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Abstract. In order to implement a damage detection strategy and assess the condition
of a structure, Structural Health Monitoring (SHM) as a process plays a key role in
structural reliability. This paper aims to present a methodology for online detection of
damages that may occur during a strong ground excitation. In this regard, Empirical Mode
Decomposition (EMD) is superseded by Ensemble Empirical Mode Decomposition (EEMD)
in the Hilbert Huang Transformation (HHT). Although analogous with EMD, EEMD brings
about more appropriate Intrinsic Mode Functions (IMFs). IMFs are employed to assess
the �rst-mode frequency and mode shape. Afterwards, Arti�cial Neural Network (ANN)
is applied to predict story acceleration based on previously measured values. Because
ANN functions precisely, any congruency between predicted and measured accelerations
indicates the onset of damage. Then, another ANN method is applied to estimate the
sti�ness matrix. Though the �rst-mode shape and frequency are calculated in advance, the
process essentially requires an inverse problem to be solved in order to �nd sti�ness matrix,
which is done by ANN. This algorithm is implemented on moment-resisting steel frames,
and the results show the reliability of the proposed methodology for online prediction of
structural damage.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Civil structures in general and those subject to seismic
excitation in particular are vulnerable to damage and
deterioration during their service life. Inasmuch as
damages to civil systems have led to unwanted major
loss and casualty, they have gained the attention of
the scienti�c community. The process of assessing the
condition of a structure in order to detect any imperfec-
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tion is done by visual inspection traditionally and some
conventional methods. These antediluvian methods are
susceptible to becoming obsolete. Thus, new methods,
that is, Non-Destructive Evaluation techniques (NDE),
are designed [1]. Although such new methods as
acoustic signals, electromagnetic, radiography, �ber
optics, and so forth are not only more e�ective and
convenient but also more economical, these damage
detection methods are not global, but local. Therefore,
they are e�ective only for small structures or struc-
tural members [2]. Global vibration-based techniques
have been released recently in order to overcome this
challenge. These methods contain Fourier transform,
power spectrum, and spectrum analysis, to name a
few [3]. As sensors and data acquisition systems have
become more a�ordable during the preceding decades,
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the use of vibration data to �nd an e�ective strategy
for the purpose of quantifying structural damage in
engineering structures has gained more attention; even
there are some studies that use this huge amount
of data more e�ciently [4]. A review of vibration-
based health monitoring methods can be found in [5-
10]. The vibration-based methods, considering simply
frequency, are worthwhile. Nonetheless, these methods
discard time information. Additionally, most of the
signals in the real world are not only nonlinear but also
non-stationary concurrently, which require following
new methods rather than conventional ones. In order
to solve these problems, time-frequency methods are
implemented, which present both frequency and time
simultaneously. Furthermore, they can be used for non-
stationary signals [9]. Hilbert Transform (HT) is a de-
vice in time-frequency domain for signal processing and
is used for structural damage detection[11-13]. Wavelet
Transform (WT) and Short Fast Furrier Transform
(SFFT) are other tools for time-frequency analyses,
and the former also provides variable-sized regions
for windowing [14]. In doing so, higher frequency
resolutions are brought, and a uniform resolution for
all scales is provided [15]. However, WT and SFFT
have limitations in Time-Frequency representation of
non-stationary signals [16]. Huang et al. [17,18] �rstly
developed a new method{Hilbert Huang Transforma-
tion (HHT){in order to analyze both nonlinear and
non-stationary signals. This aforementioned method
is composed of two portions, that is, Empirical Mode
Decomposition (EMD) and HT. In fact, the �rst step,
so-called EMD, is a procedure that provides some
signals that stem from the main one. In other words,
the mother signal is decomposed into Intrinsic Mode
Functions (IMF). Since the EMD is based on the
local characteristic time scale of the original data, this
decomposition method is adaptive and highly e�cient.
The HHT method at a galloping rate has been em-
ployed in many scienti�c and engineering disciplines in
general and structural health monitoring in particular
to give new insights into the non-stationary and nonlin-
ear signals [19]. Huang et al. [20] asserted that HHT is
not only a more precise de�nition of particular events
in time-frequency space than wavelet analysis, but
also more physically meaningful interpretation of the
underlying dynamic processes, too. Vincent et al. [21]
compared the EMD method with wavelet analysis for
structural damage detection. The structure, which
is a simple 3-DOF system, was monitored during 20
seconds. The sti�ness of the �rst story decreased, and
the instantaneous frequencies were calculated from the
�rst �ve IMFs. It was concluded that both the EMD
and wavelet methods were e�ective in detecting the
damage; however, the EMD method seems to be more
promising for quantifying the damage level. Many
assorted methods have been proposed to improve HHT

