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Sensitivity analysis;

the performance of mathematical or numerical models.

Sensitivity analysis is considered to be an important part of evaluating

One-factor-at-a-time (OAT)

OAT;
Correlation;
Local SA;
Monte Carlo
simulation.

and differential methods are among the most popular Sensitivity Analysis (SA) schemes
employed in the literature. Two major limitations of the above methods are lack of
addressing the correlation between model factors and being a local method. Given these
limitations, its extensive use among modelers raises concern over the credibility of the
associated sensitivity analyses.
aforementioned methods drawn from experimental designs, and provides a novel technique
based on Principal Component Analysis (PCA) to address the issue of the correlation
between input factors.
conditions.
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This paper proposes proof for the inefficiency of the

In addition, proper guidelines are suggested to handle other

1. Introduction

Sensitivity Analysis (SA) is the study of how the
change in the output of a model can be attributed,
qualitatively or quantitatively, to variation of different
input variables, and of how the given model reacts
upon the information passed into it. Based on this
description, it is safe to conclude that SA is a necessary
ingredient of model building in any setting, either
diagnostic or prognostic, and in any discipline where
models are called upon for design purposes [1]. Though
this is a correct definition of SA, one may make false
conclusion of thinking that SA is a tool specific for
modelers. As a matter of fact, engineers as an end
user of the developed models can benefit from it as
well. For example, consider an environmental engineer
who intends to apply rainfall-runoff model for a real-
life problem. If this engineer knows which model input
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parameter has more impact on model output results,
a wise decision would be to spend much of the time
and capital to define carefully the most important
parameters to predict the runoff, precisely. Similar
examples in engineering are easy to find where SA could
be helpful in decision-making.

There are a number of different methods of sen-
sitivity analysis with each method having a unique
flexibility and functionality. As a result, different
scientists have different ideas about categorizing SA
methods. Frey and Patil [2] concentrate on methodol-
ogy, classifying sensitivity analysis into mathematical,
statistical, and graphic methods, while Ascough et
al. [3] focus on capability, adopting the following
classifications; screening, local, and global SA methods.
From a functional standpoint, sensitivity analysis can
be divided into local and global SAs or, according to
Morgan’s definition, into deterministic and probabilis-
tic [3,4].

Local SA concentrates on the local impact of the
factors on the model. Local SA is usually carried
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out by computing partial derivatives of the output
function with respect to the input variables. The term
‘local’ means that all derivatives are taken at a unique
and well-defined point, known as ‘baseline value’ or
‘nominal value’, in the domain of the input factors.
One can see local SA as a particular case of one-factor-
at-a-time (OAT) method, whereby one factor is varied
while all others are held constant at their respective
nominal values. In contrast, the global sensitivity
techniques examine the global response (averaged over
the variation of all the parameters) of model output(s)
by exploring a f{inite (or even an infinite) region. Global
sensitivity analyses are shown to be more effective when
the predictor variable is influenced by simultaneous
changes in seemingly independent variables. This
simultaneous variation would take into account the
interaction among factors. Though global SA methods
enjoy not having any of the local methods’ limitations,
they are much more complex and computationally
expensive. The difference between local and global SAs
can be best examined in a simple nonlinear example.
Let us examine the sensitivity of independent variables
of X; and X5 in a nonlinear function, ¥ = X2+ X,. For
local SA, the sensitivity index of the two independent
variables changes as the SA domain changes. The
dependent variable is more sensitive to the variable
X, in the domain belonging to [0 - 1], while for all
other values, X; is the dominant variable. In global
SA, regardless of domain, sensitivity index for X is
always greater.

In theory, local sensitivity analyses cannot be used
to uncover the robustness of model based on inference
unless the model is proven to be linear for the case of
first-order derivatives or, at least, additive for the case
of higher and mixed-order derivatives. In other words,
derivatives are informative at the nominal point where
they are computed, but do not provide any additional
information for the rest of the domain of input factors,
except when some conditions, such as linearity or
additivity, are provided in the mathematical model [5].
When the properties of the models are not known
in advance, a global SA is recommended. This is
why global SA methods are often called model-free by
practitioners.

