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Abstract. A multi-objective �xed charge problem in the presence of several fractional
objective functions with triangular fuzzy parameters is considered in this study. The same
problem has previously been tackled by Upmanyu and Saxena [1] adopting a method
containing wrong mathematical concepts (see the commentary of Kaur and Kumar [2]).
To overcome these shortcomings in the literature, an e�ective solution approach based on a
typical goal programming approach is proposed to solve the problem for obtaining a Pareto-
optimal solution. The proposed approach considers the shortcomings of the method of
Upmanyu and Saxena [1] and applies no ranking function of fuzzy numbers. In addition, the
goal programming stage considers no preference of the decision maker. The computational
experiments provided by an example from the literature prove e�ectiveness of the proposed
approach.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

The �xed charge problem was �rst introduced in [3].
It was a typical mixed-integer programming problem
in which there were some �xed charge values for the
variables that took positive amounts in a given feasible
solution. As the �xed charges are used in the objective
function of the �xed charge problem, the problem has
a high degree of non-linearity that should be linearized
using additional constraints. With regard to the
wide range of applications of the �xed charge problem
to business and engineering �elds, the �xed charge
may have di�erent interpretations and measures. For
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example, in the �eld of facility planning problems, the
�xed charge can be de�ned as establishing cost of a
facility; in the �eld of transportation problems, it may
be the �xed cost of sending an amount of product
between two nodes; and in the �eld of scheduling
problems, set-up times can be considered for the �xed
charges.

As the �xed charge problem is an interesting
problem in the �eld of optimization, it has been tackled
by many researchers through di�erent approaches.
Steinberg [4] solved some small-size instances of the
problem adopting a branch and bound algorithm.
In some other studies like [5{7], the approximation
based methods have been of interest in solving the
�xed charge problem. The problem consists of a
minimization concave objective function over a convex
set of feasible solution areas. Therefore, in more recent
studies, the �xed charge problem has been considered
as a �xed charge transportation problem and solution
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approaches consisting of �nding the extreme points
and ranking their objective function values in order to
�nd the global optimal solution have been considered
for solving them (see [8]). Notably, in such solution
approaches, in the case of non-degenerated problems,
any extreme point would be a local optimal solution.
Recently, �xed charge problems with both concepts of
�xed and variable costs were used in the network 
ow
problems by Gendron and Larose [9] and in the facility
location problems by Fern�andez and Landete [10] (see
also [11,12]). Furthermore, Arora [13] introduced a
systematic approach that found an exact solution to
the �xed charge problem. For more information on
�xed charge based problems, the studies [14{16] can
be referred to.

On the other hand, the �xed charge problem
becomes more di�cult when considering a fractional
objective function. In linear programming, considering
a fractional objective function turns it to a non-linear
form (see [17,18]). In such cases, the problem becomes
more di�cult to solve exactly. As an example of
fractional objective function, the objective function
achieved by dividing unit based bene�t by unit based
investment can be mentioned, which is applicable to
economical environments. Turning back to the �xed
charge problems, Almogy and Levin [19] introduced a
�xed charge problem with fractional objective function
that might have many applications, e.g., to measuring
any economic criterion by a fraction. The study
considered the ship routing problem and maximized
the pro�t gained in a unit of time in a route. For
more details on the problems with fractional objective
function, the studies [20,21] can be referred to.

This study focuses on a typical version of the
fractional �xed charge problem. A �xed charge
problem with several fractional objective functions
in which each objective function includes triangu-
lar fuzzy parameters is to be solved. It is named
Fuzzy Multi-objective Fractional Fixed Charge Prob-
lem (FMFFCP). FMFFCP has previously been tackled
by Upmanyu and Saxena [1] using a fuzzy ranking
based method, which contained wrong mathematical
concepts. The shortcomings and errors of the method
of [1] have been discussed in a commentary o�ered by
Kaur and Kumar [2]. However, no serious study has
been performed on FMFFCP. The main contribution of
this study is solving FMFFCP by a goal programming
approach, which uses no ranking function of fuzzy num-
bers. The approach adopts a linearization technique for
each objective function, separately, to �nd its related
goal. Then, a typical goal programming approach is
employed for �nding a Pareto-optimal solution to the
FMFFCP. Finally, the performance of the proposed
approach is evaluated by a numerical example taken
from [1].

The remainder of the paper is organized in �ve

sections. Section 2 presents some basic de�nitions
and concepts of fuzzy theory and optimization theory.
Section 3 introduces the FMFFCP, analyzes its for-
mulation, and deals with its non-linearity. Section 4
organizes the goal programming based solution ap-
proach proposed for the FMFFCP. Section 5 contains
an illustrative numerical example from the literature
to analyze the performance of the proposed solution
approach provided in the previous section. Finally, the
paper is ended by remarking on some conclusions in
Section 6.

2. Basic concepts

Some basic de�nitions of fuzzy theory, which will be
applied later in this paper, are given in this section.