in decomposition portion, EMD, and HT portion. In
this regard, by utilizing the bene�ts of the properties
of white noise to distribute components with more
proper scales, Ensemble EMD (EEMD) has been pre-
sented due to resolving the mode mixing problem in
EMD [22,23]. Aied et al. [24] used EEMD to detect
sudden sti�ness changes in a bridge model. Further-
more, they argued that the application of EEMD seems
to be more adaptive to nonlinear signal than that
of wavelets. Moreover, they asserted that by using
EEMD rather than EMD, the mode mixing problem
diminishes signi�cantly. It should be kept in mind that
environmental conditions, such as temperature, might
have signi�cant e�ects; however, sudden changes in
sti�ness are always of importance [25]. Nagarajaiah
and Basu [26] conducted a very comprehensive re-
search on the most common time-frequency techniques;
�rst, they developed output-only modal identi�cation
as well as evaluated frequencies, damping ratios, and
mode shapes of MDOF LTI and LTV systems. Then,
besides using HT, they applied SFFT, EMD, and
wavelet and discussed the performance of each one.
However, they did not employ EEMD. Today, improve-
ments in computers' processing power pave the way for
more elaborate computations. Arti�cial intelligence,
therefore, has become the focus of attention in recent
decades. Arti�cial Neural Networks (ANNs) in terms
of machine learning and cognitive science are learning
models inspired by biological neural networks [27].
Suresh et al. [28] considered the 
exural vibration in
a cantilever beam. A neural network was trained
by modal frequency parameters-calculated for various
locations and crack depths. Furthermore, they inves-
tigated two widely used neural networks, namely the
multi-layer perceptron network and the radial basis
function network, and �gured out that the latter was
better than the former by virtue of performance and
computational time. The e�ects of three di�erent
learning rate algorithms-the Dynamic Steepest Descent
(DSD) algorithm, the Fuzzy Steepest Descent (FSD)
algorithm, and the Tunable Steepest Descent (TSD)
algorithm-on the neural network training were stud-
ied. Fang et al. [29] studied the Back-Propagation
Neural Network (BPNN) and used Frequency Response
Functions (FRFs) as its input data in order to assess
damage conditions of a cantilever beam. Eventually,
they asserted that this new approach is highly accurate
in predicting damage location and severity. Xu et
al. [30] presented a method for the direct identi�cation
of structural parameters based on neural networks.
They used two back-propagation neural networks the
�rst of which, emulator, was employed to predict its
dynamic response with su�cient accuracy using time-
domain dynamic responses. Then, the di�erence be-
tween structure response and neural network prediction
was assessed with Root Mean Square (RMS). The



1268 S.M. Vazirizade et al./Scientia Iranica, Transactions A: Civil Engineering 26 (2019) 1266{1279

second neural network, called parametric evaluation
neural network, was proposed to identify the structural
parameters. Saadat et al. [31] proposed a method
called the Intelligent Parameter Varying (IPV) that
uses radial basis function networks to estimate the
constitutive characteristics of inelastic and hysteretic
restoring forces and showed the e�ectiveness of this
method. Bandara et al. [32] utilized a neural network
for the actual damage localization and quanti�cation
based on FRF. Their network inputs were damage
patterns of di�erent damage cases associated with
FRF, and outputs were either the damage locations
or severities. By having a su�cient amount of data, a
deep learning approach can be applied to both global
and local health condition assessment of structures [33].
Entezami et al. [34] used an unsupervised learning
method to extract features required for structural
health monitoring. A quality literature review about
di�erent methods for feature extraction can be found
in [35]. In this study, a methodology was proposed
to detect damage in nonlinear moment-resisting steel
frames. In fact, this method discerns the changes
in structure sti�ness as well as the onset of damage,
predicts the location of damage, and measures the
severity of damage by implementing EEMD, HT, and
ANNs. Primarily, the �rst-mode frequency and mode
shape are calculated by using EEMD and HT process.
Afterward, by using two ANNs, the location and
severity of damages are determined.

