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Abstract. This paper investigates the optimal configuration of a partially two-layered
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are studied. Primarily, the nonlinear equations of motion are derived through Classical
Laminated Plate Theory (CLPT). Then, the static position and natural frequency of
vibration around the static position are obtained using Galerkin approach. The forced
vibration equations around the static position are separated using Galerkin method and
solved by the multiple scale perturbation theory. Firstly, the impact of changes in the
second-layer radius on the variations of static and dynamic responses of the system is
studied while its thickness remains constant. Then, the effect of changes in the second-layer
thickness is studied while its radius remains constant. Finally, the impact of simultaneous
changes in the radius and thickness of the second layer is studied while its volume remains
constant. The results show that the highest frequency and lowest static deflection occur
when the second layer covers fifty percent of the first layer. This result can be used for
designing high-speed microsensors.
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resonance microsensor applications, a combination of
AC and DC voltage is used. In these configurations,
the microplate deflects to the static position due to

1. Introduction

Microelectronic integrated circuits can be considered

as the thinking minds of systems, and microelectrome-
chanical systems develop this thinking power with the
addition of eye and arm to them so that microsystems
can sense and control the surrounding environment.
The main element of many microelectromechanical
systems, e.g., micropumps, microphones, and mi-
crosensors, is a circular microplate under electrostatic
actuation [1]. Electrostatic actuation is generated by
applying electrical voltage between a microplate and a
fixed electrode plate, being on the opposite side. In
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DC electrostatic actuation and, then, AC actuation
make the system oscillate around that position. In
this system, DC voltage serves as a regulator of system
sensitivity and natural frequency. The voltage in
which a microplate becomes unstable and connects
to an opposite fixed electrode plate is called pull-in
voltage [2]. Many studies have been conducted for
modeling and calculating the static deflection, pull-
in voltage, natural frequency, and dynamic response
of a system. The most important of such studies are
addressed below.

Vogl and Nayfeh [3] established equations govern-
ing the clamped circular plate and, then, discretized
the system by using Galerkin approach. They solved
the equations in the equilibrium states due to a



716 R. Sepahvandi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 715-729

general electric potential and determined the natural
frequencies of the axisymmetric modes for the stable
deflected position. In another work, they investigated
the response of the electrically actuated clamped cir-
cular plate to the primary resonance excitation of its
first axisymmetric mode using an analytical reduced-
order model [4]. Liao et al. [5] demonstrated that
the ratio of the dynamic to static pull-in voltages
for a clamped circular microplate was approximately
92%. Further to that, when the squeezed-film effect
induced by the air gap between the two plates was
taken into account, the value of the aforementioned
ratio increased slightly. An electrostatically actuated
microplate was modeled by Bertarelli et al. [6] for
micropump applications. Wang et al. [7] analyzed the
thermal and size effects on the nonlinear vibration of
the electrostatically actuated circular microplate. It
was shown in this work that the geometrically nonlinear
strain had significant effect on the frequency for the
large initial gap to thickness ratio of the plate. The free
vibration of symmetric circular Fiber Metal Laminated
(FML) hybrid plates was studied by Shooshtari and
Dalir [8]. They obtained the governing equation of
motion by considering von Karman nonlinearity and
using First-order Shear Deformation Theory (FSDT).
Khorshidi et al. [9] analyzed static pull-in instability
and natural frequency of circular and annular plates
in the electrical field. They studied the effect of
rigid core, radial load, geometric nonlinearity, and
inner radius on the pull-in instability of circular plates.
Karimzadeh et al. [10] studied the size-dependent
dynamic behavior of circular rings on elastic foundation
using modified couple stress theory. The mechanical
behavior of a capacitive microphone with a clamped
circular diaphragm was studied by Dowlati et al. [11]
using modified couple stress theory. They obtained the
governing equation of motion by using Kirchhoff thin
plate theory. Afterwards, they used an SSLM method
to linearize the equation. At last, they applied Galerkin
method to solve the equations.

The nonlinear vibration of a rotating annular disc
made of Functionally Graded Material (FGM) with
variable thicknesses was investigated by Shahriari et
al. [12]. They examined the natural {frequencies and
critical speed of the rotating FG annular disk with two
types of boundary conditions.

Jallouli et al. [13] proved how the von Karman
nonlinearity and the plate imperfections could lead to a
significant delay in pull-in occurrence. Saghir et al. [14]
studied the static and dynamic behaviors of an imper-
fect plate under electrostatic actuation. They used von
Kéarman to obtain the governing equation. A reduced-
order model based on Galerkin method was used to
simulate the mechanical behavior of the microplate.
They used experimental data to validate their work.