De�nition 1. Let X be a non-empty set of elements
x. A fuzzy set ~A in X is de�ned by a set of ordered
pairs ~A = f(x; � ~A(x)) ; x 2 Xg. � ~A (x) : X ! [0; 1] is
the membership degree of x in ~A and it is called the
membership function of ~A.

De�nition 2. A triangular fuzzy number is shown
by ~A =

�
a1; a2; a3� with the membership function as

follows:

� ~A (x) =

8>><>>:
0 x � a1

x�a1

a2�a1 a1 � x � a2

a3�x
a3�a2 a2 � x � a3

0 x � a3

(1)

De�nition 3 [22]. A triangular fuzzy number ~A =�
a1; a2; a3� is said to be non-negative if a1 � 0.

De�nition 4 [22]. Let ~A =
�
a1; a2; a3� and

~B =
�
b1; b2; b3

�
be two non-negative triangular fuzzy

numbers. Then, the following fuzzy operators are
de�ned: ~A � ~B =

�
a1 + b1; a2 + b2; a3 + b3

�
, ~A� ~B =�

a1 � b3; a2 � b2; a3 + b1
�
, ~A 
 ~B =

�
a1b1; a2b2; a3b3

�
,

and ~A� ~B =
�
a1

b3 ;
a2

b2 ;
a3

b1

�
.

De�nition 5. If ~Z =
�
Z1; Z2; Z3� is a triangular fuzzy

objective function being calculated from triangular
fuzzy parameters or variables, according to the concept
of component-wise optimization (see also [23]), the
following optimization problem:

min ~Z =
�
Z1; Z2; Z3� ; (2)

is equivalent to the following multi-objective optimiza-
tion problem:8><>:minZ1

minZ2

minZ3
(3)
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De�nition 6. Let X� be a feasible solution to
Problem (3). Then, X� is called an e�cient or a
Pareto-optimal solution if there is no other feasible
solution X such that Zi � Zi�; i = 1; 2; 3 with at
least one strict inequality.

3. Fuzzy Multi-objective Fractional Fixed
Charge Problem (FMFFCP)

As mentioned in [1], FMFFCP is formulated as follows:

min ~Z (X) =
�

~Z1 (X) ; ~Z2 (X) ; :::; ~Zp (X)
�
;

subject to:
nX
j=1

aijxj = bi i = 1; 2; :::;m (4)

xj � 0 j = 1; 2; :::; n

where, p is the number of objective functions each of
which is de�ned as follows:

~Zr (X) =

nP
j=1

~crjxj +
nP
j=1

~Frj

nP
j=1

~drjxj +
nP
j=1

~frj + ~
r
r = 1; 2; :::; p:

(5)

In the above formula, ~crj and ~drj are triangular fuzzy
variable charges for the variable xj , while ~Frj and
~frj are triangular fuzzy �xed charges for the variable
xj . Since for each objective function, the condition
nP
j=1

~drjxj +
nP
j=1

~frj + ~
r > 0 is assumed, ~
r is a non-

negative triangular fuzzy parameter.
Each of the �xed charges ~Frj and ~frj is of a step

function (see [24{26]) with l steps de�ned as follows:

~Frj =
lX

k=1

~Grjk�rjk r=1; 2; :::; p; j=1; 2; :::; n; (6)

~frj =
lX

k=1

~grjk�rjk r=1; 2; :::; p; j=1; 2; :::; n: (7)

In the above step functions, �rjk and �rjk are binary
variables de�ned as follows:

�rjk =

(
1 if Arj;k�1 < xj � Arjk
0 otherwise

(8)

�rjk =

(
1 if Brj;k�1 < xj � Brjk
0 otherwise

(9)

where Arj0; Arj1; :::; Arjl (with the condition 0 =
Arj0 < Arj1 < ::: < Arjl) and Brj0, Brj1; :::; Brjl,
(with the condition 0 = Brj0 < Brj1 < ::: < Brjl)
are constant values, which determine the limits of �xed
charges. Notably, the values of ~Grjk, ~grjk, Arjk, and
Brjk are de�ned by the decision maker.

Considering Eqs. (5){(9), the FMFFCP formu-
lated in Eq. (4) is reformulated by Model (10){(15)
in which the set of Constraints (12){(14) is equivalent
to the set of Constraints (8) and (9).

min ~Z (X) =
�

~Z1 (X) ; ~Z2 (X) ; :::; ~Zp (X)
�
; (10)

subject to:
nX
j=1

aijxj = bi i = 1; 2; :::;m; (11)

�rjk =

(
1 if Arj;k�1 < xj � Arjk
0 otherwise

r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l; (12)

�rjk =

(
1 if Brj;k�1 < xj � Brjk
0 otherwise

r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l; (13)

�rjk; �rjk 2 f0; 1g
r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l; (14)

xj � 0 j = 1; 2; :::; n; (15)

where:

~Zr (X) =

nP
j=1

~crjxj +
nP
j=1

lP
k=1

~Grjk�rjk

nP
j=1

~drjxj +
nP
j=1

lP
k=1

~grjk�rjk + ~
r

r = 1; 2; :::; p: (16)

In the next section of the paper, an e�ective solution
approach is proposed for solving Model (10){(15) to
obtain a Pareto-optimal solution.

