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Abstract. This paper obtains optical soliton solutions in birefringent �bers that are
studied in the presence of four-wave mixing. The extended trial function scheme is the
integration algorithm, which is applied. Both Kerr law and parabolic laws are taken into
account. The soliton solutions are presented with relevant integrability criteria.
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1. Introduction

Birefringence is a very common phenomenon in optical
�bers. The aspect of pulse polarization, which leads to
birefringence, is unavoidable and unwanted. Therefore,
it is important to study these split pulses and retrieve
their soliton solutions through a variety of integration
schemes that are at disposal in present times [1{30]. An
additional factor is that this birefringence comes with
four-Wave Mixing (4WM) that serves as an additional
unwanted feature. This is true for both Kerr law and
parabolic law �bers. It is well known that Kerr law
nonlinearity, also known as cubic nonlinearity, arises
when refractive index is dependent on the intensity
of light [2]. The second form of nonlinearity that
is studied in this paper is parabolic law, which is
alternatively referred to as the cubic-quintic nonlinear
form. This law appears in crystals; in particular, for
p -toluene sulfonate crystals, the quintic nonlinearity
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dominates [2]. This paper retrieves soliton solutions to
birefringent �bers in the presence of 4 WM for both
of these waveguides by the aid of a rich and powerful
integration scheme.

There are a variety of mathematical methods that
have been implemented to study the phenomena of
birefringence in optical �bers. These are the familiar
method of undetermined coe�cients labeled in the
papers as ansatz approach [1,3,11,23{26], Darboux
transform [29], modi�ed simple equation method [4],
trial function method [4], and the extended trial
function scheme [5,8{10,13,30]. The last approach,
namely the extended trial function scheme, was �rst
reported during 2013 [13]. Later, this method has
gained popularity and has been successfully applied
to a variety of nonlinear phenomena. These include
the study of shallow-water waves [8], Dense Wavelength
Division Multiplexing (DWDM) topology [9], magneto-
optic waveguides [10], and optical soliton dynamics
with Biswas-Milovic equation [30]. Each of these
algorithms has its relative merits and demerits, as
indicated in the respective works. This paper will
apply the extended trial function method in detail to
retrieve soliton solutions to birefringent �bers studied
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in the presence of Four-Wave Mixing (FWM) with two
nonlinear forms, and they are Kerr law and parabolic
law. Notably, one needs to apply the phase-matching
condition for integrability purposes because of the
presence of 4 WM.

While the governing model is considered with
Kerr and parabolic laws of nonlinearity, there are a few
features that are deliberately not considered. They are
the e�ects of higher order dispersions such as third-
Order Dispersion (3OD) and fourth-Order Dispersion
(4OD). These terms when treated with additional
strong perturbative e�ects such as self-steepening and
nonlinear dispersion will be studied in the future with
this integration scheme. An additional integration
scheme to retrieve soliton solutions with 3OD and 4OD
is the application of Lie transform, which is beyond
the scope of the current work. The current research
focuses on the unperturbed model with the e�ect of
4WM e�ects only. It is also well known that these
3OD and 4OD introduce the e�ect of dispersive wave
emission, also commonly known as soliton radiation.
These are non-trivial aspects that are also omitted
from this paper. The e�ects of soliton radiation
cannot be handled by the aid of extended trial function
method. Instead, additional integration schemes are
to be implemented in this case. They stem from
the method beyond all-order asymptotics, variational
principle, or the inverse scattering transform. Such
studies are reserved for future endeavors. The rest of
the paper gears up details of extended trial function
scheme applied to birefringent �bers with 4WM that
are enumerated in the subsequent sections.

2. Kerr law nonlinearity

The simpli�ed version of the governing equation for
soliton dynamics in birefringent �bers that follow Kerr
law nonlinearity is given by the coupled Nonlinear
Schr�odinger's Equation (NLSE) in its dimensionless
form [4,24,25]:

iqt+aqxx+bqxt+
�
�1jqj2+�1jrj2� q+�1q�r2 =0; (1)

irt+arxx+brxt+
�
�2jqj2+�2jrj2� r+ �2r�q2 =0: (2)

This coupled system of NLSEs given by Eqs. (1) and (2)
governs soliton propagation through nonlinear optical
�bers with Kerr law nonlinearity. Here, a represents
the coe�cients of Group Velocity Dispersion (GVD),
while b gives coe�cients of spatio-temporal dispersion.
Then, �l and �l for l = 1; 2 are the coe�cients of Self-
Phase Modulation (SPM) and Cross-Phase Modulation
(XPM), respectively. Finally, �l gives the 4 WM terms.