In some other studies, the pull-in instability

and the vibration for the elliptic and circular elec-
trostatically actuated microplates were investigated,
considering the Casimir force [15-18]. Zhang [19]
used the principle of virtual work to conduct the
large deflection of a circular plate. He proposed
a new approximate analytical solution to study the
plate-membrane transition behavior of the deflection.
Medina et al. [20,21] studied the behavior of ini-
tially curved circular microplates under electrostatic
actuation. Their model was based on Kirchhoff’s
hypothesis and the nonlinear von Kdarmén strain-
displacement relations. Caruntu and Oyervides [22,23]
studied the resonance of an electrostatically actuated
circular plate consisting of deformable and conductive
circular plates in the presence of surface force. They
showed that pull-in occurred at a relatively large
AC voltage. They used the perturbation method to
study the nonlinear parametric resonance. In another
study, the effects of mechanical shock on the stability
and dynamic response of an Micro-Electro-Mechanical
System (MEMS) circular capacitive microphone were
investigated [24]. It was shown that mechanical
shock loads could impose considerable noise on the
microphone’s response. The mechanical behavior of
a circular FGM micro-plate subjected to electrostatic
force and mechanical shock was studied by Sharafkhani
et al. [25]. They used step-by-step linearization and
reduced-order approach based on Galerkin method to
solve the nonlinear equation of the static deflection
and dynamic motion. Shabani et al. [26] investi-
gated the dynamic behavior of a circular microplate
interacting with compressible fluid and excited by
electrostatic force. They utilized Kirchhoff’s thin plate
theory for the actuating microplate, considered the
operating fluid as inviscid, and derived the eigenvalue
problem of the coupled system using Fourier-Bessel
expansion. In some work, the mechanical behavior
of an electrostatically actuated circular microplate in
the presence of hydrostatic force was investigated. Li
et al. [27] studied the effects of both electrostatic
force and uniform hydrostatic pressure on the resonant
frequency of a clamped circular microplate. Nabian
et al. [28] evaluated the instability of a circular plate
under non-uniform electrostatic pressure and uniform
hydrostatic pressure. They linearized the governing
equations and solved them through the finite difference
method. Tian-Jie [29] studied the behavior the electro-
statically actuated circular microplate in the presence
of uniform hydrostatic pressure before and after the
pull-in. He used a two-fold method of bisection
based on the shooting method to solve differential
equations. Moreover, He investigated the effect of
different parameters on pull-in and validated their
results based on the results obtained in the previous
studies. =~ The dynamic pull-in instability and free
vibration of circular microplates subjected to combined
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hydrostatic and electrostatic forces were investigated
by taking into account size effect based on the strain
gradient elasticity theory [30,31]. Rashvand et al. [32]
considered the effect of the intrinsic length scale on the
stability and fundamental frequency of a fully clamped
circular microplate, which can be used as an RF MEMS
resonator. A modified couple stress theory was utilized
to model the microplate with respect to the variable
length-scale parameter. In [33], a closed-form solution
was presented for in-plane and out-of-plane free vibra-
tions of simply supported Functionally Graded (FG)
rectangular micro/nanoplates. Further, the dynamic
response of a circular clamped microplate actuated by
a DC/AC non-linear electrostatic coupling force was
considered while taking into account the residual stress,
hydrostatic pressure acting on the upper surface, and
squeeze-film damping generated by the air gap between
the vibrating microplate and fixed substrate [34].

Despite the studies mentioned above, the me-
chanical behavior of a partially two-layered circular
microplate under electrostatic actuation has not been
examined so far, which is addressed in this study.
This configuration is important in two respects. The
natural frequency in an MEMS device is an indica-
tion of the system performance speed. Therefore,
it is investigated how the natural frequency of an
electrostatically actuated microplate can be increased
by compositing it partially. Moreover, pull-in and
nonlinear shift of resonance frequency are undesirable
phenomena for the MEMS devices. Therefore, this
study examines how these phenomena can be optimized
by compositing the microplate as partial. To this end,
the nonlinear equations of motion are derived through
Classical Laminated Plate Theory (CLPT). In the
previous study [35], it was shown that the application
of the CLPT method was an acceptable method that
resulted in an almost exact outcome that matched
experimental data. Consequently, CLPT is used in this
work to analyze the behavior of microplates.

Then, the static position and natural frequency
of vibration around static position are obtained using
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Galerkin approach. The linear mode shapes of the
non-uniform microplate, i.e., a microplate coated as
partial by the second layer, are used as comparison
functions. The forced vibration equations around the
static position are separated using Galerkin method
and solved by the multiple scale perturbation theory.
The impacts of the changes in the second-layer radius
and thickness while assuming that the radius and
thickness remain constant on the mechanical behavior
of the system are investigated. At the end, effects of
simultaneous changes in the radius and thickness of
the second layer, with the assumption that its volume
remains constant, are considered on the static and
dynamic responses of the system.

2. Modeling and formulation

The system consists of a circular microplate with
the radius R, under clamped boundary conditions.
Another layer with the radius R; coats a part of the
first layer. The plate is made of silicon. Electrostatic
voltage of Vy 4+ V,cos({) is applied between the
microplate and the fixed electrode plate, which is
placed at the distance d from it. In this relation, ¢
is time, V; is the DC voltage, and V, and ) are the
amplitude and frequency of AC voltage, respectively.
Figure 1 shows an overall view of the studied system.

The system consists of two sections considering
Figure 1. In Section 1, a microplate is two layered,
and it is one layered in Section 2. By applying
Newton’s second law to the sheared element shown in
(Figure 2), the equation of motion in the first section
is as follows [25]:

dN;  N;
o (Nt No
dr 7
sz Qz d wl
h h =0
g T et (pha + p2ha) = e ;
dM; My — My
. = 1
Q.= Tl Mot )
_Vd-&-VAcothA

Figure 1. Overall view of a two-layered microplate under AC-DC electrostatic actuation.