4. Proposed solution approach

The FMFFCP formulated by Model (10){(15) is solved
in this section. Before starting to explain the methodol-
ogy of the proposed approach, having a look at the only
previous study focusing on the FMFFCP is necessary.
As mentioned earlier, Upmanyu and Saxena [1] pro-
posed an approach for solving the FMFFCP. In their
proposed approach, a critical error exists that a�ects
all steps and, in most of cases, gives a wrong solution.
In summary, the approach applies a fuzzy ranking
function in an absolutely wrong way. The details of the
errors of the approach can be found in a commentary
written by Kaur and Kumar [2]. Therefore, to tackle
the FMFFCP in an e�ective way for obtaining a good
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~Zr (X) =

nP
j=1

�
c1rj ; c2rj ; c3rj

�
xj +

nP
j=1

lP
k=1

�
G1
rjk; G2

rjk; G3
rjk

�
�rjk

nP
j=1

�
d1
rj ; d2

rj ; d3
rj
�
xj +

nP
j=1

lP
k=1

�
g1
rjk; g2

rjk; g3
rjk

�
�rjk + (
1

r ; 
2
r ; 
3

r )
r = 1; 2; :::; p: (17)

Box I

~Zr (X)=

 
nP
j=1

c1rjxj +
nP
j=1

lP
k=1

G1
rjk�rjk;

nP
j=1

c2rjxj +
nP
j=1

lP
k=1

G2
rjk�rjk;

nP
j=1

c3rjxj +
nP
j=1

lP
k=1

G3
rjk�rjk

!
 

nP
j=1

d1
rjxj +

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r ;
nP
j=1

d2
rjxj +

nP
j=1

lP
k=1

g2
rjk�rjk + 
2

r ;
nP
j=1

d3
rjxj +

nP
j=1

lP
k=1

g3
rjk�rjk + 
3

r

!
r = 1; 2; :::; p: (18)

Box II

Pareto-optimal solution, a goal programming based
solution approach is proposed in this section.

The FMFFCP formulated by Model (10){(15) has
two core di�culties to be solved, which are (1) its
multi-objective nature and (2) its non-linear nature
arising from the fractional multi-objective functions.
To overcome these di�culties, a solution approach is
proposed and detailed here. The proposed approach is
explained in the following steps:

Step 1. As the objective functions of the FMFFCP
contain triangular fuzzy parameters, expand them by
Eq. (17) as shown in Box I. They are more expanded
by Eq. (18) as shown in Box II. Now, based on
the division operation of fuzzy numbers, Eq. (18) is
converted to the triangular fuzzy value (Eq. (19)) as
shown in Box III. In summary, objective function (16)
is converted to objective function (19).

Step 2. Using the concept of component-wise opti-
mization (explained in Section 2), reformulate the
FMFFCP as the following multi-objective problem:

minZ1
r (X) =

nP
j=1

c1rjxj +
nP
j=1

lP
k=1

G1
rjk�rjk

nP
j=1

d3
rjxj +

nP
j=1

lP
k=1

g3
rjk�rjk + 
3

r

r = 1; 2; :::; p; (20)

minZ2
r (X) =

nP
j=1

c2rjxj +
nP
j=1

lP
k=1

G2
rjk�rjk

nP
j=1

d2
rjxj +

nP
j=1

lP
k=1

g2
rjk�rjk + 
2

r

r = 1; 2; :::; p; (21)

minZ3
r (X) =

nP
j=1

c3rjxj +
nP
j=1

lP
k=1

G3
rjk�rjk

nP
j=1

d1
rjxj +

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r

r = 1; 2; :::; p; (22)

~Zr (X)=

0BBB@
nP
j=1

c1rjxj +
nP
j=1

lP
k=1

G1
rjk�rjk

nP
j=1

d3
rjxj +

nP
j=1

lP
k=1

g3
rjk�rjk + 
3

r

;

nP
j=1

c2rjxj +
nP
j=1

lP
k=1

G2
rjk�rjk

nP
j=1

d2
rjxj +

nP
j=1

lP
k=1

g2
rjk�rjk + 
2

r

;

nP
j=1

c3rjxj +
nP
j=1

lP
k=1

G3
rjk�rjk

nP
j=1

d1
rjxj +

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r

1CCCA
r = 1; 2; :::; p: (19)

Box III
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subject to:

nX
j=1

aijxj = bi; i = 1; 2; :::;m; (23)

�rjk =

(
1 if Arj;k�1 < xj � Arjk
0 otherwise

r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l; (24)