By reviewing recent literature associated with SA,
it can be said that practitioners have acknowledged the
importance of SA in approving or refuting a model-
based analysis. Yet, regardless of its limitations, most
of the sensitivity analyses were performed using an
OAT approach [6]. Speaking of limitations, there are
two concerns regarding OAT approach. First, OAT
is non-explorative, which means as the number of the
factors increases, the exploration feature decreases. As
an example in Figure 1, it can be seen, clearly, that
OAT explores only 5 points forming a cross, out of
total 9 points [7]. By generalizing this example with a
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Figure 1. The OAT method can only reach few points of
the entire domain.
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Figure 2. The curse of dimensionality; the volume ratio,
©, of hyper-sphere to hypercube decreases quickly to zero
as n number of dimensions increase.

geometrical explanation of the functional domain in n-
dimensions, the n-cross will unavoidably be inscribed in
a hyper-sphere. The problem is that this hyper-sphere
represents a small percentage of the total functional
domain defined by the hypercube. This is illustrated
in Figure 1, where the explored cross is inscribed in
the circle of center [0, 0] and radius of 0.5. In this 2-
dimensional example, the ratio of the partially explored
area to the total area is ¢ = 0.78. The exploratory
domain quickly decreases as the number of dimensions
increases (Figure 2). In 3 dimensions, it is ¢ = 0.52.

The general formula for the volume of the hyper-
sphere of radius R in n dimensions is [8]:

Vo(R) = R"™ or V,(R) = C,R", (1)

NERSY

where I' is the gamma function. For even n, C,, reduces

to C,, = (71—5), and since I' (§) = /7, for odd n, C,, =

- , where n!! denotes double factorial.
For a hyper-sphere with R = 0.5 and n = 13, the
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ratio is ¢ = 0.000197. In the literature, this is known
as curse of dimensionality or OAT paradox [5,9].

This limitation has been addressed by several
practitioners; Saltelli [10] believes that “A good OAT
would be one where after having moved one step in
one direction, say along X;, one would directly take
another step along X5 and so on, until all factors up to
X}, are moved of one step each during the first stage.”
This type of trajectory is known as ‘Elementary Effects’
(EE) [10].

Another shortcoming related to OAT is that in the
presence of correlation, OAT cannot detect interactions
between factors, because this feature is based on the
simultaneous movements of more than one factor. If
factors move one at a time, the interactions are not
triggered and, subsequently, not detected [5].

So, why modelers still prefer OAT? Arguments
which might justify nominating OAT as a favorite
candidate are:

(a) The SA is carried out in reference to baseline value,
which is usually the most probable occurrence of
the model in real world;

(b) This method requires much less computational ef-
forts (i.e., CPU time) than any global SA method;

(¢) Movement of one factor at a time means that
whatever effect is observed on the output is due,
exclusively, to that factor [5];

(d) Tt never assesses a non-important factor as impor-
tant. This is also known as type I error [5];

(e) Since it deals with change of one parameter at
a time, the chance of model failure decreases, as
opposed to changing all factors. In case of model
failure, the approach helps modeler to identify the
factor responsible for model crash [5];

(f) The OAT approach is consistent with the mod-
eler’s way of changing one parameter at a time as
he/she wants to verify, systematically, the effect of
parameter variation.

To the best of the authors’ knowledge, there is
no deterministic SA method to address the interaction
between factors in a comprehensive way (Morris’s
method is known to be global [1]). All of the SA
methods, which produce reliable ranking in presence of
correlation, are of probabilistic nature. These methods
are not favored by end users due to their complexity
and high computational cost. There is an ample
need to have a simple method with no computational
burden, yet powerful enough to address the correlation
issue among the input variables involved. This study
proposes a methodology based on standard OAT to
extend its capability to address one of the limitations,
which has long been subjected to extensive criticism.