718 R. Sepahvandi et al./Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 715-729

P

Figure 2. Free body diagram for an element of the
microplate in a two-layered section.

where @ indicates the transverse deflection of the
microplate in the two-layered section, 7 is the radius
position of element, @, is the shear force, N; and
Ny are the components of net force in the radial and
tangential directions, M; and My are the components
of net moment in the radial and tangential directions,
p1 1is the density of the first layer, p- is the mass density
of the second layer, iy is the thickness of the first layer,
hs is the thickness of the second layer, and p indicates
the electrostatic force defined as follows [1]:

_ (Va+ Vv, cos(flwf))2
P T ey ®

Kirchhoff theory is used to calculate moment, normal
force, and shearing force of the cross-section of the
system. By considering the middle area of the first
layer as the referenced layer and using CLPT theory
for a balanced isotropic plate, the strain in the cross-
section of a microplate along the radius may be defined
through the following formula:

0 0
& Eip Uz
= +z ; (3)
0 0
€00 899 Iia

where z is the distance from the reference layer.
Moreover, ;7 and egp are the radial and tangential
strains in the point with distance z from the referenced
layer; besides, €2, (e),) and £ (k)) are the strain
and curvature in the radial (tangential) direction,
respectively, which are calculated as follows:

0 alt()(f‘)
Eip Tor
T owe [
c wo (7
00 -
0 9%y ()
R T o
= ; (4)
K9 _ 1 9 (#)
0 PR T

where wuy indicates the deflection along the radius.
Showing the stress in the radial and tangential direc-
tions for the kth layer by Jff,f and 050, respectively, one
can write the following:

ok et &2
(T Q%] (= Q] ( .
) €o¢ €00
K0
+ z ) ) k = 17 27 (5)
K
where:
Ek 1 Vi
=k . k=1,2, 6
Q/\r (1 _Vk)z |: Vi 1 :| ( )

where Ej is the elasticity module of layers 1 and 2,
and vy is Poisson’s ratio for them. Considering the
definitions of strain and stress in Eqgs. (1) to (5), the
net force N and moment M are defined as follows:

k
2 T
NT 2K P
e AR
k=1"2-1 | ok
&2 Ky
dz=A + B ,
529 “g
. k
M- 2, Op
M= { } -3 / 7
Mo k=121 | ok,
er Ky
2dz=DB +F (7)
5%9 ”2
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Considering that zg = —%1, 71 = h2 ,and zo = ho + 21,

the coeflicient matrices of A, B, and F are defined as
follows:

. 2 ,
A A /“k

A= = 1 d
_A21 A22} ; zk._l[Qk] ¢

. 2 .,
Bii B /%

B= - ] = dz,
| Ba1 B22} ; zk._l[Qk] o

. 2
Fip Fio /Zk 2

F = = dz. 8
SR Oy RRCIEE SN

By combining Egs. (1), (3), (4), and (7), one obtains
the following:

- uoéf)] Ay

1 0%y (7)

3
+ [_a 50%13(7,) Pz T 7‘12 awal(r)] B =0,

[825,‘;)§7") + 1 Bu(](T) _ u()’,gf):l Bll

3 A /A PPN
+ [_a 5”,:13“) - %a g”:(r) + ;‘Lzawal;T)] Fii=Q:. (9)
By combining Egs. (9), uo(#) is omitted and the
equation of deflection governing of the system is as
follows:

2
_Pn0 _10n0 | 1 om0 (M)
973 T D7

=Q-. (10)

By substituting Eq. (10) into Eq. (1) and adding
the effect of viscous damping, the equation of motion
governing the two-layered section of the microplate will
be as follows:

|: u&))lA('r ) + 29 1:;1?(7‘ 1) le 0> wl(v" t) 4 1 r?wl(rr t)j|

Ay F —Bu) Oy (7, 1)
+ =
( A ¢ ot
dz

+(prhy + paho) —=~ dtz

(Va4 Vycos (Qf))2
= 2

2(d +1y)° ()

where ¢ is the coefficient of viscous damping. By setting
he = 0 and replacing Wy by wy in Eq. (1), the equation
of motion in the one-layered section of the microplate
will be as follows:

Eh} {34102(1“ 1) N 2Py (F, 1) 1 9*aia(F, 1)
7

2 o4 or3 72 02
1 Oy(7,6)] 0w (7,1) d?a;
— - h)—
7B or o T )T

; (12)

where s is the deflection of the microplate in the
one-layered section of microplate. Thus, the equation
governing the system is defined as follows:

Oy (7, 8)  20%w(7,1) 1 9%y (7,1)

ort oo 72 Or?

1 awl(f,f)] (AHFH - Bf1>
+=
All

i (7,1 d?w
(1) + (prh1 + pz%)yg1

A a2
Va+V, Ot .
W@’
2(d + 1)

Eqh3 |:a41f)2(f7f) 2 PPay(F, 1)
12

2 ort or3 72 92
1 o7, 8)] . Ows(7,1) d?ai
Boar | T Tl

Va4V, cos(flf))2
2(d + 1vy)”

R R, <7 < R,. (13)

For analytical convenience, the following changes the
in variable are applied to the equation of motion.