2. Signal processing procedures

2.1. Hilbert Transform (HT)
HT has proved useful to compute instantaneous fre-
quency. By doing so, complex conjugate y(t) of any
real-valued function can be calculated. HT of a signal
x(t) is de�ned by:

H [x (t)] = y (t) =
1
�
PV

+1Z
�1

x (t)
t� � d�; (1)

where t is the time variable, and PV indicates the
principal value of the singular integral. With the HT,
the analytic signal, z(t), is obtained as follows:

z (t) = x (t) + iy(t) = a (t) ei�(t); (2)

a (t) =
p
x2 (t) + y2 (t); (3)

� (t) = arctan
�y
x

�
; (4)

where a(t) and �(t) are the instantaneous amplitude
and phase function, respectively. Instantaneous fre-
quency is derived from the derivative of the phase
function [36]:

f(t) =
1

2�
d�(t)

dt
: (5)

In spite of the fact that HT has proved useful, one en-
counters di�culties for achieving physically meaningful
instantaneous frequencies by applying HT. There are
some conditions and theories that express these short-
comings, e.g., Bedrosian and Nuttall theorems, to name
a few. In this regard, many assorted methods, such
as Normalized Amplitude Hilbert Transform (NAHT)
method and enhanced Hilbert Huang transform, have
been proposed [37,38]. Reducing the signal into its
IMFs has improved the chance of getting a meaningful
instantaneous frequency. Thus, EMD is a procedure
that decomposes a signal into its IMFs.

2.2. Empirical Mode Decomposition (EMD)
In 1996, EMD was proposed by Huang et al. [18]
for nonlinear and non-stationary data. As mentioned
earlier, EMD is a procedure that decomposes a signal
into its IMFs. An IMF is de�ned as a function to satisfy
two conditions:

1. The number of extrema and the number of zero
crossings must either equal or di�er at most by one
in the whole data;

2. At any given point, the mean value of the upper
envelope, de�ned by the local maxima, and the
lower envelope, de�ned by the local minima, is zero.

To this end, amplitude and frequency of IMFs can
be non-constant and changeable. In other words, am-
plitude and frequency are variable as a function of time;
in doing so, HT becomes a helpful transformation.

For such a signal as x(t), the EMD procedure can
be summarized in six steps as follows:

1. Determining all of the local extrema, that is, max-
ima and minima;

2. Considering cubic spline passing all the local max-
ima as the upper envelope, emax(t), and an analo-
gous procedure for the local minima to achieve the
lower envelope, emin(t);

3. Computing the mean value of upper envelope and
lower one:

mi;j = [emin(t) + emax(t)]=2;

where i and j indices indicate the number of
associated IMFs and iterations, respectively. For
the �rst IMF, i equals 1;

4. Subtracting mi;j from the initial signal to �nd the
�rst component, hi;j(t):

if j = 1 : hi;j = x�mi;j ;

if j 6= 1 : hi;j = hi;j�1 �mi;j :
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5. Repeating steps 1 to 4 on hi;j(t) k times to obtain
the next IMF, Ci(t):

Ci = hi;k:

6. Calculating r and repeating steps 1 to 5 to extract
the remaining IMFs, ri+1 = x � Ci, and a residue,
rn+1(t).

Finally, by using these steps, x(t) is decomposed
to n-separate IMFs and a residue, rn+1(t). The original
signal can be reconstructed by the sum of intrinsic
modes and the residue:

x =
nX
i=1

Ci+rn+1:

Among the IMFs, high-frequency content is removed
gradually from C1(t) to Cn(t), resulting in the latter
signals with lower frequency content.

2.3. Ensemble Empirical Mode Decomposition
(EEMD)

Wu and Huang presented EEMD [22,23] to solve the
mode mixing problem by adding a white noise to the
original signal. Mode mixing, which is the consequence
of signal intermittency, causes the existence of dis-
parate scales in an IMF or the presence of a similar
scale in di�erent IMFs. Consequently, this drawback
makes IMFs physically meaningless, and it is crucial
to get rid of it. Therefore, EEMD is implemented for
not only surmounting mode mixing problem but also
reducing the sensitivity of a signal to noise pollution,
as shown in this study. The statistical characteristics
of white noise with an ensemble of trials bring about
improvement in the scale separation problem. To
put it di�erently, the addition of noise to EMD and
iteration leads to a better sifting process. It should
be mentioned that though the IMFs are polluted by
noise in each trial, these e�ects are canceled out by
utilizing ensemble mean. Wang et al. [39] compared
the applications of EMD and EEMD on time-frequency
analysis of seismic signals. They found that this new
approach was remarkably capable of solving the mode
mixing problem. They demonstrated this assertion by
applying an example and revealed the ability of EEMD
to decompose the signal into di�erent IMFs and analyze
the time-frequency distribution of the seismic signal.