After picking the starting hypothesis to be:

q(x; t) = P1(�) exp[i�(x; t)]; (3)

and:
r(x; t) = P2(�) exp[i�(x; t)]; (4)

where:
� = k(x� vt); (5)

and the phase component � is:

�(x; t) = ��x+ !t+ �; (6)

so that the real-part equation changes to:

k2(a� bv)P 001 +
�
b!�� ! � a�2�P1 + �1P 3

1

+ (�1 + �1)P1P 2
2 = 0; (7)

and:
k2(a� bv)P 002 +

�
b!�� ! � a�2�P2 + �2P 3

2

+ (�2 + �2)P2P 2
1 = 0: (8)

The imaginary equation yields the speed of the soliton,
as indicated earlier [25]. From the phase component, �
is the soliton frequency, while ! gives the soliton wave
number and, �nally, � is the soliton phase constant.
This coupled system given by Eqs. (7) and (8) will be
now analyzed further, in the next subsection, to seek
bright, dark, and singular solitons.

2.1. Extended trial function approach
To start with the extraction of solutions to Eqs. (7) and
(8), the following assumption for the soliton structure
is made:

P1 =
&X
i=0

�i	i; (9)

P2 =
~&X
i=0

~�i	i; (10)

where:

(	0)2 =�(	)=
�(	)
�(	)

=
�%	% + � � �+ �1	 + �0

��	� + � � �+ �1	 + �0
:
(11)

Here, �0; � � � ; �& , ~�0; � � � ; ~�~& , �0; � � � ; �%, and �0; � � � ; ��
are constants to be determined later. Then, Eq. (11)
can be reduced to the elementary integral form as
follows:

�(� � �0) =
Z

d	p
�(	)

=
Z s

�(	)
�(	)

d	: (12)

According to the balancing principle [28], one deter-
mines a relation of %, �, &, and ~& is given by:

& = ~& =
%� �� 2

2
: (13)

In order to make �(	) and �(	) polynomials in
Eq. (11) have the possible least degree, that is, to have
the simplest form of the integral given in Eq. (12), let
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us choose % = 4, � = 0, and & = ~& = 1 in Eq. (13).
This means that the extended trial function approach
suggests using the �nite expansions:

P1 = �0 + �1	; (14)

P2 = ~�0 + ~�1	; (15)

where �i, ~�i (i = 0; 1) are constants to be determined
later such that �1 6= 0 and ~�1 6= 0, and 	 satis�es
Eq. (11). Substituting these expansions into Eqs. (7)
and (8) and solving the resulting system of algebraic
equations, we recover by Eqs . (16) as shown in Box I,
where H is given by:

H = (�1 + �1) (�2 + �2)� �1�2: (17)

Substituting values of Eqs. (16) into Eqs. (11) and (12)
leads to:

�(� � �0) = 

Z

d	p
�(	)

; (18)

where:

�(	) = 	4 +
�3

�4
	3 +

�2

�4
	2 +

�1

�4
	 +

�0

�4
;


 =
r
�0

�4
: (19)

As a consequence, one recovers the traveling wave
solutions to the model governed by Eqs. (1) and (2)
in the forms:

When �(	) = (	 � �1)4, Eqs. (20) and (21) are
obtained as shown in Box II;

When �(	) = (	 � �1)3(	 � �2) and �2 > �1,
Eqs. (22) and (23) are obtained as shown in Box III;
When �(	) = (	��1)2(	��2)2, Eqs. (24){(27) are
obtained as shown in Box IV;
When �(	) = (	 � �1)2(	 � �2)(	 � �3) and �1 >
�2 > �3, Eqs. (28) and (29) are obtained as shown in
Box V;
When �(	) = (	��1)(	��2)(	��3)(	��4) and
�1 > �2 > �3 > �4 Eqs. (30) and (31) are obtained
as shown in Box VI, where modulus m is given by:

m2 =
(�2 � �3)(�1 � �4)
(�1 � �3)(�2 � �4)

: (32)

It is noted that �j for j = 1; � � � ; 4 is the root of the
following equation:

�(	) = 0: (33)

Under the conditions �0 = ��1�1, ~�0 = �~�1�1, and
�0 = 0, Solutions (20){(29) can be reduced to exact
solutions in the following forms:

Plane wave solutions are obtained by Eqs. (34){(37)
as shown in Box VII.
Singular optical soliton solutions are obtained by
Eqs. (38) and (39) as shown in Box VIII.
Finally, bright optical soliton solutions are obtained
by Eqs. (40) and (41) as shown in Box IX, where:

M =
2�1(�1 � �2)(�1 � �3)

�3 � �2
; (42)

�1 = � i~�1
p
�1 � �2 + �1p��2 + �1 � �2

;

~�0 = � i�0
p��2 + �1 � �2p
�1 � �2 + �1

;

�0 = �2k2�4(a� bv) (�2 � �1 + �2)
~�2
1H ;

�3 = �4i�4�0
p��2 + �1 � �2

~�1
p
�1 � �2 + �1

;

�1 = �2i�0
p��2 + �1 � �2

�
4�4�2

0 (�2 � �1 + �2)� �2~�2
1 (�1 � �2 + �1)

�
~�3
1 (�1 � �2 + �1)3=2 ;

! =
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

;

�0 = �0; �2 = �2; �4 = �4; �0 = �0; ~�1 = ~�1: (16)

Box I
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q(x; t) =

8<:�0 + �1�1 � �1


k
�
x� n2a��b!

b��1

o
t
�� �0

9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (20)

r(x; t) =

8<:~�0 + ~�1�1 � ~�1


k
�
x� n 2a��b!

b��1

o
t
�� �0

9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (21)

Box II

q(x; t) =

8><>:�0 + �1�1 +
4�1
2(�2 � �1)

4
2 � h(�1 � �2)
�
k
�
x� n2a��b!

b��1

o
t
�� �0�i2

9>=>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (22)

r(x; t) =

8>>><>>>:~�0 + ~�1�1 +
4~�1
2(�2 � �1)

4
2 �
�
(�1 � �2)

�
k
�
x�

�
2a�� b!
b�� 1

�
t
�
� �0

��2

9>>>=>>>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (23)

Box III

fM =
2~�1(�1 � �2)(�1 � �3)

�3 � �2
; (43)

Q =
k
p

(�1 � �2)(�1 � �3)



; (44)

R =
2�1 � �2 � �3

�3 � �2
: (45)

Note that the amplitudes of the solitons are given
by Eqs. (42) and (43), while the inverse width of
the soliton is given by Eq. (44). These solitons are
valid for �1 < 0 and ~�1 < 0. Moreover, under the
conditions �0 = ��1�2, ~�0 = �~�1�2, and �0 = 0, Jacobi
elliptic function solutions (30) and (31) are reduced to

Eqs. (46) and (47) as shown in Box X, where:

M1 =
�1(�1 � �2)(�4 � �2)

�1 � �4
; (48)

fM1 =
~�1(�1 � �2)(�4 � �2)

�1 � �4
; (49)

R1 =
�4 � �2

�1 � �4
; (50)

Qj=
(�1)jk

p
(�1��3)(�2��4)

2

for j = 1; 2:

(51)
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q(x; t) =

8>><>>:�0 + �1�2 +
�1(�2 � �1)

exp
�
�1 � �2




�
k
�
x�

�
2a�� b!
b�� 1

�
t
�
� �0

��
� 1

9>>=>>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (24)

r(x; t) =

8<:~�0 + ~�1�2 +
~�1(�2 � �1)

exp
h
�1��2




�
k
�
x� n2a��b!

b��1

o
t
�� �0�i� 1

9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (25)

and:

q(x; t) =

8<:�0 + �1�1 +
�1(�1 � �2)

exp
h
�1��2




�
k
�
x� n 2a��b!

b��1

o
t
�� �0�i� 1

9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (26)

r(x; t) =

8>><>>:~�0 + ~�1�1 +
~�1(�1 � �2)

exp
�
�1 � �2




�
k
�
x�

�
2a�� b!
b�� 1

�
t
�
� �0

��
� 1

9>>=>>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (27)

Box IV

Remark 1: When the modulus m ! 1, singular
optical soliton solutions are recovered by Eqs. (52) and
(53) as shown in Box XI, where �3 = �4.

Remark 2: However, if m ! 0, the following
periodic singular solutions are obtained by Eqs. (54)
and (55) as shown in Box XII, where �2 = �3.