—W; . 7 7?
w; = ) Z:1727 r==, t:77
d R T (14)
where:
ph1 Eh?
T=R? D=—"31__. 15
G e (15)

In other words, the displacement term in the governing
equation is normalized with respect to the initial
gap height between the plates and electrode plate,
the radial position term r normalized concerning the
plate radius, and time is normalized with respect to
the constant 7. The efficiency of these variables
indicates that the maximum value for displacement,
i.e., contact between microplate and the electrode,
and the maximum value for the coordinate system
along the radius are equal to one. After changing
these variables, the following set of non-dimensional
parameters is obtained:
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R4 o phi\ % A
¢= 0 —é, Q:Rf)(pl> 0,
12(1 = v?)(p1h} D)™ D
Ay Fy — B, Eh3
p =" Uoon D=——"1__ 1
A11 ’ 12(1 - Uz) ( 6)

By substituting Eqs. (14)—(16) into Eq. (13), the
dimensionless form of the motion equation is as follows:

*wy (r,t) N gaswl(r,t) 3 iazwl(r,t)

ort r  ord rz2  Or?

+i Bwl(r, t):| (A11F11 — B%1>

7’3 or A11

+C@w1(r, t) ( Dhg ) d2w1

ot D'hy ) di?

_ 2D%d (Vg + V, cos (0t))°
D'R* 2014 w)’

)

R;
0 -
<T= T
*wy(r,t) N 2Pwy(r,t) 1 PPws(r,t)
ort T o r2  or?

1 Owsy(r, 1) Owy(r,t)  d*wy
r3  Or o dt?

2D (Vy+ Vycos (Q1) R

, — <r=<1(17
RY 2(1 — wsy)? R, (a7)

To simplify the equations, the term V4w;(r,t) can be
used, which is defined as follows:

V4w (r,t)
_ [9twi(rt) | 28%wi(rt) 1 Pwi(nt)
N art r ors r2  or?
1 Ow;(r,t) o
+’I”387’:| 1= 1,2. (18)

3. Static deflection

Static equation is solved by Galerkin method. To
this end, comparison functions are required. These
functions are considered the mode shapes of a linear
system, given the non-uniformity of cross-section. To
obtain the mode shape of the non-uniform microplate,
deflection is considered as wy(r,t) = o1 (r)e® and
wa(r,t) = @o(r)e®?t, where @;(r) is the function
of the mode shape in the two-layered section and
@2:(r) is the function of the mode shape in the single-
layer section. Moreover, w; is the natural {frequency
of free vibration and i indicates the mode number.

By substituting these assumptions into Eq. (17) and
setting the external electrostatic force and damping
effect equal to zero, the differential equation governing
the mode shape is as follows:

‘ Dh: R;
—2 2 w4 g
- + i(r) =0, 0<r<—,
w hy Vio1:(r) r )
_9 4 lzz'
—@° + Vipa(r) =0, — <r=<1 (19)

R,

Eq. (19) is Bessel’s equation and its solution is as
follows:

_ Dhsy B Dhsy
2i(r) =C1Jm (Twi D’hl) + CyY,, (TM D’hl)
_ Dhso R
+ Cs1,, (Twi D’hl) + C4K,,

_ Dhg R1
(rwi D’hl) =0, O-<7’-<R—D7

(pzi(T) ZC5Jm(T@¢) + C(;Ym(T(Di) + C7Im(7”@¢)

(20)

R <1
-_— T
R, ’

where J is Bessel’s function of the first kind, Y is
Bessel’s function of the second kind, I is the refined
Bessel function of the first kind, and K is the refined
Bessel function of the second kind.

To obtain the unknown coeflicients, boundary
and continuity conditions at R; are used, as shown in
Figure 3. These boundary conditions are as follows:

+ CS_K'm(T@i) = O,

w1 (F)|p=o = finite, wq(F)|s=r, =0,

wy(f)]i=r, =0, (21)
and the continuity conditions are:
My =My, Ni=DNa, Q1=0Qq,

wi(R;) = wa(R;),  wy(Ri) = wh(Ry), (22)

where, as shown in Figure 3, M;(N1)(Q:) and
Ms(N2)(Q2) are the moments (normal force)(shear

L R; >
R,
M M,
Nl{’é 9‘[‘]\71
Q1 Q1

Ms: Q2 '1Z Q2 M,
r

Figure 3. Free body diagram at the boundary between
single- and two-layered sections.
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force) in the cross-section, which connect two-layered
and single-layered parts; after applying Egs. (21)
and (22) into Eq. (20) and setting the determinant
of coefficient equal to zero, the natural frequency and
mode shapes are obtained. Now, by putting time
derivatives equal to zero in Eq. (17), the equation
governing static deflection is as follows:

2D%8 V2
D'R* (1 —wa(r)*

V4w31(r) =

2D2q3 R;
Viwa(n( —wa()’ = Jr Vi, 0<r <2,
2Dd? V2
V4w32(7’) = 4 : 3
R (1 —wa(r)
2Dd? R,
Viwa(r)(1-wan ()’ === Vi, p-<r<1(23)

where w,; indicates the static deflection in the two-
layered section, and w,y indicates the static deflection
in the single-layered section of the microplate The

Z ;P14

solution of Eq. (23) is assumed to be wq (r) =

and wyo(r) = Z a;p2;, where 1; and @9, are obtained

in the former relatlon m is the number of modes for
solving the equation, and a; is the unknown coefficient,
obtained by applying the Galerkin method. Now, the
considered assumption is substituted into Eq. (23) and,
then, is multiplied by ¢1; 7 = 1..m. Next, the outcome
is integrated with r = 0...1 that produces the following
equations:

(

( ZWM) @V oulr))ons )

o \ :l‘(‘:.'