EEMD is summarized within the following steps:

1. Adding white noise w to the initial signal, x(t), for
the �rst try k = 1:

x1 = x+ wl:

2. Applying steps 1 to 5 of the EMD procedure to
decompose signal x1(t) to its IMF.

3. Repeating steps (1) to (2) with di�erent white
noises for each try.

4. Averaging corresponding IMF calculated by each
trial to obtain C:

Ci = lim
n!1

1
n

nX
l=1

Ci;l;

where n is the number of ensembles.
5. Subtracting Ci(t) from the initial signal and repeat-

ing these steps for �nding the remaining IMFs.
Finally, the main signal can be reproduced as

in the following equation:

x =
nX
i=1

Ci+rn+1:

The main advantage of EEMD over EMD is that
the former is less sensitive to noise than to EMD. In
other words, the IMFs extracted by EEMD are more
analogous with each other than with those of EMD
while the uniformity among the decomposed signals
is of considerable importance for extracting the mode
shapes.

3. Damage detection procedure

In this section, the rewarding process of �nding severity
and location of damage, which is a combination of
signal processing and arti�cial intelligence, is proposed.
Figure 1 plots the schematic process of the proposed
method for a typical 3-story moment-resisting frame.
In the following steps, the procedure is closely exam-
ined.

The �rst step is recording the response of the
structure using installed sensors. It should be men-
tioned that because of the earthquake recorded as an
excitation at the base level of the structure as well as
the damping e�ect on the structure, the corresponding
response is non-stationary. Another point deserving
attention is that the procedure is output-only, and
in order to underline this fact, there are not any
installed sensors on the base although it could be. As
mentioned earlier, the �rst exquisite step is recording
the structural response in each story. These signals are
considered as input data for EEMD, and the extracted
results are IMFs. Then, HT is applied to IMFs to �nd
instantaneous frequencies and amplitudes. It should be
mentioned that each story signal is satis�ed in order to
evaluate the �rst-mode frequency, and the result can
be double-checked by the others. Additionally, in most
cases, the structural response is more obvious in higher
elevations; thus, the last story response is considered
as the main signal for �nding the dominant frequency.
It is further shown that the results are not signi�cantly
sensitive to the �rst-mode dominant frequency. In the
next step, thanks to more uniform IMFs by virtue
of EEMD, each story' IMFs containing the �rst-mode
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Figure 1. Schematic view of the proposed method.

frequency is normalized in relation to the those of the
last story. In doing so, the �rst-mode shape is at hand.

Then, a Radial Basis Function Network (RBFN)
is employed in order to predict the response of each
story. The task of this network is to forecast the accel-
eration of each story using its acceleration in previous
moments and other stories in the current and previous
moments. To put it di�erently, by using early second
responses, as long as the excitation is not destructive,
or the former excitation is not strong enough to damage
the structure, this network is trained and ready to
predict the behavior of the structure. As mentioned
earlier, any di�erences between the predicted and
measured values signify changes in structural elements
on the grounds that RBFNs are remarkably powerful
to predict acceleration response precisely. This step
is extremely worthwhile to locate the damage and
facilitate the procedure for the next step.