Beyond the limitations of local SA methods,
there are still situations where these methods fail
to determine the correct order of importance among
variables. Traditional modelers usually fail to notice
them and perform perfunctory SA, clearly raising con-
cerns regarding the developed models. This research
also tends to address the common mistakes that may
occur while performing OAT and differential SA for
linear models. Some guidelines will be suggested so
that practitioners avoid these common pitfalls of the
discussed SA methods.

2. Methodology

The most popular SA methods among scientists are
differential and OAT. Both are local SA methods,
which explore sensitivity of the model around a narrow
region of the feature space. First, methods are briefly
explained in the following sections. Later on, the
pitfalls of the methods are revealed by performing
a series of experiments. Suitable modifications are
introduced so that the practitioners avoid the common
mistakes.

The benchmark for all of the experiments is
Monte Carlo-based global SA, wherein 1000 samples
are generated using random sampling. For examples,
with correlated variables, the procedure proposed by
Iman and Conover’s method [11] is used to generate
correlated samples. The SA index is Pearson product
moment correlation coefficient (PEAR), which is the
usual linear correlation coefficient computed among
a pair of variables. For comparison purposes, the
SA measures resulted from different techniques are
normalized.

2.1. Standard OAT-SA
There are different flavors of OAT according to
Daniel [12], OAT methods can be classified into five

types:

(a) Strict OAT: This perturbs one factor from the
condition of the last preceding model run;

(b) Paired OAT: This produces two observations and,
therefore, one simple comparison at a time;

(c) Free OAT: In this type, each run can be performed
under a new condition;

(d) Curved OAT: This produces a subset of results
by perturbing only one easy-to-vary factor while
others are held constant;

(e) Standard OAT: This perturbs one factor from a
standard condition.

This research focuses on standard OAT, in which
the standard condition is usually the average of input
factors over their domain. This type of SA only
addresses the sensitivity of model output relative to
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Table 1. Summary of sensitivity indexes.

Factors Differential OAT Benchmark n-differential®
X3 1.000 0.555 0.499 0.555
X5 0.400 0.666 0.705 0.666
X3 0.200 1.000 1.000 1.000

1 Normalized differential method.

a point where the parameters are held constant. The
sensitivity measure is determined by calculating the ra-
tio of model output while perturbing each parameter’s
value about the baseline value, in turn, to the nominal
value of model output. The amount of parameter
perturbation can either be a plus/minus percentage
of their baseline value or one standard deviation of
their distribution. The latter case has the advantage of
taking into account the parameter’s variability and the
associated influence on model output [13]. The main
advantage of such methods is their low computational
cost. Considering two values for each perturbed factor
and an extra run for the nominal value of the model
output, a model with K parameters requires 2K + 1
runs.

2.2. Daifferential SA

Differential analysis, also known as the direct method,
is based on the behavior of the model while all param-
eters are set to their mean value. It is based on partial
differentiation of the combined model. When a model is
described by an explicit, closed algebraic equation, the
sensitivity measure for a specific independent variable
is estimated by partial derivative of the dependent
variable with respect to the independent variable [13].
In the following subsections, a few case studies are
introduced to highlight the pitfalls associated with
traditional methods and, subsequently, a remedial
measure is suggested for each approach.

2.3. Case 1: Where differential SA fails

A simple test model [1] shows that partial derivative of
the output Y with respect to an input factor X; at a
fixed point fails to properly address the sensitivity of
linear models. This study assumes that X;, X5, and X3
(the independent variables) are mutually independent
and uniformly distributed in their respective range.
The functional relationship between the dependent
variable Y and the independent variables is:

Y = zn: aiXi7 (2)
=1

where X; ~ U(fi—di,fi-l-di), T, = 31.71, and o; = 0.5%;
are uniformly distributed in their range. Taking k =
3, the independent variables, constant coefficients, and
their computational domains are computed as follow:

X, ~ U(0.5,1.5),

X, ~ U(1.5,4.5),
X3 ~ U(4.5,13.5), (3)
Y =5X; +2Xs + X;. (4)

Now, let us discuss the sensitivity of the dependent
variable Y to each independent variable. According to
the sensitivity analysis conducted based on the differ-
ential method [14], all partial derivatives are constant
as independent variables are mutually independent:

0X, 00X, 0X3

The sensitivities of the dependent variable to the inde-
pendent variables are ranked as X;, X5, and X3, and
the value of each independent variable has no impact
on the sensitivity coeflicient, i.e. ranking. Sensitivity
analysis for the test case is carried out by two methods
based on OAT and Monte Carlo sampling techniques.
The results are summarized in Table 1.

As can be seen, the differential method {fails to
rank the factors correctly, Even the simple OAT
method is able to capture the ranks correctly. This
is due to the fact that the differential method does
not consider the variation of input variables. An
available practice to address these misleading results
is to normalize the derivatives by standard deviations
(reference). For a general linear model of Eq. (2), the
sensitivity measure is:

51)7(,; = (JXi/O'Y) (aY/aXZ) . (6)

Since for a linear model > | (Sg(i)z =1, (S‘)’Q)Z gives
how much each individual factor contributes to the
variance of the output of interest. This turns S%. to
be a hybrid local-global measure. After incorporating
the suggested modification to the test case, the results
improve as can be seen in Table 1. Though, quan-
titatively, it is not in agreement with the benchmark
values, it is now in a correct order.

2.4. Case 2: OAT and the range effect

Due to the local nature of OAT, the range and distri-
bution of factors have no effect on the results obtained
by the method. This will raise concerns when the
differences between ranges of factors are significant or
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Table 2. Summary of sensitivity measures.

Factors S-OAT Benchmark OAT-SD!
X4 1 0.155 0.117
X 0.8 1 1

1 OAT standard deviation perturbation.

the factors have different distributions. A test case has
been set up to demonstrate this shortcoming.

Y = X; + X, (7)
X, ~ U(9,11),
X, ~ U(1,15). (8)

As it can be seen in Table 2, OAT method fails to rank
the factors properly. This is because the sensitivity
measure was determined by variation of input parame-
ters with £20%. This methodology is unable to capture
the effects of the computational domain and distribu-
tion of factor. One way to overcome this limitation is
to vary the input factors by one standard deviation of
their input distribution rather than by 20%. The SA
for Eq. (7) is repeated with the mentioned modification.
Results have been improved. As can be seen, it is quite
consistent with the benchmark ranking.

2.5. Case 3: The correlation effect

(multi-collinearity)

When a question arises about which component of
a linear model has more contribution to the model
output, any SA method discussed earlier, depending
on its conditions, is applicable. But when the linear
independent assumptions are contravened, there will
be doubt on the interpretability of regression coeffi-
cients, which were decisive in earlier methods. Thus,
performing SA on a linear model based on an ordinary
least square will produce unlikely results.

A workaround to the stated problem is to sub-
stitute least square with a reliable technique to build
the desired linear model so that standardized regression
coefficients can be used for SA. The suggested tech-
nique is based on component analysis, which converts
a set of correlated variables into a set of linearly un-
correlated variables by an orthogonal transformation.
The method will be discussed in detail in the following
section.

As the first step, we state our linear model of
Eq. (2) as a relationship of y to .

Y = i1 + azps +azps + ... + appr, (9)

in which ¢, are a set of orthogonal variates (principal
components) from linear combination of x;s, where k <
n; k is the number of principal components; y and x;

are standardized values of the original variables (Y, X;)
with zero mean and unit variance:

1 =m1121 + M21T2 + M3123 + ... + Mp1Zn,
P2 = M1221 + M22T2 + M3223 + ... + Mp2Tn,

Y3 = M13T1 + Mozl + M33T3 + ... + Mp3Th,

Ok = M1pZ1 + MopZs + M3z + ... + MprZy,  (10)

where m;; is a typical ¢ component of j eigenvector
corresponding to the predictor variates correlation
matrix.