R;

4

R, 1
2D
_DR4 Vd /@1]( (/( Za1992z)
0 Ly
Ro
1
2Dd?
(@5 sy (1 ) 202 oy =0
(24)

4. Natural frequency of vibration about static
deflection

In Eq. (17), w; can be considered as the sum of dynamic
deflection (wg;(r,t)) and static deflection (wy;(7)).
Thus, by putting @, (7, t) = wq1 (7, t)+ws1 () in the first
relation and wa(r,t) = waa(r, t) + wea(r) in the second
relation of Eq. (17) and expanding electrostatic force
around static position wg,(r), one obtains the following:

Dhsy 92 wdl(r t) CDhs awdl(T,t)

4
Viwa(nt) + =5 D'h, ot
2D (ZVdVa +(V, cos(Qt))2)
D'R* (1- wsl(r))2
2(Vy + V, cos(Qt 2
(Va ( 3)) war(r.1)
(1 —ws(r))
7, cos(Q))? .
3(Vy + Vi, cos( 4t)) WP (1)
(1 —wal(r))
4 " cos(Qt))?
(Vi + V, cos( 5t)) WP (1),
(1 —wsl(r))
R;
0<7r=< E,
Owgas(r, t) Awga(r,t)
4 ) 9
Viwaa(r,t) + 92 +C i

2D [ 2VVi + (Vi cos(Qt))?
~ D'R? (1 — wea(r))

2(Vy +V, (:os(Qt))2
(1- ws2(r))3

waa (7, t)

3(Vy + V, cos(t))?

TR

4(Vy + V, cos(t))?
(1 - ws?(r))S

w3d2 (T7 t)v

R;
— <r=<1 25
< (25)
By considering Eq. (25), the equation of linear free
vibration of the system about static deflection is as
follows:

Dhsy 92 wdl(r t)

Viea(nt) + 5
:4253((1—1212(1“))2)”1(“”’ R

V4was(r,t) + %
:4;)’;;13 ((1_£j(r))2>wd2(r,t)7 g-<7’-<(12.6>

To obtain the natural frequency of linear vibration
of the system about static deflection, w,, it is as-

sumed that wai(r,t) = > @1a(r)gn(t) and wa(r,t) =
n=1
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Ul . . . I§12
on(T)qn(t), where ¢,(t) is the time coordinate —= 4+ K )3 (V, Ot))?
3 ean(r)ant) a1 +(Vcos(m) 13)p<>< cos(92)
function corresponding to the free vibration of the sys-
tem. By substituting these assumptions into Eq. (26), + K14V, cos (Qt){ (28)
multiplying the outcome by @i, and ¢s,,, and in- . :
tegrating them into the whole microplate radius, the where the coefficients of K; are defined as follows:
differential equation that governs the natural frequency By
is obtained as follows: K, :/ © 9911(7")V4<p11(1“)d7°
0
d?q,(t) 1
D hl (/ Zwl" r)pim (r)dr ) 12 +/Rv ©12(r)Vo1a(r)dr,
B N
Ro 4Dd? B;
+ VA1 (P orm (F)dr — —— ®o Dhy . L .
(/0 ; 10 (r)1m(r) R Ky = D/ih?@zll(r)dwr/g o122 (r)dr,
0 1 Fi
o1 (r)e1m(r d)) = ODh 1
(1 - wSl </ Z I/\/yg = T}ng0211(7’)d7” + " OSO122(T)dT7
0 1 Ry

Ro

1 N 2
d?qn(t)
- (/;;: ;m”(rmm(”dr> de2 T D22 ( 2V,
(

Ky = ;
e D'R* \ (1 — wa(r))? 9911(7’)> a

' &, 4D2d?
([ T enrenntrr - S N /1 2,

R, 1=1

. / ))
— ©2n (1) 2m(r)dr Ry
(1 _wSQ(T ( Fo zz; ¢ s 2V%a o112(r) | dr
(1- wsl(r))3
qn(t) :07 m= 17"77N’ (27)

1 2
2V, .
Now, the natural frequency may be obtained by apply- + /R ﬁwzu(r)dr,
ing a similar process, which is used for obtaining the 7 (L —wa(r)

natural frequency of a lumped mass system.