�rjk =

(
1 if Brj;k�1 < xj � Brjk
0 otherwise

r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l (25)

�rjk; �rjk 2 f0; 1g
r=1; 2; :::; p; j=1; 2; :::; n; k=1; 2; :::; l; (26)

xj � 0 j = 1; 2; :::; n: (27)

Eqs. (20){(27) contain 3p objective functions as there
are originally p triangular fuzzy objective functions
in the FMFFCP and, according to the procedure of
this step, each one is converted to three objective
functions.
Step 3. Obtain a goal for each objective function of
Eqs. (20){(27) by solving the following models. The
goal for the objective function Z1

r (X) is shown by z1�
r

and so on:

z1�
r =

8>><>>:minZ1
r (X) =

nP
j=1

c1rjxj+
nP
j=1

lP
k=1

G1
rjk�rjk

nP
j=1

d3
rjxj+

nP
j=1

lP
k=1

g3
rjk�rjk+
3

r

Subject to Constraints (23){(27)

r = 1; 2; :::; p (28)

z2�
r =

8>><>>:minZ2
r (X) =

nP
j=1

c2rjxj+
nP
j=1

lP
k=1

G2
rjk�rjk

nP
j=1

d2
rjxj+

nP
j=1

lP
k=1

g2
rjk�rjk+
2

r

Subject to Constraints (23){(27)

r = 1; 2; :::; p; (29)

z3�
r =

8>><>>:minZ3
r (X) =

nP
j=1

c3rjxj+
nP
j=1

lP
k=1

G3
rjk�rjk

nP
j=1

d1
rjxj+

nP
j=1

lP
k=1

g1
rjk�rjk+
1

r

Subject to Constraints (23){(27)

r = 1; 2; :::; p: (30)

For obtaining the goals, as there are 3p objective
functions in the multi-objective model of Step 2,

in this step, 3p goals should be obtained. Hence,
3p individual models should be solved, which are
summarized in Models (28){(30). It is notable that
when any of Models (28){(30) is solved for a given
objective function, say r, Constraint sets (23){(27),
which are originally related to all r 2 f1; 2; :::; pg,
consider only the given r, not all of them.

To linearize Models (28){(30), the non-linear
Constraints (24) and (25) for any given combina-
tion of r; j; k are linearized as the constraints xj �
Arj;k�1 � M�rjk and xj � Brj;k�1 � M�rjk,
respectively, where M is a large positive value lower
bounded by max

r;j
fArjl �Arj1; Brjl �Brj1g. Fur-

thermore, each of Models (28){(30) is a crisp formula-
tion with fractional objective function. The fractional
objective function can be linearized with the help of
the method introduced by Charnes and Cooper [27].
To show this linearization procedure, as an example,
Model (28) is linearized here. The others follow a
similar procedure.

To linearize Model (28), �rst, the conversion
nP
j=1

d3
rjxj+

nP
j=1

lP
k=1

g3
rjk�rjk+
3

r = 1
T is applied, where

T is a continuous variable (T > 0). Therefore,
Model (28) for its r-the objective function is con-
verted to the following non-linear model (both sides
of Constraints (23) and (27) and the linearized form
of Constraints (24) and (25) are multiplied by T ),

minZ1
r (X) =

nX
j=1

c1rjxjT +
nX
j=1

lX
k=1

G1
rjk�rjkT

subject to:

nX
j=1

d3
rjxjT +

nX
j=1

lX
k=1

g3
rjk�rjkT + 
3

rT = 1; (31)

nX
j=1

aijxjT = biT i = 1; 2; :::;m;

xjT �Arj;k�1T �M�rjkT

j = 1; 2; :::; n; k = 1; 2; :::; l;

xjT �Brj;k�1T �M�rjkT

j = 1; 2; :::; n; k = 1; 2; :::; l;

�rjk; �rjk 2 f0; 1g j = 1; 2; :::; n; k = 1; 2; :::; l;

xjT � 0 j = 1; 2; :::; n:

To linearize Problem (31), some conversions are
needed. To this aim, the new variables Yj = xjT ,
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�rjk = �rjkT , and 
rjk = �rjkT are de�ned. Then,
Problem (31) is converted into the following:

minZ1
r (X) =

nX
j=1

c1rjYj +
nX
j=1

lX
k=1

G1
rjk
rjk; (32)

subject to:

nX
j=1

d3
rjYj +

nX
j=1

lX
k=1

g3
rjk
rjk + 
3

rT = 1; (33)

nX
j=1

aijYj = biT i = 1; 2; :::;m; (34)

Yj �Arj;k�1T �M�rjk

j = 1; 2; :::; n; k = 1; 2; :::; l; (35)

Yj �Brj;k�1T �M
rjk

j = 1; 2; :::; n; k = 1; 2; :::; l; (36)

�rjk �M�rjk

j = 1; 2; :::; n; k = 1; 2; :::; l; (37)

�rjk � T j = 1; 2; :::; n; k = 1; 2; :::; l; (38)