3. Parabolic law nonlinearity

Optical solitons in birefringent �bers with parabolic
law nonlinearity are governed by the following coupled
NLSE [25]:

iqt + aqxx +
�
k1 jqj2 + 2k1 jrj2

�
q

+
�
k2 jqj4 + 3k2 jrj4 + 6k2 jqj2 jrj2

�
q

+
�
k1+3k2jqj2+2k2jrj2� r2q�+k2r3 (q�)2 =0; (56)

irt + arxx +
�
k1 jrj2 + 2k1 jqj2

�
r

+
�
k2 jrj4 + 3k2 jqj4 + 6k2 jqj2 jrj2

�
r

+
�
k1+3k2jrj2+2k2jqj2� q2r�+k2q3 (r�)2 =0: (57)

Eqs. (56) and (57) represent the model for the propaga-
tion of optical solitons through birefringent �bers that
maintain parabolic law nonlinearity. In Eqs. (56) and
(57), a is the coe�cient of GVD, while kl for l = 1; 2 are
the coe�cients of SPM and XPM terms, respectively.
The last two terms in Eqs. (56) and (57) account for
4 WM. Here, 4 WM is a nonlinear e�ect that stems
from third-order nonlinearity. It occurs when at least
two di�erent frequency components co-propagate in
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q(x; t) =

8>>>><>>>>:�0 + �1�1 � 2�1(�1 � �2)(�1 � �3)

2�1 � �2 � �3 + (�3 � �2) cosh

"
k
p

(�1 � �2)(�1 � �3)



�
x�

�
2a�� b!
b�� 1

�
t
�#
9>>>>=>>>>;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
;

(28)

r(x; t) =

8>><>>:~�0 + ~�1�1 � 2~�1(�1 � �2)(�1 � �3)

2�1 � �2 � �3 + (�3 � �2) cosh
�
k
p

(�1��2)(�1��3)



�
x� n2a��b!

b��1

o
t
��
9>>=>>;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (29)

Box V

q(x; t) =

8>><>>:�0 + �1�2 +
�1(�1 � �2)(�4 � �2)

�4 � �2 + (�1 � �4)sn2
�
�
p

(�1��3)(�2��4)
2


�
k
�
x� n 2a��b!

b��1

o
t
�� �0� ;m�

9>>=>>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (30)

r(x; t) =

8>><>>:~�0 + ~�1�2 +
~�1(�1 � �2)(�4 � �2)

�4 � �2 + (�1 � �4)sn2
�
�
p

(�1��3)(�2��4)
2


�
k
�
x� n2a��b!

b��1

o
t
�� �0� ;m�

9>>=>>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (31)

Box VI

some nonlinear medium. In addition, x represents the
spatial variable, while t represents temporal variable.
Finally, q(x; t) and r(x; t) are the complex-valued wave
pro�les for the polarized solitons [1,2,8{11].

In this case, substituting Eqs. (3){(6) into
Eqs. (56) and (57) and, then, decomposing into real
and imaginary parts give:�

! + a�2�Pl�k1P 3
l �3k1PlP 2

�l �k2P 5
l �5k2PlP 4

�l

� 9k2P 3
l P

2
�l � k2P 2

l P
3
�l � ak2P 00l = 0; (58)

and:

�k (v + 2a�)P 0l = 0; (59)

respectively, where l = 1; 2 and �l = 3 � l. From the
imaginary-part equation, it is possible to obtain the
speed of the soliton as follows:

v = �2a�: (60)

Real-part Eq. (58) is written as the following coupled
system of equations:�

!+a�2�P1�k1P 3
1 �3k1P1P 2

2 �k2P 5
1 �5k2P1P 4

2

� 9k2P 3
1P

2
2 � k2P 2

1P
3
2 � ak2P 001 = 0; (61)
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q(x; t) =

8<:� �1


k
�
x� n2a��b!

b��1

o
t
�9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (34)

r(x; t) =

8<:� ~�1


k
�
x� n 2a��b!

b��1

o
t
�9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (35)

q(x; t) =

8><>: 4�1
2(�2 � �1)

4
2 � hk(�1 � �2)
�
x� n 2a��b!

b��1

o
t
�i2

9>=>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (36)

r(x; t) =

8><>: 4~�1
2(�2 � �1)

4
2 � hk(�1 � �2)
�
x� n2a��b!

b��1

o
t
�i2

9>=>;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (37)

Box VII

q(x; t) =
�
�1(�2 � �1)

2

�
1� coth

�
k(�1 � �2)

2


�
x�

�
2a�� b!
b�� 1

�
t
����

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (38)

r(x; t) =
�

~�1(�2 � �1)
2

�
1� coth

�
k(�1 � �2)

2


�
x�

�
2a�� b!
b�� 1

�
t
����

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (39)