) 7 D22 ( 32,
Kg = (

D'R* \ (1 — way(r)* o (T)> “

The dynamic responses are considered to be wgy (r,t) = 1 3V2,
p(t)p11(r) and waa(r,t) = p(t)p21(r), where p(t) is / (

the time coordinate function. After substituting the
dynamic response into Eq. (25), multiplying it by the

5. Dynamic solution at primary resonance

3
¢ 1a(r)dr,
B (- wa(r)

mode shape, and integrating the outcome into the ; D22 4v2, .
whole microplate radius, the following equation results K7 = D'R* s (r) | dr
. 0 (1 —wer(r))
are obtained as follows:
. - - ! 4v?, .
Kip(t) + Kaop(t) + Ksp(t) + K4V, cos(Qt) +/ ¢ 1(r)dr,
(1= wa(r)
= K5p(t)Kep(t)® + Krp(t)®
Ro D?d? 4v2, A
Ky . ) Ky :/ ( 99112(1“)> dr
" (va cos(0) Ag)p (Ve cos(0) o DRU\ (1 -wa(n)’

1 2
[(10 . 2 2 / 4V d 2
4 £)2(V, cos(2t + . T 3% an)dr
+ (Va cos(Qt) + X11>p( )" (Va cos(S2)) (1 —wy (r))’ .
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R
R D2d? 1
K _—/ s11(r) | dr
1 o D'R* ((1—1051(1“))2 nl )>

! 1
— _a(r)dr. 29
+/&(1_w81(r))2¢ (r) (29)

Assuming that nonlinear terms are of weaker order
than linear terms, Eq. (28) can be solved by means of
multiple scales method of perturbation theory. There-
fore, it is assumed that:

P(t) =ep1(To, T, Ta) + €°pa(To, Ty, To)
+&%p3(To, Th, Tn), (30)

where Ty = t, T} = et, and T, = &%t are time
scales, and ¢ is a dimensionless bookkeeping parameter

representing the order of terms.
derivatives, it can be written that:

By using chain

i = DO + EDl + 82D27
dt
d2
E = _Do + 26D0D1 + 8 (2D0D2 + .D ) (31)
where D, is the operator of dT ;n=0,1,2.

To strike a balance between the terms of Eq. (28),
the coefficient K3 resultlng from viscous damping is
considered to be of order £2 ; moreover the AC actu-
ation is considered to be of order £3. By substituting
Eq. (30) into Eq. (28) and separatlng terms with an
equal order of ¢ , the following relations are obtained:

order (&' :)
d? K — Ky
& (To, Th, To )+ 8 (Ty, Ty, To) =0, (32
dTozpl(o 1,15)+ e p1(To,T1,T5) (32)
order (g2 :)
d? Ky — K5
& (To, T, Ty) + L 00 (To, Y, T
dTOZPZ(O 1, Ty) + i, p2(To, 11, T5)
d? K
= pl(TOaThTZ) - D1 (T07T17Tz)
dTT Ky
(33)
order (&3 :)
d? K, — K5
——=p3(To, 11, T ———p3(Ty, 11,15
dT02p3( 0,41, 2) Ko (07 1, 2)
2 d2
-2 To. 11,15 — —=p1 (T, T, T
dTngpl( 0,T1,T5) Tlgpl( 0,T1,T2)
g & (To, Ty, Ts) — B3d(TTT)
dT0T1p2 0,141,142 K, dTopl 0,141,142
2 dlg
2K,
KGpl(TmT17T2)P2(T07T17Tz)
K
- F;p31(T07T17T2)- (34)

Kl}{i, the solution of Eq. (32) is

Assuming that w =
presented as follows:

p1(To,T1,T2) = A(ThTz)einO + A(T17T2)e—in0’

(35)

where A(T7,T3) is a complex coefficient that is obtained
by applying the solvability condition by substituting
Eq. (35) into Eq. (33):
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d2
sz(TmThTﬂ + w?pe(To, Ty, To) =
0

. w d
— 2iwe'To d—TlA(Tl7 T)

K 2iwT,
ATy, T. o
+ i, (Ty,Ty)e
2K, _
n IEGA(T17T2)A(T1,T2)+CC. (36)
A2

CC indicates a combination of complex terms. In the
case of solvability condition, the coefficient of a secular
term in Eq. (36), i.e., the coefficient of ¢™70 must
become equal to zero:

dly

It is concluded from Eq. (37) that A should only be
a function of T». A particular solution to Eq. (36) is
obtained as follows:

iA(ThTz)ein“ + d%A(Tthe*WTO =0. (37)
1

_KG _ I 2iw Ty
(T T, 1) =3~ s A (T)e
2A(Ty)A(T:

Now, p1 and ps from Eqs. (35) and (37) are substituted
into Eq. (34), and the actuation frequency, variation
is considered as Q = w + %0 where o, is a detuning
parameter. In what follows, the terms causing secular
terms in equations are retained; thus, one obtains:

2

d
WPB(TmThTQ) + w?p3(To, Ty, T»)
0

K

- d
= —2iwe™ T — A(T) —iw e

dTy

Ky (1 i 0Ty iwTy
+ e (QVa(e e’ 0)

o\ 2 B
10( % ) _ K 7
3w? I{Q

A(T2 )einO

+_

+NST+CC.  (39)

NST represents all terms that are not secular. The
term with the coefficient of ™70 in Eq. (39) is a secular
term. By setting it equal to zero and substituting A(75)
as polar, %Q(Tg)eiﬁ(n), and separating real part from
imaginary one, the result will be as follows:

ealTy) = B a(t) - i1,

dTs 2
d 1 . FV,
d7T27(T2) h _SwSG(TZ) + wa(Ty)
cos(Y(T2)) + a(T»)*0?, (40)

where:
K4V,
F= 21;1’2w’ Y(Ty) = 0Ty — B(T3),
6\ 2 -
_ 10T L Kr o K a1)
3w? I{Q ’ I(Q )