The last step is applying another network to
measure the severity of damage. Although the afore-
mentioned steps are a non-model based method, the
intact and undamaged structure is required to be
compared with the damaged one in this step. Fur-
thermore, this network needs some data to train. In
other words, if the relationship between the �rst-mode
shape and frequency and its corresponding parameters
of the associated structure is available, the structural
parameters can be identi�ed based on the �rst-mode
shape and frequency; however, a formidable challenge
is to establish a mathematical model for mapping
from the mode shape and frequency to the structural
parameters. Although the Eigen values and Eigen
vectors are simply at hand with known sti�ness matrix
and, by doing so, mode shapes and frequencies are
calculated, it is a formidable task to reach a general

solution to assess the sti�ness matrix by the �rst-
mode shape and frequency. Therefore, the application
of optimization algorithms can be helpful in solving
this inverse problem. These optimization algorithms
include Genetic Algorithm (GA), Swarm Intelligence
(SI), Particle Swarm Optimization (PSO), Multiparti-
cle Swarm Coevolution Optimization (MPSCO), and
Improved Multiparticle Swarm Coevolution Optimiza-
tion (IMPSCO) employed by Jiang et al. [40] to localize
and quantify the structural damage in comparison
with GA, etc. Friswell et al. [41] applied the genetic
algorithm and vibration data to the problem of damage
detection. In this study, an ANN is applied on the
grounds that the neural network has the ability to
approximate arbitrary continuous function and map-
ping, too. Therefore, it stands to reason that the
mathematical model is supplanted by a network that
can be considered as an optimization problem with the
severity of the damages as its variables.

4. Modeling and analysis

The �rst structure is a three-story steel moment-
resisting frame with story height and spans of 3 m and
4 m, respectively, and its speci�cations are provided
in Table 1. The open-source �nite element program,
OpenSees, is used for nonlinear dynamic analysis. The
utilized material is Steel01, which is a bilinear model.
By using 0% strain hardening, it is transformed into
elastic-perfectly plastic model, in which all of these
parameters are summarized in Table 2, where Fy, E,
and �y represent yielding stress, modules of elasticity,
and yielding strain. This structure has Rayleigh's
proportional damping with both the �rst and the third
modal damping ratios of 0.05. The scaled Northridge
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Table 1. Speci�cations of the three-story frame.

Story Mass (kg) Sti�ness of beam
section (MPa)

Sti�ness of column
section (MPa)

All 8000 8.4164062 17.45226

Table 2. The material properties used for modeling the structure.

Material no. Fy
(MPa)

E elastic
(MPa)

E plastic
(MPa)

�y

1 200 2� 105 0 0.001

Figure 2. Scaled Northridge ground motion acceleration
record.

earthquake record (which is multiplied by two in order
to push the structure into plastic range) is applied
to the structure and the ground motion, as shown in
Figure 2.

Apart from the mentioned points, in order to
simulate damage in columns, each return to the elastic
range after undergoing plastic behavior reduces column
sti�ness to 91% of its previous sti�ness, which is an as-
sumed value that indicates those changes less than 15%.
This reduction is imposed on modulus of elasticity, and
in order to simulate sudden damages and cracks in
the elements, it appears after the occurrence of plastic
region. In this regard, it should be mentioned that
although both beams and columns tolerate nonlinear
behavior during a seismic excitation, only columns are
susceptible to degradation. These changes in structural
element sti�ness are demonstrated in Figure 3 where
the second and third story columns are not shown,
because they remain in the elastic range.

In this study, two salient features of EEMD are
considered: the noise level and ensemble number. As
the names imply, the amplitude of noise is determined
according to the standard deviation of original data in
each step and the number of iterations, respectively.
In spite of the fact that a few hundred ensembles
bring about appropriate results, there is no de�nite
value for the noise level [23]. Figure 4 shows IMFs
using EMD of the base and the �rst to the third
story from left to right. In fact, if the noise level
is 0 and ensemble number is 1, EEMD changes into
EMD, and Figure 5 displays its corresponding HT.
Even though IMFs are improved by increasing the
ensemble number, 5000 is enough in number because no

Figure 3. Changes in beams and �rst story columns
sti�ness.

signi�cant di�erence is observed after this number; the
values more than this number would merely increase
the computational cost. Furthermore, the noise level,
which is less than 0.5, is not a completely acceptable
remedy. Therefore, it is better to use values more than
0.5. Figure 6 shows HT of the seventh and eighth IMFs
with the noise level of 1 and ensemble number of 5000.
There is a histogram close to every HT, which is a
new method. The dominant frequency is assessed by
these histograms rather than the conventional marginal
distribution. Instantaneous frequency of the structure
changes due to the susceptibility of the structure to
plastic deformation and instant changes in sti�ness
matrix. Thus, it is probable for HT to provide large
values that a�ect the marginal distribution. On the
contrary, constructing a histogram is based on the
number of values that fall into each interval; therefore,
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Figure 4. The ground motion acceleration and structure acceleration response IMFs with noise level of 0 and ensemble
number of 1.

