an area of 140 mm2 in accordance with ASTM A416
standard and stable pre-tensioned stress of 600 MPa.
Tables 3 and 4 present the natural frequency of the
beams with di�erent support conditions and di�erent
patterns of the cable modeled using ABAQUS software
for di�erent cross-sections of the steel cable.

According to Tables 3 and 4, natural frequency
of the beams with di�erent support conditions and
di�erent patterns of cable increased with an increase
in steel cable cross-section area due to the increase in
sti�ness in the beam along with cable.

9. Sensitivity analysis on the pre-tensioning
stress of the steel cable

To perform sensitivity analysis on the pre-tensioning
stress of the steel cable, the 7-wire strand steel cable
of beams with di�erent support conditions with low
relaxation was used in the form of four cables on each
side of the beam web with an area of 140 mm2 in accor-
dance with the ASTM A16M standard. As a result, the
overall steel cable cross-section is equal to 1120 mm2.
Table 5 presents the values of natural frequency of the
beams with di�erent support conditions and various

Table 3. Natural frequency results of simply supported beam along with di�erent patterns of cable used in sensitivity
analysis on the cross-section area of steel cable.

Total cross-section
area of steel cable

(mm2)

Natural frequency of
simply supported beam
along with the V-shaped

cable pattern (Hz)

Natural frequency of
simply supported beam

along with modi�ed
V-shaped cable pattern (Hz)

Allowable
natural

frequency (Hz)

280 4.79 5.00 5

560 4.83 5.22 5

840 4.86 5.40 5

1120 4.89 5.56 5
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Table 4. Natural frequency results of �xed supported beam along with di�erent patterns of cable used in sensitivity
analysis on the cross-section area of steel cable.

Total cross-section
area of steel cable

(mm2)

Natural frequency of
�xed supported beam

along with the V-shaped
cable pattern (Hz)

Natural frequency of
�xed supported beam
along with modi�ed

V-shaped cable pattern (Hz)

Allowable
natural

frequency (Hz)

280 4.72 4.77 5

560 4.83 4.92 5

840 4.94 5.06 5

1120 5.04 5.21 5

Table 5. Natural frequency results of beams with di�erent support conditions and di�erent cable patterns used in
sensitivity analysis on the cable pre-tensioning stress.

Type of beam

Cable
pre-tensioning
stress (MPa)

Allowable
natural

frequency
(Hz)400 600 800

Simply supported beam Along with the V-shaped pattern 4.89 4.89 4.89
5

Along with the modi�ed V-shaped cable pattern 5.56 5.56 5.56

Fixed supported beam Along with the V-shaped cable pattern 5.04 5.04 5.04
5

Along with the modi�ed V-shaped cable pattern 5.21 5.21 5.21

patterns of the cable modeled using ABAQUS software
for di�erent values of pre-tensioning of the steel cable.

According to Table 5, the natural frequency of
beams with di�erent support conditions and di�erent
patterns of cable remained stable with an increase in
the pre-tensioning stress of steel cable.

10. Conclusion

Due to their low weights, small cross-sections, and high
tensile strengths, cables can be proper alternatives for
pre-tensioning the steel beams subjected to external
loads. In this research, cables were employed to
prestress the beams with di�erent support conditions
in which the natural frequency was not within the
allowable range despite their appropriate design under
bending and shear. Theoretical equations were used to
calculate the rate of increase in pre-tensioning force of
the cable as well as the natural frequency of the simply
supported and �xed supported beams with and without
cable. The results obtained from the �nite element
model and theoretical equations are brie
y summarized
as follows:

1. The moment at the end of the �xed supported
beam with the V-shaped pattern of cable was equal

to that at the end of the beam without cable
( ql

2
b

12 ); however, in the �xed supported beam along
with the modi�ed V-shaped pattern of cable, the
moment at �xed end was dependent on external
loading and total force of the cable, too;

2. Comparison between the results of theoretical equa-
tions and those of �nite element model demon-
strated that the theoretical equations developed
in this article could properly predict the natu-
ral frequency of the simply supported and �xed
supported beams without cable and along with
di�erent patterns of cable;

3. Adding cable to the beam resulted in increasing
the natural frequency of the beam with di�erent
support conditions and di�erent patterns of cable;

4. The natural frequency of the simply supported and
�xed supported beams along with the modi�ed V-
shaped cable pattern was higher than that with
the V-shaped pattern. Therefore, the modi�ed V-
shaped pattern of cable can be a more appropriate
pattern;

5. The e�ects of horizontal cable length on the natural
frequency of simply supported and �xed supported
beams along with the modi�ed V-shaped pattern
of cable were studied. According to the obtained
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results, if the length of horizontal cable remains
equal to zero, the natural frequency of beam along
with the V-shaped pattern of cable was obtained.
If the length of horizontal cable increased, natural
frequency increased. With an increase in the length
of horizontal cable, natural frequency decreased,
too. When the lengths of the horizontal cable and
beam were equal, the natural frequency results of
the simply supported and �xed supported beams
without cable were obtained;

6. In beams with di�erent support conditions and
di�erent patterns of cable, the natural frequency
increased upon increasing the cross-section of steel
cable, considering equal pre-tensioning. Moreover,
proper values of steel cable cross-sections were ob-
tained, as per which the natural frequency criterion
of beams with di�erent support conditions and
di�erent patterns of cable was satis�ed;

7. By increasing the pre-tensioning in the steel cables
of equal cross-sections, the natural frequency of
the beams with di�erent support conditions and
di�erent patterns of cable was found constant.

Nomenclature

u(x; t) Simple harmonic motion of a beam
under free vibration

 (x) Shape function
zo Amplitude of generalized coordinate

z(t)
!n Natural circular frequency
ESo Maximum strain energy
uo(x) Maximum displacement
EKo Maximum kinematic energy
m(x) Mass per unit length of the beam
EI(x) Flexural rigidity
L Beam length
qD Uniform distributed dead load per unit

length
g Gravity acceleration
fn Natural frequency
M(x) Bending moment
Fpt Pre-tensioning force of the steel cable
�F Increase in pre-tensioning force of the

steel cable
�l Increase in length of steel cable
lb Beam length
lc Inclined cable length
Ab Cross-section area of beam
Ac Cross-section area of cable on both

sides of the web

Eb Elasticity modulus of beam
Ec Elasticity modulus of cable
Ib Moment of inertia of beam
� Angle of inclined cable with the

horizontal axis
y0 Distance of neutral axis to the

connection point of steel cable to the
beam 
ange (half of the height of beam
web)
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