By setting -%a(72) and #%Zv(Tg) equal to zero in
Eq. (40), the equation governing equilibrium solution
amplitude of (ag) will be as follows:

ap? [(‘;)2 + <a - ‘“LOZ))Q] - (iVa>2. (42)

Eq. (42) demonstrates that the maximum amplitude of
ag occurs when the term inside the second parentheses
is equal to zero; thus,

2F
ag = —, o=
W

2
sag

(43)

By considering Eq. (43), the nonlinear resonance fre-
quency is as follows:

245F2

Q=w+e¢ D

(44)

6. Results and discussion

In order to show the accuracy of the calculations, the
thickness of the second layer is set equal to zero and the
static deflection is compared with the results obtained
by Vogl and Nayfeh [3]. This comparison shown in Fig-
ure 4 indicates efficient conformity amongst the results.

In the following, the effects of the changes of the
second-layer radius and thickness while assuming the
thickness and radius to remain constant, respectively,
and the simultaneous effect of changes in the radius and
thickness while assuming volume to remain unchanged

1.5
= Present work
--@- Previous work [3]
1.0+
%
=
0.5+
0. ~ ) ]
5 . 10 15
V= (volt)

Figure 4. Static deflection variation of the center of the
microplate against changes in electrostatic voltage for
one-layered microplate, ha = 0.
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Figure 5. Increase of radius and decrease of thickness of
the second layer when its volume remains constant.
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Figure 6. Variations of static deflection of the microplate
center against the variation of electrostatic voltage for
different values of the second-layer radius when the
second-layer thickness remains constant (hy/hy = 2/14).

on the mechanical behavior of the system are investi-
gated (see Figure 5). In this study, the parameters are
considered according to Table 1.

Figure 6 shows variations of the static deflec-
tion at the microplate center for different values of
the second-layer radius, assuming that its thickness
remains constant. It is demonstrated that when the
second layer is deposited on the entire area of the first
layer, the system has the maximum static deflection
and lowest pull-in voltage. The pull-in voltage is the
voltage in which the slop of the curve tends to infinity.
It is shown that with a decrease in the value of the
second-layer radius, the static deflection increases while
the pull-in voltage decreases. These changes result
from the changes in flexural stiffness. It is obvious
that an increase in the value in the second-layer radius
causes an increase in the value of flexural stiffness,
which in turn results in an increase in the value of
static deflection. Moreover, since the electrostatic force
on the right-hand side of Eq. (23) has (1 —w)? in
its denominator, i.e., with an increase in the value
of static deflection, the value of electrostatic force

Table 1. Parameters of system.
FE h1 Vd Va
169 GPa 140 um 0.5V 0.03V

increases as nonlinear. Therefore, variation changes
of the static deflection and pull-in voltage show a
nonlinear behavior.

Since the electrostatic force is nonlinear, the
pull-in voltages have increased by 100% with a five-
fold increase in the length of the second-layer radius,
reaching 34 V from 17 V. According to Figure 7, the
value of natural frequency goes up as the radius of the
second-layer increases. Considering the linear terms
of Eq. (28), these changes are in direct relationship
with K3 and Kj, resulting from the flexural stiffness
and electrostatic force, respectively. For Eq. (29), the
term (1 —wy;)® appears in the denominator of the
equation governing on Kj. Since the static deflection
decreases nonlinearly with an increase in the value of
the second-layer radius, the natural frequency increases
nonlinearly.

In Figure 8, the frequency response function is

14 T T T T T T

V2 (volt)

Figure 7. Variation of natural frequency of microplate
against variation of electrostatic voltage for different
values of the second-layer radius when second-layer
thickness remains constant (hz/h1 = 2/14).

0.6

0.5

0.4

0.3

0.2

0.1

1.0 0.5 0.0 0.5 1.0

o

Figure 8. Variation of amplitude of steady state response
against the variation of the detuning parameter for
different values of the second-layer radius when thickness
remains constant (hz/h1 = 4/14, ¢ = 0.169).
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= ha/h1 = 4/14
— g /b1 = 10/14

Winax

40
2

V= (volt)
Figure 9. Changes in static deflection of the center of
microplate against electrostatic voltage variations for

different values of the second-layer thickness when its
radius remains constant (R;/Ro = 0.5).

shown for different values of the second-layer radius.
It is shown that the value of amplitude peak and
nonlinear shift of resonance decreases with an increase
in the value of the second-layer radius. This reduction
is caused by the decrease of the values of S and F' and
the increase of the value of natural frequency, which
are the terms of Eqs. (42), (43), and (44). There are
the terms (1 — w,)?, F(1 —w,)®, and (1 —w,)?* in the
denominator of the governing equation on Ky, K7, and
K. With an increase in the value of the second-layer
radius, these terms are reduced due to the decrease
of the value of static deflection. Therefore, considering
Eq. (41), the parameter S decreases, causing a decrease
in the amplitude and nonlinear shift of resonance
frequency.