�rjk � T �M (1� �rjk)

j = 1; 2; :::; n; k = 1; 2; :::; l; (39)

�rjk � 0 j = 1; 2; :::; n; k = 1; 2; :::; l; (40)


rjk �M�rjk

j = 1; 2; :::; n; k = 1; 2; :::; l; (41)


rjk � T j = 1; 2; :::; n; k = 1; 2; :::; l; (42)


rjk � T �M (1� �rjk)

j = 1; 2; :::; n; k = 1; 2; :::; l; (43)


rjk � 0 j = 1; 2; :::; n; k = 1; 2; :::; l; (44)

�rjk; �rjk 2 f0; 1g
j = 1; 2; :::; n; k = 1; 2; :::; l; (45)

Yj � 0; T > 0 j = 1; 2; :::; n: (46)

Model (32){(46) is a linearized version of Model
(28), where Constraints (37){(40) are equivalent to
the term �rjk = �rjkT and Constraints (41){(44)

are equivalent to the term 
rjk = �rjkT . These
sets of constraints allow �rjk 2 f0; Tg and 
rjk 2f0; Tg. The other non-linear problems from the set
of Problems (28){(30) are linearized in the same way.
Step 4. After obtaining the goal of each objective
function, we go back to solve Model (10){(15). As,
Model (10){(15) was reformulated to Model (20){
(27), we introduce an e�ective goal programming
approach for solving the reformulated model (for
more information about goal programming, see [28{
32]). Thus, considering the goals of each objective
function obtained in Step 3, Model (20){(27) is
converted to the following non-linear formulation:

min
pX
r=1

D1+
r +

pX
r=1

D2+
r +

pX
r=1

D3+
r ; (47)

subject to:
nP
j=1

c1rjxj+
nP
j=1

lP
k=1

G1
rjk�rjk

nP
j=1

d3
rjxj+

nP
j=1

lP
k=1

g3
rjk�rjk+
3

r

+D1�
r �D1+

r =z1�
r

r = 1; 2; :::; p; (48)

nP
j=1

c2rjxj+
nP
j=1

lP
k=1

G2
rjk�rjk

nP
j=1

d2
rjxj+

nP
j=1

lP
k=1

g2
rjk�rjk+
2

r

+D2�
r �D2+

r =z2�
r

r = 1; 2; :::; p; (49)

nP
j=1

c3rjxj+
nP
j=1

lP
k=1

G3
rjk�rjk

nP
j=1

d1
rjxj+

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r

+D3�
r �D3+

r =z3�
r

r = 1; 2; :::; p; (50)

D1�
r D1+

r = 0 r = 1; 2; :::; p; (51)

D2�
r D2+

r = 0 r = 1; 2; :::; p; (52)

D3�
r D3+

r = 0 r = 1; 2; :::; p; (53)

D1�
r ; D2�

r ; D3�
r ; D1+

r ; D2+
r ; D3+

r � 0

r = 1; 2; :::; p; (54)

Constraints (23){(27); (55)

where D1�
r and D1+

r are negative and positive de-
viations of objective function Z1

r (X) from its goal
z1�
r , respectively. The following issues are of interest

about Eqs. (47){(55):
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� As the objective functions are of minimization
type, an objective function can never be less than
its goal. Therefore, D1�

r = D2�
r = D3�

r = 0
(8r 2 f1; 2; :::; pg). As a result, Constraints (51){
(53) can be removed from the model.

� As D1�
r = D2�

r = D3�
r = 0 (8r 2 f1; 2; :::; pg),

the variables D1�
r ; D2�

r ; D3�
r are removed from

the Constraints (48){(50). As it is di�cult to
linearize the non-linearity of these constraints, a
typical variable changing technique is proposed
here. To this aim, the variables are converted to
the fractions:

R1+
r

nP
j=1

d3
rjxj +

nP
j=1

lP
k=1

g3
rjk�rjk + 
3

r

;

R2+
r

nP
j=1

d2
rjxj +

nP
j=1

lP
k=1

g2
rjk�rjk + 
2

r

;

and:

R3+
r

nP
j=1

d1
rjxj +

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r

;

respectively, where the non-negative variables
R1+
r , R2+

r , and R3+
r are used instead of the

variables D1+
r , D2+

r , and D3+
r in objective function

(47).
Considering the above issues, Constraints (48){

(50) are reformulated as follows:

nP
j=1

c1rjxj +
nP
j=1

lP
k=1

G1
rjk�rjk �R1+

r

nP
j=1

d3
rjxj +

nP
j=1

lP
k=1

g3
rjk�rjk + 
3

r

= z1�
r

r = 1; 2; :::; p; (56)

nP
j=1

c2rjxj +
nP
j=1

lP
k=1

G2
rjk�rjk �R2+

r

nP
j=1

d2
rjxj +

nP
j=1

lP
k=1

g2
rjk�rjk + 
2

r

= z2�
r

r = 1; 2; :::; p; (57)

nP
j=1

c3rjxj +
nP
j=1

lP
k=1

G3
rjk�rjk �R3+

r

nP
j=1

d1
rjxj +

nP
j=1

lP
k=1

g1
rjk�rjk + 
1

r

= z3�
r

r = 1; 2; :::; p: (58)