Table 3. Comparsion of FEM results and proposed method results.

Frequency 1st
mode (Hz)

Mode shapes

1st story 2nd story 3rd story

Calculated by FEM model 1.0696 0.2964 0.7037 1

Calculated by EEMD and Hilbert 1.07 0.2978 0.7055 1

Percentage of error 0.5� 0.5 0.3 0

�Center of [1.065 1.075) is 1.07. Therefore, maximum error is (1.075-1.0696)/1.0696=0.005.

e�ects of inordinate amplitude in estimating dominant
frequency are squandered. In Figure 6, apart from
the �rst column relating to ground motion, the sev-
enth and eighth IMFs exhibit the lowest meaningful
dominant frequency that emanates from the �rst-mode
vibration. Furthermore, Figure 7 presents normalized
total amplitude of the seventh and eighth IMFs for
each story relative to those of the third story for
di�erent values of the noise level and ensemble number.
According to this �gure, as mentioned earlier, the noise
level at or below 0.5 does not produce decent results.
Meanwhile, when the noise level is 1 or 2, the results
closely resemble each other. Moreover, Figure 7 depicts
the mentioned normalized amplitude according to the
ensemble number. In this regard, if the ensemble

number is 5000 or 10000, normalized amplitudes in
each column are the same.

According to Figure 7, the longest duration in
which variance of values in normalized amplitudes
reaches a stable and minimum level is considered as the
normalized mode shape; therefore, for example, when
the ensemble number is 5000 and noise level is 1, this
timespan spans from 6 to 36 seconds. Table 3 compares
the �rst-mode shape and frequency calculated by Finite
Element Method (FEM) with the proposed method
brie
y.

The next step is employing two networks, dis-
cussed before. The schematic architecture of the �rst
network is illustrated in Figure 8. In fact, this network
needs a vector with m� n+ n� 1 members, where m
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Figure 6. Hilbert transform of the IMFs 7th and 8th with noise level of 1 and ensemble number of 5000.

Figure 7. Normalized total amplitude of the IMFs 7th and 8th for each story relative to story 3.

Figure 8. Overview of emulator arti�cial neural network.

is the required previous moment, and n is the number
of stories. Consequently, m � n and n � 1 de�ne the
total number of input data based on previous moments
and current moment, respectively. In this study, n is 3
due to the structure stories and m is 4, although many

other values have been tested. This network is trained
for each story (for this 3-story frame, 3 networks are
required and trained. Their structures are similar, yet
are di�erent only in input and output data), and the
predicted acceleration responses are shown in Figure 9.
Another subtle point deserving to be mentioned is that
in order to predict the acceleration response in the kth
story, previous moment acceleration responses for the
(k� 1)th, kth, and (k+ 1)th stories, as well as current
moment acceleration responses for the (k � 1)th and
(k + 1)th stories, are su�cient. In other words, the
response data of lower and upper stories are enough;
however, the alluded measures have been taken due to
the lack of a sensor at the base level of this frame.
Therefore, using a sensor at the base level not only
improves the performance of the network but also
diminishes the input data.
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Figure 9. The predicted acceleration response of the
structure.

Figure 10. The di�erence between structure response
and neural network prediction.

Figure 10 presents the di�erence between struc-
ture responses and neural network predictions, that
is, absolute di�erence, cumulative di�erence (showing
a gentle slope owing to the noise added to input
and output data), and modi�ed cumulative di�erence
(eliminating the gentle slope) in rows one to three,
respectively. The big jumps in the �rst story error
reveal changes in structure behavior, and the vicinity
of two other stories' errors to those big jumps shows the
presence of anomaly in the predicted data, stemming
from one common source, i.e., the �rst story.

After locating damages and determining the �rst-
mode parameters, the �nal step is the second network,
as shown in Figure 11. This network is trained
by 100 sets of training patterns, associated with the
performance of the previous network. The summarized
results are presented in Table 4. In addition, Figure 12

Figure 11. Overview of the second arti�cial neural
network.

Figure 12. Sensitivity of the proposed algorithm to the
�rst-mode dominant frequency.

shows the sensitivity of the proposed algorithm to the
�rst-mode dominant frequency. Indeed, because of
using histogram rather than marginal distribution, the
�rst-mode frequency is the interval center; neverthe-
less, this �gure sheds light on the fact that the length
of bins is not the determining factor.