Box VIII

�
!+a�2�P2�k1P 3

2 �3k1P2P 2
1 �k2P 5

2 �5k2P2P 4
1

� 9k2P 3
2P

2
1 � k2P 2

2P
3
1 � ak2P 002 = 0: (62)

Using the balancing procedure between P 00l and P 5
l in

Eqs. (61) and (62), we recover that:

N =
1
2
: (63)

To obtain an analytic solution, we employ the trans-
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q(x; t) =

8<: M

R+ cosh
h
Q
�
x� n2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (40)

r(x; t) =

8<: fM
R+ cosh

h
Q
�
x� n2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (41)

Box IX

q(x; t) =

8<: M1

R1 + sn2
h
Qj
�
x� n2a��b!

b��1

o
t
�
; (�2��3)(�1��4)

(�1��3)(�2��4)

i9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (46)

r(x; t) =

8<: fM1

R1 + sn2
h
Qj
�
x� n 2a��b!

b��1

o
t
�
; (�2��3)(�1��4)

(�1��3)(�2��4)

i9=;
� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (47)

Box X

q(x; t) =

8<: M1

R1 + tanh2
h
Qj
�
x� n2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (52)

r(x; t) =

8<: fM1

R1 + tanh2
h
Qj
�
x� n 2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (53)

Box XI
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q(x; t) =

8<: M1

R1 + sin2
h
Qj
�
x� n 2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
; (54)

r(x; t) =

8<: fM1

R1 + sin2
h
Qj
�
x� n 2a��b!

b��1

o
t
�i9=;

� exp

"
i

(
��x+

 
�2~�2

1H (�1 � �2 + �1) + 2�4 (�2 � �1 + �2)
�
a�2 (�1 � �2 + �1)� 3�2

0H�
2�4(b�� 1) (�1 � �2 + �1) (�2 � �1 + �2)

!
t+ �

)#
: (55)

Box XII

formations:

P1 = U
1
2

1 = U
1
2

2 = P2; (64)

in Eqs. (61) and (62) to �nd:

4
�
! + a�2�U2

1 � 16k1U3
1 � 64k2U4

1

� ak2
n

2U1U 001 � (U 01)2
o

= 0; (65)

4
�
! + a�2�U2

2 � 16k1U3
2 � 64k2U4

2

� ak2
n

2U2U 002 � (U 02)2
o

= 0: (66)

This coupled system given by Eqs. (65) and (66) will
be now analyzed further in the next subsection.

3.1. Extended trial function approach
This subsection will retrieve optical soliton solutions
to the model governed by Eqs. (56) and (57) by the
extended trial function approach. By balancing the
order of UlU 00l and U4

l in Eqs. (65) and (66), a relation
of %, �, &, and ~& is determined as follows:

& = ~& =
%� �� 2

2
: (67)

When % = 4, � = 0, and & = ~& = 1 in Eq. (67), the
solutions of Eqs. (65) and (66) can be written in the
forms:

U1 = �0 + �1	; (68)

U2 = ~�0 + ~�1	; (69)

where �i, ~�i (i = 0; 1) are constants to be determined
later such that �1 6= 0 and ~�1 6= 0, and 	 satis�es

Eq. (11). Substituting these solutions into Eqs. (65)
and (66) and solving the resulting system of algebraic
equations, we recover:

Set 1:

�0 = �0; �2 = �2; �0 = �0;

�0 = ~�0; �1 = ~�1;

�1 =
�0~�1

~�0
+

~�0
�
ak2�2 + 8�0~�0 (k1 + 8k2~�0)

�
ak2~�1

;

�3 = �8�0~�1 (3k1 + 32k2~�0)
3ak2 ;

�4 = �64k2�0~�2
1

3ak2 ;

! = �a�2 + 6k1~�0 + 32k2~�2
0 +

ak2�2

4�0
: (70)

Set 2:
Eqs. (71) are shown in Box XIII. Substituting the
solution set (70) into Eqs. (11) and (12) leads to:

�(� � �0) = 
1

Z
d	p
�(	)

; (72)

where:

�(	) = 	4 +
�3

�4
	3 +

�2

�4
	2 +

�1

�4
	 +

�0

�4
;


1 =
r
�0

�4
: (73)

As a consequence, one obtains the traveling wave
solutions to the model governed by Eqs. (56) and (57)
in the following forms:
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�0 = �0; �2 = �2; �0 = ~�0; �1 = ~�1;