Therefore, Model (45){(55) is linearized as follows:

min
pX
r=1

R1+
r +

pX
r=1

R2+
r +

pX
r=1

R3+
r ; (59)

subject to:

nX
j=1

c1rjxj +
nX
j=1

lX
k=1

G1
rjk�rjk �R1+

r

= z1�
r

0@ nX
j=1

d3
rjxj +

nX
j=1

lX
k=1

g3
rjk�rjk + 
3

r

1A
r = 1; 2; :::; p; (60)

nX
j=1

c2rjxj +
nX
j=1

lX
k=1

G2
rjk�rjk �R2+

r

= z2�
r

0@ nX
j=1

d2
rjxj +

nX
j=1

lX
k=1

g2
rjk�rjk + 
2

r

1A
r = 1; 2; :::; p; (61)

nX
j=1

c3rjxj +
nX
j=1

lX
k=1

G3
rjk�rjk �R3+

r

= z3�
r

0@ nX
j=1

d1
rjxj +

nX
j=1

lX
k=1

g1
rjk�rjk + 
1

r

1A
r = 1; 2; :::; p; (62)

R1+
r ; R2+

r ; R3+
r � 0 r = 1; 2; :::; p; (63)

Constraints (21){(26): (64)

Finally, solving Model (59){(64) will result in a
solution to Model (10){(15). The obtained solution
may be either a Pareto-optimal solution or only a sat-
isfactory solution to Model (10){(15). Accordingly, a
Pareto-optimality test is proposed in the next step.

Step 5. To test whether or not the solution
obtained by Model (59){(64) is a Pareto-optimal
solution to Model (10){(15), consider the following
model and the consequent theorem. Notably, the
solution obtained by Model (59){(64) is supplied in
Model (65){(69). Therefore, except for the notation
R1+
r ; R2+

r ; R3+
r , the other notation is constant here:

max
pX
r=1

R1+
r +

pX
r=1

R2+
r +

pX
r=1

R3+
r ; (65)

subject to:
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nX
j=1

c1rjxj +
nX
j=1

lX
k=1

G1
rjk�rjk +R1+

r

= z1�
r

0@ nX
j=1

d3
rjxj +

nX
j=1

lX
k=1

g3
rjk�rjk + 
3

r

1A
r = 1; 2; :::; p; (66)

nX
j=1

c2rjxj +
nX
j=1

lX
k=1

G2
rjk�rjk +R2+

r

= z2�
r

0@ nX
j=1

d2
rjxj +

nX
j=1

lX
k=1

g2
rjk�rjk + 
2

r

1A
r = 1; 2; :::; p; (67)

nX
j=1

c3rjxj +
nX
j=1

lX
k=1

G3
rjk�rjk +R3+

r

= z3�
r

0@ nX
j=1

d1
rjxj +

nX
j=1

lX
k=1

g1
rjk�rjk + 
1

r

1A
r = 1; 2; :::; p; (68)

R1+
r ; R2+

r ; R3+
r � 0 r = 1; 2; :::; p: (69)

Theorem 1. If the optimal value of Problem (65){
(69) for a solution obtained by Model (59){(64) is zero,
then the obtained solution is Pareto-optimal solution to
Model (10){(15); otherwise, it is not Pareto-optimal.

Proof. In order to simplify the proof, Problem (10){
(15) is represented by the formulation below:

minZr (X) =
fr(x)
gr(x)

r = 1; 2; :::; p;

subject to:

x 2 S; (70)

while Problem (65){(69) is represented by the following
formulation:

max
pX
r=1

dr;

subject to:

fr(x) + dr � z�r gr(x) = 0 r = 1; 2; :::; p; (71)

x 2 S
dr � 0 r = 1; 2; :::; p:

Now, we assume that the optimal objective function
value for Problem (71) is zero and its associated
optimal solution x0, also obtained by Model (59){(64),
is not Pareto-optimal for Problem (10){(15). Thus,
there should be a solution, say x00, which is better than
x0 by the following condition:

fr (x00)
gr (x00) �

fr (x0)
gr (x0) r = 1; 2; :::; p; (72)

and 9 j 2 f1; 2; :::; pg such that:

fj (x00)
gj (x00) <

fj (x0)
gj (x0) : (73)

Considering a non-negative slack variable of dr=gr(x00);
i = 1; 2; :::; p for Inequalities (72) and (73), the
following equality is obtained:

fr (x00)
gr (x00) +

dr
gr (x00) =

fr (x0)
gr (x0) ;

r = 1; 2; :::; p; (74)

where �d = (d1; d2; :::; dp) � 0; �d 6= 0. If we multiply
both sides of Eq. (74) by gr (x00), the following equation
is obtained:

fr (x00) + dr =
fr (x0)
gr (x0)gr (x00) = z0r gr (x00)

r = 1; 2; :::; p: (75)

According to Eq. (75), it is concluded that
�
x00; �d

�
is a feasible solution to Problem (71), where �d 6= 0.
The value implies that there is a contradiction with
the initial assumption (the optimal objective function
value of Problem (71) is zero) and the related optimum
objective function value must be positive. Therefore,
x0 is a Pareto-optimal solution to Model (71).