Substituting Eq. (10) into Eq. (9) results in:

y = (aymi1 + asmis + azmaz + ... + apmyg) 1
+ (camar + @amas + agmaz + ... + apmag) 2
+ (a1m31 +a2m32+a3m33+...+akm3k) r3+...

+ (a1 + @aMps + a3y + .. + QMnk) Ty

(11)

If the numerical values of the parameter in the paren-
thesis could be calculated, Eq. (11) expresses a linear
relation between y and z;. We have already discussed
how to compute m;;. As for a;, Eq. (9) is a regression
equation with independent variables, o could be com-
puted by ordinary least square. Simultaneous normal
equations resulted from OLS are given by:

a Y pl+tary piprtasy pips
ook Y Qo= o1y,

a1 Y e tazy 93 taz) eaps
oo Y eaor = e,

0 Y er1ps+az Y psps +az Yy g
tot ok Y paor = sy,

aq Z P19k + Q2 Z Prp2 T a3 Z PrP3
Fotar Y e = wsy. (12)

Since @; are orthogonal, all the > ;) terms with ¢ #
k are zero. An important property of ¢;s is that their
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respective variances are equal to eigenvalue \;, which in
turn is equivalent to > @?. After some manipulation,
Qy are:

ey D1y

1 — Z(ﬂ% - Al )
ay = 2 P2V _ 2Py
25 Ay

g = P39 _ ey
> #3 Az

_ Loy Xy (13)

Y Ak

Multiplying both sides of Egs. (11) by y and adding
them up results in:

Z%‘?J =mag ley + may ZIzy + mgy Z%’y

+ o M Z Tny. (14)

ag

Making use of Egs. (14) and (15), and noting that
for standardized variate, Y z;y equals their correlation
coefficient 7,4, as can be simply computed from the
following equations:

a1 =(1/ M) (M117ey + Mo1Tuyy + M3170yy
ot MaiTe,y),

ay =(1/)Az2) (mIZTmly + Ma2aTryy + M32T25y
o MnaTe,y),

az =(1/A3) (m13rr1y + Ma3Teyy + M33725y

+ ..o+ mn3rmny),

e =(1/Ak) (MarTary + MokTayy + M3kTayy

+ oot MpkTay)- (15)

Now that the coeflicients of the linear model in Eq. (11)
can be calculated, these coeflicients can be attributed
to their sensitivity ranking.

It is worth mentioning that selecting the right
number of principal components in Eq. (10), i.e. k, is
an important step in this method. Small eigenvalues
corresponding to the last few principal components

cause high variance in regression coefficient, which, in
turn, results in unstable coefficients [15]. Repeating the
calculation similar to Eq. (11) by using all of the \;s is
equivalent to performing OLS (ordinary least square),
for which its consequences were mentioned and assessed
earlier. There are different criteria to choose with
regard to which and how many principal components
should be retained. We chose a criterion whereby the
set of largest k contributors were selected to achieve
and meet the following inequality:
k

1.0 > Z:TM > 0.85. (16)
Note that A; is the eigenvalues and n is total number
of eigenvalues.

To justify the robustness of the proposed method,
a linear model is fit on rainfall-runoff data for the
White Hollow watershed from years 1935 to 1959
presented in Table 3 [16]. The rainfall data from
three consecutive months October, November, and
December of each year and the associated December
runoff are considered. Furthermore, an assumptive
weighted cross product of rainfall for the given months
is introduced into the model as a strong correlated
predictive variable.

The correlation matrix for the predictive variables
is as follows:

1 0.14 0.17  0.70
0.14 1 —0.06 0.69
0.17 —-0.06 1 0.34
0.70  0.69 0.34 1

As can be seen, there is a strong positive correlation
between variable 4 and others.

Three SA methods are preformed: differential
analysis on OLS, the proposed method, and the bench-
mark. The results are summarized in Table 4.