�1 =
�0~�2

1 (3k1 + 32k2~�0)3 + �2~�2
0 (3k1 + 16k2~�0)2 (3k1 + 32k2~�0)

~�0~�1 (3k1 + 16k2~�0) (9k2
1 + 240k1k2~�0 + 1280k2

2 ~�2
0 )

;

�3 =
32k2~�1 (3k1 + 32k2~�0)

�
�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2

1
�

~�0 (3k1 + 16k2~�0) (9k2
1 + 240k1k2~�0 + 1280k2

2 ~�2
0 )

;

�4 =
256k2

2 ~�2
1
�
�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2

1
�

~�0 (3k1 + 16k2~�0) (9k2
1 + 240k1k2~�0 + 1280k2

2 ~�2
0 )
;

�0 = � 12ak2k2
�
�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2

1
�

~�0 (3k1 + 16k2~�0) (9k2
1 + 240k1k2~�0 + 1280k2

2 ~�2
0 )
;

! = �a�2 +
~�0 (3k1 + 16k2~�0)

��9k2
1�2 + 48k1k2�2~�0 + 256k2

2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

: (71)

Box XIII

When �(	) = (	� �1)4:

q(x; t)=r(x; t)=
�

~�0+~�1�1 � ~�1
1

k (x+ 2a�t)��0
� 1

2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
;

(74)

When �(	) = (	� �1)3(	� �2) and �2 > �1:

q(x; t) = r(x; t) =

(
~�0 + ~�1�1

+
4~�1
2

1(�2 � �1)
4
2

1 � [(�1 � �2) (k (x+ 2a�t)� �0)]2

) 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
;

(75)

When �(	) = (	� �1)2(	� �2)2:

q(x; t) = r(x; t) =

(
~�0 + ~�1�2

+
~�1(�2 � �1)

exp
h
�1��2


1
(k (x+ 2a�t)� �0)

i� 1

) 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
;

(76)

and:

q(x; t) = r(x; t) =

(
~�0 + ~�1�1

+
~�1(�1 � �2)

exp
h
�1��2


1
(k (x+ 2a�t)� �0)

i� 1

) 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
:

(77)

When �(	) = (	 � �1)2(	 � �2)(	 � �3) and �1 >
�2 > �3, Eq. (78) is obtained as shown in Box XIV;

When �(	) = (	��1)(	��2)(	��3)(	��4) and
�1 > �2 > �3 > �4, Eqs. (79) is obtained as shown in
Box XV, where:

m2 =
(�2 � �3)(�1 � �4)
(�1 � �3)(�2 � �4)

: (80)
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q(x; t) =r(x; t) =

8>><>>:~�0 + ~�1�1 � 2~�1(�1 � �2)(�1 � �3)

2�1 � �2 � �3 + (�3 � �2) cosh
�
k
p

(�1��2)(�1��3)

1

(x+ 2a�t)
�
9>>=>>;

1
2

� exp
�
i
�
��x+

�
�a�2 + 6k1~�0 + 32k2~�2

0 +
ak2�2

4�0

�
t+ �

��
: (78)

Box XIV

q(x; t) = r(x; t) =

8>><>>:~�0 + ~�1�2 +
~�1(�1 � �2)(�4 � �2)

�4 � �2 + (�1 � �4)sn2
�
�
p

(�1��3)(�2��4)
2
1

(k (x+ 2a�t)� �0) ;m
�
9>>=>>;

1
2

� exp
�
i
�
��x+

�
�a�2 + 6k1~�0 + 32k2~�2

0 +
ak2�2

4�0

�
t+ �

��
: (79)

Box XV

Note that �j for j = 1; � � � ; 4 is the root of the following
equation:

�(	) = 0: (81)

Under the conditions ~�0 = �~�1�1 and �0 = 0, Solutions
(74){(78) can be reduced to exact solutions in the
following forms:

Rational function solutions are:

q(x; t) = r(x; t) =
�
� ~�1
1

k(x+ 2a�t)

� 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
;

(82)

q(x; t)=r(x; t)=

(
4~�1
2

1(�2��1)
4
2

1�[k(�1��2) (x+2a�t)]2

) 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
: (83)

Traveling wave solutions are:

q(x; t) = r(x; t) =

(
~�1(�2 � �1)

2

 
1

� coth
�
k(�1 � �2)

2
1
(x+ 2a�t)

�!) 1
2

� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
: (84)