In order to prove the theorem conversely, �rst,
we assume that x0 is a Pareto-optimal solution to
Problem (10){(15). Therefore, it should be shown that
the optimal objective function value of Problem (71)
is zero. To do so, a contradiction is considered by
assuming a positive value for the objective function of
Problem (71). Therefore,

�
�x; �d
�

is a feasible solution to
Problem (71) with �d 6= 0. As gr (�x) > 0; r = 1; :::; p,
the constraints of the problem are rewritten by the
following equality:

�Zr +
�dr

gr (�x)
= z�r r = 1; 2; :::; p; (76)

where �Zr = fr (�x)/gr (�x). Also, the following relation
can be obtained:

�Zr = z�r �
�dr

gr (�x)
< �Z 0r r = 1; 2; :::; p: (77)
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As a result of Relation (77), x0 is not a Pareto-optimal
solution to Problem (71). This claim is in contradiction
with the initial assumption (x0 is a Pareto-optimal
solution to Problem (10){(15)). Therefore, the optimal
value of Problem (71) must be zero.

5. An illustrative example

To study the performance of the proposed solution
approach detailed in Steps 1{4, an example of FMF-
FCP from the study of Upmanyu and Saxena [1] is
considered. In this example, there are two variables
(n = 2, hence j 2 f1; 2g), two original constraints (m =
2, hence i 2 f1; 2g), three objective functions (p = 3,
hence r 2 f1; 2; 3g), and three steps of �xed charges
(l = 3, hence k 2 f1; 2; 3g). The data for the problem
is summarized in Tables 1 and 2. Notably, in Table
2, the intervals of are obtained by the data Arj0 = 0,
Arj1 = 1, Arj2 = 2, Arj3 = 1, Brj0 = 0, Brj1 = 1,
Brj2 = 2, and Brj3 =1 (8r 2 f1; 2; 3g ; j 2 f1; 2g).

The original formulation of this example
(Eq. (78)) is shown in Box IV. Taking Steps 1{3 of the

proposed approach for Eq. (78), the goals of the goal
programming formulation of Step 4 are obtained. The
outputs of Step 3 on Eq. (78) and the data for the
example are depicted in Table 3. As nine problems
have to be solved in Step 3, the results for each
problem can be realized in the table.

Supplying the results of Table 3 to the goal
programming formulations (Eqs. (59){(64)) completes
Step 4 for the example. Therefore, by solving
Eqs. (59){(64) for the data of this example, the results
in Table 4 are obtained. The results contain the
obtained solution and the triangular objective function
values of the FMFFCP. The triangular objective func-
tions can be extracted from Constraints (60){(62).

It is notable that if the obtained results in Table 4
are used to test Pareto-optimality of the solution by the
proposed formulation in Step 5, the objective function
of Model (65){(69) would be zero, which proves Pareto-
optimality of the obtained solution.

As the method proposed by Upmanyu and Sax-
ena [1] is based on wrong mathematical concepts (see
[2]), it cannot be e�ective for the case of FMFFCP.

Table 1. Some data on the example.

~crj ~drj ~
r
j = 1 j = 2 j = 1 j = 2

r = 1 (7,8,9) (1,5,11) (2,4,7) (5,6,7) (4,8,12)
r = 2 (3,6,7) (4,8,15) (3,7,9) (7,9,13) (0,1,2)
r = 3 (1,3,5) (1,4,9) (1,2,3) (1,3,9) (0,2,4)

Table 2. Some data on the example.

r = 1 r = 2 r = 3
~Grjl ~grjk ~Grjl ~grjk ~Grjl ~grjk

j = 1
k = 1 0 < xj � 1 (20,22,27) (19,21,28) (15,16,17) (12,14,16) (10,13,17) (16,18,20)
k = 2 1 < xj � 2 (24,25,26) (20,27,29) (14,18,22) (12,13,15) (12,17,18) (16,20,21)
k = 3 2 < xj (21,23,25) (25,26,27) (11,13,15) (13,17,19) (14,17,20) (17,19,22)

j = 2
k = 1 0 < xj � 1 (14,18,22) (10,13,17) (16,20,21) (24,25,26) (13,17,19 ) (20,27,29)
k = 2 1 < xj � 2 (11,13,15) (14,17,20) (17,19,22) (20,22,27) (12,13,15 ) (25,26,27)
k = 3 2 < xj (15,16,17) (12,17,18) (16,18,20) (21,23,25) (12,14,16) (19,21,28)