Figure 9 shows the variations of the static de-
flection as the thickness of the second layer changes,
assuming that its radius remains unchanged. It denotes
that static deflection decreases with an increase in the
value of the second-layer thickness, and pull-in voltage
reaches 34 V from 24 V when the thickness increases 2.5
times. From Figure 10, the system’s natural frequency
increases with an increase in the value of the second-

12

10

———ho/h1=2/14
— h3/h1=10/14

20

Figure 10. Variation of the natural frequency of the
system against electrostatic voltage variations for different
values of the second-layer thickness when its radius
remains constant (R;/Ro = 0.5).

layer thickness, assuming that the radius of the second
layer remains constant. Figure 11 shows the steady
state vibration amplitude against changes between
excitation frequency and natural frequency for different
values of the second-layer radius. It is demonstrated
that the non-linear shift of resonance frequency and
the amplitude at resonance frequency decrease with
an increase in the value of the second-layer thickness.
These variations may be verified according to the dis-
cussion presented in previous paragraphs for verifying
the mechanical behavior of the system due to variation
of the second-layer radius.

To reach the most optimal possible mode, vari-
ations of static deflection and natural frequency are
studied with the simultaneous change of radius and
thickness of the second layer, assuming that its volume
remains unchanged (see Figure 5).  Firstly, it is
assumed that the second layer is deposited on the
whole area of the first layer; then, the radius and
thickness of the second layer decrease and increase,
respectively. Figures 12 and 13 demonstrate that static
deflection, natural frequency, and the pull-in voltage
decrease, increase, and increase, respectively. Then, by

0.8+

0.6

0.4

0.2

-1.0 -0.5 0.0 0.5 1.0

a

Figure 11. Variations of amplitude of steady state
response against the variation of the detuning parameter
for different values of the second-layer thickness when its
radius remains constant (R;/Ro = 0.5, ¢ = 0.169).

1.0 T T T
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== Ri/R,=0.2, hy/h1=25/14 i 1
0.8 | == R;/R,=0.5, ha/h1=4/14 i H 1
==+Ri/R,=0.8, ha/h1=15.625/140 : :
! 1
0.6} 1 1 ]
B 1 1
= i !
2 i 1
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\
N\,

25
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Figure 12. Variations of static deflection of the center of
the microplate against changes in electrostatic voltage for
the two-layered microplate with changes in radius and
thickness when its volume remains constant.
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Figure 13. Variations of natural frequency against

changes in electrostatic voltage for the two-layered

microplate with changes in radius and thickness by

assuming the volume remains constant.

exceeding a specific value of the second-layer radius,
this behavior is reversed. These figures show that
the maximum value of the natural frequency and the
minimum value of static deflection occur when the
second layer covers 50% of the first layer.

Figure 14 shows that when the second layer covers
20% of the first layer, by increasing the value of the
second-layer radius to 50% of the first-layer radius, the
amplitude and nonlinear shift of response frequency de-
crease; in addition, these parameters behave inversely
once the second-layer radius value increases to 80%.
In fact, as the radius of the second layer decreases,
flexural stiffness increases due to an increase in the
thickness of the middle section of the microplate, which
has an important role in equivalent bending stiffness in
the system. According to Figures 6-8, increasing the
bending stiffness decreases static deflection, increases
natural frequency and pull-in voltage, and decreases
the nonlinear natural shift of resonance frequency. As

1.8

1.6
R;/Ro=0.2,ho/h1=25/14
1.4
1.2
1.0- R;/R,=0.8,ha/h1=15.625/140
0.8

Ri/Ro=0.5, hs/h1=4/14

0.6
0.4
0.2
T T — T
-1.0 -0.5 0.0 0.5 1.0

Figure 14. Variations of vibration amplitude considering
the amount of changes in o with the variation of thickness
and radius when the volume remains constant, ¢ = 0.169.

the process goes on and the radius of the second
layer decreases more, the second layer becomes like
a concentrated mass in the middle of the microplate.
In fact, the microplate acts like a one-layered circular
plate with a concentrated mass in its center. Therefore,
the variation of the mechanical behavior is reversed.

7. Conclusion

In the present study, the static deflection, natural
frequency, pull-in voltage, and frequency response func-
tion of a two-layered clamped microplate subjected to
electrostatic actuation were studied. First, non-linear
equations of motion were derived based on the instruc-
tions of Classical Laminated Plate Theory (CLPT).
Then, differential equations governing the static de-
flection and frequency of free vibration around the
system static position were solved by means of Galerkin
approach. Three mode shapes of a nonuniform clamped
microplate were used as the comparison functions.
Moreover, the equations of vibration around the static
position were separated using Galerkin method and,
then, solved by the multiple scale perturbation theory.

In this study, the mechanical behavior of the sys-
tem was examined for different values of the radius and
thickness of the second layer. It was observed that an
increase in the value of the second-layer radius when its
thickness remains constant and an increase in the value
of the second-layer thickness when its radius remains
constant led to an increase in the pull-in voltage and
natural frequency while decreasing the static deflection,
non-linear shift of resonance frequency, and steady
static response amplitude.

It was shown that when the second layer was
deposited on the whole area of the first layer, by
decreasing the value and increasing the thickness of the
first-layer radius when its volume remained constant,
static deflection decreased and natural frequency in-
creased before reaching a specific value of the second-
layer radius; then, this behavior of these parameters
was reversed. The results showed that the highest
frequency and lowest static deflection occurred when
the second layer covered fifty percent of the first
layer. This result can be used for designing high-speed
microsensors.
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