Finally, bright soliton solutions are:

q(x; t)=r(x; t)=

(
M2

(R2+cosh [Q3 (x+2a�t)])
1
2

)
� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
; (85)

where:

M2 =
�

2~�1(�1 � �2)(�1 � �3)
�3 � �2

� 1
2

; (86)

Q3 =
k
p

(�1 � �2)(�1 � �3)

1

; (87)
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R2 =
2�1 � �2 � �3

�3 � �2
: (88)

Note that the amplitude of the solitons is given by
Eq. (86), while the inverse width of the solitons is
given by Eq. (87). These solitons are valid for ~�1 < 0.
On the other hand, under the conditions ~�0 = �~�1�2
and �0 = 0, Jacobi elliptic function solutions (79) are
reduced to:
q(x; t) = r(x; t)

=

8><>: M3�
R3+sn2

h
Qj (x+2a�t) ; (�2��3)(�1��4)

(�1��3)(�2��4)

i� 1
2

9>=>;
� exp

"
i

(
��x+

 
�a�2+6k1~�0+32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
; (89)

where:

M3 =
�

~�1(�1 � �2)(�4 � �2)
�1 � �4

� 1
2

; (90)

R3 =
�4 � �2

�1 � �4
; (91)

Qj =
(�1)jk

p
(�1��3)(�2��4)

2
1
for j = 4; 5:

(92)

Remark 3: When the modulus m ! 1, the second
form of singular optical soliton solutions is obtained:

q(x; t)=r(x; t)=

8<: M3�
R3+tanh2 [Qj (x+2a�t)]

� 1
2

9=;
� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
; (93)

where �3 = �4.

Remark 4: However, if m ! 0, the following
periodic singular solutions emerge:

q(x; t) = r(x; t) =

8<: M3�
R3 + sin2 [Qj (x+ 2a�t)]

� 1
2

9=;
� exp

"
i

(
��x+

 
�a�2 + 6k1~�0 + 32k2~�2

0

+
ak2�2

4�0

!
t+ �

)#
; (94)

where �2 = �3.
Similarly, substituting values of Eqs. (71) into

Eqs. (11) and (12) leads to:

�(� � �0) = 
2

Z
d	p
�(	)

; (95)

where:

�(	) = 	4 +
�3

�4
	3 +

�2

�4
	2 +

�1

�4
	 +

�0

�4
;


2 =
r
�0

�4
: (96)

As a consequence, one gets the traveling wave solutions
to the model governed by Eqs. (56) and (57) in the
following forms:

When �(	) = (	 � �1)4, Eq. (97) is obtained as
shown in Box XVI;
When �(	) = (	 � �1)3(	 � �2) and �2 > �1,
Eq. (98) is obtained as shown in Box XVII;
When �(	) = (	��1)2(	��2)2, Eqs. (99) and (100)
are obtained as shown in Box XVIII;
When �(	) = (	 � �1)2(	 � �2)(	 � �3) and �1 >
�2 > �3, Eq. (101) is obtained as shown in Box XIX;

When �(	) = (	��1)(	��2)(	��3)(	��4) and
�1 > �2 > �3 > �4, Eq. (102) is obtained as shown
in Box XX, where:

q(x; t) = r(x; t) =
�

~�0 + ~�1�1 � ~�1
2

k (x+ 2a�t)� �0
� 1

2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(97)

Box XVI
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q(x; t) = r(x; t) =

(
~�0 + ~�1�1 +

4~�1
2
2(�2 � �1)

4
2
2 � [(�1 � �2) (k (x+ 2a�t)� �0)]2

) 1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(98)

Box XVII

q(x; t) = r(x; t) =

8<:~�0 + ~�1�2 +
~�1(�2 � �1)

exp
h
�1��2


2
(k (x+ 2a�t)� �0)

i� 1

9=;
1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
;
(99)

and:

q(x; t) = r(x; t) =

8<:~�0 + ~�1�1 +
~�1(�1 � �2)

exp
h
�1��2


2
(k (x+ 2a�t)� �0)

i� 1

9=;
1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(100)

Box XVIII

q(x; t) = r(x; t) =

8>><>>:~�0 + ~�1�1 � 2~�1(�1 � �2)(�1 � �3)

2�1 � �2 � �3 + (�3 � �2) cosh
�
k
p

(�1��2)(�1��3)

2

(x+ 2a�t)
�
9>>=>>;

1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(101)

Box XIX

q(x; t) = r(x; t) =

8>><>>:~�0 + ~�1�2 +
~�1(�1 � �2)(�4 � �2)