As can be seen in Table 4, differential analysis fails
to capture the interaction between the factors when
the model is based on OLS. As a result, sensitivity
measure is not consistent with the benchmark ranking.
On the other hand, the proposed method demonstrates
promising results, which are in good agreement with
benchmark results. The main feature of this method
that may have a great appeal for practitioners is that
it can be performed systematically with much low
computational burden compared to Monte Calro-based
simulation methods.

3. Conclusion

Complex SA methods probably redound to more accu-
rate conclusions, but their complexity discourages the
modelers from implementing them; so, they are lured to
use less credible methods such as OAT and differential
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Table 3. Monthly rainfall-runoff, white hollow watershed.

Rainfall, inches

Weighted Runoff, inches

405

Year October November December
product December
X1 Xo Xs Xy Y
1935 217 7.35 1.81 18.31 0.76
1936 8.17 2.42 2.61 32.6 1.21
1937 3.27 1.56 6.08 17.04 1.05
1938 2.62 4.98 0.16 13.31 0.57
1939 2.89 1.49 0.86 5.81 0.34
1940 2.55 2.29 2.01 8.92 0.41
1941 2.6 2.62 3.01 11.52 0.48
1942 8.68 1.79 1.77 24.74 2.62
1943 2.21 1.77 3.18 8.13 0.54
1944 3.86 3.78 0.92 16.71 1.49
1945 4.31 4.83 2.32 26.81 1.56
1946 3.25 3.6 4.19 19.86 0.86
1947 2.27 3.11 1.16 8.65 0.47
1948 5.07 10.02 1.32 54.81 1.82
1949 4.29 1.8 4.99 20.55 0.94
1950 3.37 3.03 1.07 12.37 1.03
1951 8.38 7.52 3.85 82.38 6.05
1952 4.1 5.11 1.04 23.49 0.65
1953 3.88 1.78 0.54 8.15 0.41
1954 8.66 2.88 2.16 36.2 1.39
1955 3.41 2.91 1.96 13.95 0.55
1956 6.25 2.43 1.84 22.06 1.13
1957 6.19 6.88 4.12 57.89 3.99
1958 2.98 3.01 1.5 11.65 0.43
1959 5.5 4.18 4.72 38.56 1.3
Sums 110.93 93.14 59.19 594.47 32.05
Means 4.4372 3.7256 2.3676 23.7788 1.282
Stdev  2.126383 2.200493 1.534822 18.33808 1.28163

Table 4. Summary of sensitivity measures.

Factors OLS based Benchmark Proposed
model method
X1 0.58 0.84 0.90
X 1 0.62 0.57
X3 0.52 0.38 0.36
Xa 0.37 1 1

analysis. The limitations of these methods have been
clearly pointed out in the literature. First, being a
local method, meaning that the sensitivity of the model
output is analyzed only at a single point and second,
lack of ability to address the interaction among input
factors.

A novel global SA method has been presented in

this paper to deal with the interaction limitation. The
interaction among the correlated data is captured in a
linear model by taking advantage of principal compo-
nents. The method can be implemented systematically
with low computational cost. An example shows that
the proposed method succeeds where common methods
fail to justify the proper ranking.

Besides these limitations, there are few other
situations, where if not paid enough attention, common
SA methods result in false analysis. This paper
designed a number of experiments to demonstrate the
inefficiency of these methods.

In Case 1, when distribution of predictor variables
is not taken into account, differential SA method fails
to rank the factors correctly. The proper adjustment
has been advised to overcome this concern.
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Case 2 was designed to demonstrate the ineffi-
ciency of OAT method in common practice, especially
when the predictor variables have high proportions of
variance.

Case 3 was designed to demonstrate the ability
of the proposed method to handle the correlation
between predictor variables in a linear model, where
the reviewed methods failed to capture. Although it
is proposed for linear models, its implementation for
nonlinear cases should not be ruled out. Research is
underway to address this issue in subsequent publica-
tions.
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