Another example is a 6-story frame subjected
to Fruili earthquake record at the base level. The
procedure is the same as the previous structure; how-
ever, there are two damaged stories{the �rst and sixth
stories{the sti�ness of which has actually decreased.
Figure 13 shows the amplitude of IMF number 7 for
each story relative to the sixth story and elaborates
that EEMD is a useful device to assess the �rst-mode
shape.

Furthermore, as mentioned earlier, any changes
in sti�ness can be detected by the di�erence between
structure responses and neural network predictions.

Figure 14 depicts absolute di�erence, cumulative
di�erence, and modi�ed cumulative di�erence after
eliminating the gentle slope. The �rst and sixth stories
represent relatively more signi�cant error than those of
the other stories.

Table 4. Comparsion of FEM results and the proposed method results.

Damaged story Evaluated sti�ness
(MPa)

Calculated by FEM
(MPa)

Percentage of error

#1 12.70 13.15 3.4
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Table 5. Comparsion of FEM results and proposed method results.

Frequency
1st mode

(Hz)
Mode shapes

1st story 2nd story 3rd story 4th story 5th story 6th story

Calculated by FEM model 0.8326 0.1302 0.3412 0.5525 0.7503 0.8968 1
Calculated by EEMD and Hilbert 0.830 0.1303 0.3366 0.5447 0.7493 0.9057 1

Percentage of error 0.9* 0.1 1.3 1.4 0.1 1.0 0
�Center of [0.825 0.835) is 0.83. Therefore, the maximum error is (0.8326-0.825)/0.8326=0.00).

Table 6. Comparsion of FEM results and the proposed method results.

Damaged story Evaluated sti�ness
(MPa)

Calculated by FEM
(MPa)

Percentage of error

#1 13.96 13.96 � 0
#6 5.17 5.11 1.2

Figure 13. Normalized amplitude of IMFs 7 for each
story relative to story 6.

Consequently, the results obtained after using
EEMD and Hilbert transform as well as the results
obtained after employing ANNs are listed in Tables 5
and 6, respectively.

Table 5 shows that there is not any signi�cant
error between the �rst-mode frequency calculated by
FEM model and EEMD and Hilbert. In addition,
Table 6 indicates that the proposed method detects
the location of damages correctly and estimates the
sti�ness changes, too.

Figure 14. The di�erence between structure response
and neural network prediction.

Figure 15 emphasizes the aforementioned fact,
meaning that it is not necessary to precisely evaluate
the �rst-mode frequency. In other words, this �gure
depicts that changing the �rst-mode frequency in the
input how changes the �nal results in sti�ness of the
�rst and sixth stories.

5. Conclusion remarks

In this study, EMD is supplanted by EEMD in the
process of HT. Even though these methods closely
resemble each other, EEMD brings about more ap-
propriate IMFs employed to assess the �rst-mode
frequency and mode shape. To put it di�erently,
using EEMD rather than EMD in HHT signi�cantly
improves its performance. By doing so, IMFs are more
uniform, paving the way for assessing the �rst-mode
shape. Afterward, an ANN was applied to predict story
acceleration based on the acceleration response of the
structure during the previous moments. ANNs imitate
the behavior of the frame in the elastic range precisely;
therefore, any congruency between the predicted and
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Figure 15. Sensitivity of the proposed algorithm to the �rst mode dominant frequency.

measured accelerations provides the onset of damage.
Then, another ANN method was applied to estimate
sti�ness matrix. Though the �rst-mode shape and
frequency are calculated in advance, it is essentially
required for an inverse problem to be solved in order
to �nd sti�ness matrix, and this task is done by the
second ANN. In other words, these two ANN methods
were implemented to predict the location and measure
the severity of damage, respectively. This algorithm
was implemented on two moment-resisting steel frames,
and the results were found acceptable. In fact, a
novel technique based on the combination of a time-
series method and ANNs was applied, which not only
overcomes the limitations of time-frequency methods
for damage detection of nonlinear structures, but also
provides an online monitoring method, which is essen-
tial in taking preventive measures. Furthermore, this
approach is not sensitive to noise in input or output
data, and even 10% error in assessing the �rst-mode
frequency is negligible.
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