�4 � �2 + (�1 � �4)sn2
�
�
p

(�1��3)(�2��4)
2
2

(k (x+ 2a�t)� �0) ;m
�
9>>=>>;

1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(102)

Box XX
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q(x; t) = r(x; t) =
�
� ~�1
2

k (x+ 2a�t)

� 1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
;
(105)

q(x; t) = r(x; t) =

(
4~�1
2

2(�2 � �1)
4
2

2 � [k(�1 � �2) (x+ 2a�t)]2

) 1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(106)

Box XXI

q(x; t) = r(x; t) =
�

~�1(�2 � �1)
2

�
1� coth

�
k(�1 � �2)

2
2
(x+ 2a�t)

��� 1
2

� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(107)

Box XXII

m2 =
(�2 � �3)(�1 � �4)
(�1 � �3)(�2 � �4)

: (103)

Note that �j for j = 1; � � � ; 4 is the root of the following
equation:

�(	) = 0: (104)

Under the conditions ~�0 = �~�1�1 and �0 = 0,
Eqs. (97){(101) can be reduced to exact solutions in
the following forms:

Plane wave solutions are obtained by Eqs. (105) and
(106) as shown in Box XXI;
Traveling wave solutions (singular optical solitons)

are obtained by Eq. (107) as shown in Box XXII;

Finally, bright soliton solutions are obtained by
Eq. (108) as shown in Box XXIII, where:

M4 =
�

2~�1(�1 � �2)(�1 � �3)
�3 � �2

� 1
2

; (109)

Q6 =
k
p

(�1 � �2)(�1 � �3)

2

; (110)

R4 =
2�1 � �2 � �3

�3 � �2
: (111)

q(x; t) = r(x; t) =

(
M4

(R4 + cosh [Q6 (x+ 2a�t)])
1
2

)
� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(108)

Box XXIII
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q(x; t) = r(x; t) =

8><>: M5�
R5 + sn2

h
Qj (x+ 2a�t) ; (�2��3)(�1��4)

(�1��3)(�2��4)

i� 1
2

9>=>;
� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(112)

Box XXIV

q(x; t) = r(x; t) =

8<: M5�
R5 + tanh2 [Qj (x+ 2a�t)]

� 1
2

9=;
� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1+16k2~�0)�16k2�0~�2
1 ]

!
t+�

)#
: (116)

Box XXV

Note that the amplitude of the solitons is given by
Eq. (109), while the inverse width of the solitons is
given by Eq. (110). These solitons are valid for ~�1 < 0.
Furthermore, under the conditions ~�0 = �~�1�2 and
�0 = 0, Jacobi elliptic function solutions (102) are
reduced to Eq. (112) as shown in Box XXIV, where:

M5 =
�

~�1(�1 � �2)(�4 � �2)
�1 � �4

� 1
2

; (113)

R5 =
�4 � �2

�1 � �4
; (114)

Qj =
(�1)jk

p
(�1��3)(�2��4)

2
2
for j = 7; 8:

(115)

Remark 5: When the modulus m ! 1, the second
form of singular optical soliton solutions is obtained by

Eq. (116) as shown in Box XXV, where �3 = �4.

Remark 6: However, if m ! 0, the periodic singular
solutions is obtained by Eq. (117) as shown in Box
XXVI, where �2 = �3.

4. Conclusions

This paper analyzed optical solitons in birefringent
�bers with Four-Ware Mixing (4WM) for Kerr and
parabolic laws of nonlinearity. The extended trial
function approach retrieved bright and singular soliton
solutions along with several other forms of waves that
include periodic singular waves and other solutions.
These solutions appeared with di�erent constraint
conditions that guarantee the existence of a variety
of waves. The phase-matching condition enables the
extraction of these waves for birefringent �bers with
4WM. The results of this paper are very important

q(x; t) = r(x; t) =

8<: M5�
R5 + sin2 [Qj (x+ 2a�t)]

� 1
2

9=;
� exp

"
i

(
��x+

 
�a�2 +

~�0 (3k1 + 16k2~�0)
��9k2

1�2 + 48k1k2�2~�0 + 256k2
2
�
�2~�2

0 � 6�0~�2
1
��

48k2 [�2~�0 (3k1 + 16k2~�0)� 16k2�0~�2
1 ]

!
t+ �

)#
:
(117)

Box XXVI
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in the �eld of nonlinear �ber optics since these exact
soliton solutions will be necessary to implement in the
telecommunications industry.
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