Table 3. The goals and their related solutions for the example.

z1�
r ; (x�1; x�2; T �) z2�

r ; (x�1; x�2; T �) z3�
r ; (x�1; x�2; T �)

r = 1 0.583, (1.14,2.57,0.008) 0.938, (2,0,0.012) 1.29, (2,0,0.012)
r = 2 0.514, (3.5,1,0.11) 0.893, (5,0,0.007) 1.133, (2,0,0.012)
r = 3 0.409, (5,0,0.015) 0.678, (2,0,0.008) 0.935, (2,0,0.016)

Table 4. Pareto-optimal solution obtained by the proposed approach for the example.

~Z1(X) ~Z2(X) ~Z3(X) x1 x2

(0.670,0.938,1.410 ) (0.667,1.016,1.5) (0.462,0.7,1.017) 2 0
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~Z1 (X) =
~c11x1 + ~c12x2 + ~G111�111 + ~G112�112 + ~G113�113 + ~G121�121 + ~G122�122 + ~G123�123
~d11x1 + ~d12x2 + ~g111�111 + ~g112�112 + ~g113�113 + ~g121�121 + ~g122�122 + ~g123�123 + ~
1

~Z2 (X) =
~c21x1 + ~c22x2 + ~G211�211 + ~G212�212 + ~G213�213 + ~G221�221 + ~G222�222 + ~G223�223
~d21x1 + ~d22x2 + ~g211�211 + ~g212�212 + ~g213�213 + ~g221�221 + ~g222�222 + ~g223�223 + ~
2

;

~Z3 (X) =
~c31x1 + ~c32x2 + ~G311�311 + ~G312�312 + ~G313�313 + ~G321�321 + ~G322�322 + ~G323�323
~d31x1 + ~d32x2 + ~g311�311 + ~g312�312 + ~g313�313 + ~g321�321 + ~g322�322 + ~g323�323 + ~
3

; (78)

subject to:

3x1 + x2 � 6

2x1 + 3x2 � 10

x1 �A110 �M�111 x2 �A120 �M�121 x1 �B110 �M�111 x2 �B120 �M�121

x1 �A111 �M�112 x2 �A121 �M�122 x1 �B111 �M�112 x2 �B121 �M�122

x1 �A112 �M�113 x2 �A122 �M�123 x1 �B112 �M�113 x2 �B122 �M�123

x1 �A210 �M�211 x2 �A220 �M�221 x1 �B210 �M�211 x2 �B220 �M�221

x1 �A211 �M�212 x2 �A221 �M�222 x1 �B211 �M�212 x2 �B221 �M�222

x1 �A212 �M�213 x2 �A222 �M�223 x1 �B212 �M�213 x2 �B222 �M�223

x1 �A310 �M�311 x2 �A320 �M�321 x1 �B310 �M�311 x2 �B320 �M�321

x1 �A311 �M�312 x2 �A321 �M�322 x1 �B311 �M�312 x2 �B321 �M�322

x1 �A312 �M�313 x2 �A322 �M�323 x1 �B312 �M�313 x2 �B322 �M�323

�111; �112; �113; �211; �212; �213; �311; �312; �313; �121; �122; �123; �221; �222; �223; �321; �322; �323 2 f0; 1g
�111; �112; �113; �211; �212; �213; �311; �312; �313; �121; �122; �123; �221; �222; �223; �321; �322; �323 2 f0; 1g
x1; x2 � 0:

Box IV

That is, the method of Upmanyu and Saxena [1] cannot
guarantee obtaining a good solution, especially with
large-size instances. Instead, the proposed solution ap-
proach in this study tries to overcome the shortcomings
of the approach of Upmanyu and Saxena [1], e.g., using
ranking functions. The proposed approach does not use
any ranking function, which is an important advantage
for solving fuzzy problems. On the other hand, the
proposed approach can easily solve large-size instances
of the FMFFCP. Finally, it is notable that the goal pro-
gramming in Steps 3{4 of the proposed approach is not
constructed based on preferences of the decision maker.

6. Concluding remarks

In this study, a Fuzzy Multi-objective Fractional Fixed
Charge Problem (FMFFCP) consisting of several frac-
tional objective functions with triangular fuzzy param-
eters was considered. The problem had previously been
tackled only by Upmanyu and Saxena [1] through a
method containing wrong mathematical concepts (see
the commentary of Kaur and Kumar [2]). To overcome
the shortcomings of this method, a goal programming
based solution approach was proposed to solve the
FMFFCP for obtaining a Pareto-optimal solution. The
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proposed approach applied no ranking function of fuzzy
numbers and its goal programming stage considered no
preference of the decision maker. The computational
experiments provided by an example from the litera-
ture proved e�ectiveness of the proposed approach.
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