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Abstract. One of the most interesting topics in the �eld of human-machine interaction
is workload. In this paper, by using information theory concepts, the baud rates generated
in all subsystems of a generic simulator of piloting tasks were calculated; then, a unique
numerical index, which determines an estimate of the overall workload, was extracted.
To examine the e�ectiveness of the presented criteria, three tests with di�erent levels of
autopilot failure were designed in which existing workload was labeled based on the assumed
baud rates. A group of subjects carried out these tests as pilots while recording their own
ideas about perceived workload. Results con�rmed that there were statistically signi�cant
di�erences between the averages of scores assigned by subjects to the overall workload at
three levels of di�culty. Consequently, the proposed quantitative index was found e�ective
enough to determine workload levels in the simulator environment, thus facilitating the
creation of the needed scenario noticeably.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Workload factor is an interesting issue in the �eld of
human-machine interaction (e.g., a real airplane or a
ight simulator). Although there is no universally ac-
cepted de�nition of workload, it can be characterized as
a mental construct [1]. Mental workload represents the
portion of a human's information processing capacity
or resources, which is actually required to meet the
system demands [2]. In a general view, there are several
factors that a�ect the workload experienced by humans
including individual skill, training, experience, fatigue,
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and stress as well as the number of tasks, di�culty level
of tasks, and switching rate [3].

Workload monitoring is essential for tasks with
considerable cognitive demands such as those existing
in the ying vehicles [4,5]. Regardless of a real or
simulated ight, controlling an airplane undoubtedly
requires pilots' sustained mental e�ort and distribution
of attention resources among di�erent available tasks at
any moment. Today, highly exible autopilot systems
help pilots provide a smooth and comfortable ight,
thereby reducing the workload perceived by humans.
In this form of collaboration, once an autopilot mal-
function occurs, pilots need to change the level of
automation from a full supervisory mode to a certain
level of manual control, which can cause a sudden
increase in the workload level. It is accepted that a
change in the amount of workload can have a direct
impact on human performance [6,7].

Multi-Attribute Task Battery-II (MATB-II) is
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a standard applied simulation of the pilot's general
tasks designed in NASA [8]. This simulator has been
exploited as a useful tool in the relevant studies of
human-machine interaction in the authorized research
centers around the world, especially the US [9-12].
MATB-II incorporates the main skills necessary for a
pilot including tracking, monitoring, communications,
and resource management tasks. In a ight simulator
such as MATB-II, humans continuously receive infor-
mation from di�erent sources as the input and provide
adequate reactions based on his situational awareness.
The input information creates, in fact, the workload;
therefore, if the produced information in the system
is estimated in some way, it may be possible to cate-
gorize workload levels involved in di�erent operational
conditions quantitatively [13].

The application of experts' knowledge is a com-
mon method for creating a scenario concerning the
simulation of piloting tasks, that is, to provide a
desired amount of workload, a designer determines the
events that occur in the scenario based on his/her own
experience by a trial-and-error process. Obviously, in
some cases, this procedure can be too time consuming
and may not necessarily lead to an accurate design
considering workload requirements. This paper aims to
create a procedure through which designers can obtain
the speci�cations of the desired scenario systematically
so that the e�ect of varying degrees of di�culty de�ned
in the scenario can be reected on the output of
the subjective questionnaire �lled out by participants
during the experiment. By providing a clear systematic
routine for a scenario generation, the presented method
allows the designer to establish a type of relationship
between the adjustable parameters of the scenario and
the requirements considered in terms of di�culty levels.

The rest of this paper is organized in the following
sequence. Section 2 reports a literature review of
workload assessment techniques. Section 3 includes
three main subsections. First, the mathematical foun-
dation of the information theory is presented. Then,
the MATB-II simulator is introduced in brief, and the
generated input information for each of its subsystems
is separately calculated. Finally, some details of the
NASA-TLX questionnaire are given. Section 4 de-
scribes the conducted experiments completely, followed
by statistical analysis of collected data as well as
discussion about the results. The conclusions of this
study are also provided in the last section.

2. Literature review

Generally, workload assessment in a system is possible
through subjective and objective approaches. Due to
their ease of use and relatively inexpensive application
with no need for any special equipment, subjective
rating scales are the most common tools to evaluate

the cognitive load associated with an activity. These
techniques have much popularity among operators due
to the opportunity they provide to comment on the
system's features. In addition, these types of methods
are suitably sensitive to the workload changes [14]. As
one of the known and most compatible techniques with
a subjective approach, the NASA-TLX is a standard
procedure for assessing the overall workload perceived
by the operator, which has been developed by the
Human Performance Research Group in the NASA
Ames Research Centre [15]. In comparison to other
subjective workload scales, the NASA-TLX has the
best sensitivity to changes at the workload levels and
the strongest operator acceptance [16]. This simple
and substantially e�cient questionnaire has been used
in many examples of various application areas [17].

In a recent study, Jaquess et al. investigated
the relationship between cognitive workload and at-
tentional reserve empirically [4]. In their conducted
tests, participants performed a ight simulator task at
three levels of challenge including easy, medium, and
high; in addition, the NASA-TLX was applied as a
whole measurement of task demands for veri�cation
purposes. In this way, it was found that cogni-
tive workload and attentional reserve were inversely
related. Orlandi and Brooks examined the e�ects
of ship handling maneuvers on the mental workload
and physiological reactions of marine pilots [7]. In
a shipping simulator, while recording the self-report
measures of task demand by means of the NASA-
TLX, pilots completed four berthing maneuvers that
are di�erentiated by two factors: level of di�culty and
familiarity with the port. Results demonstrated that
as the di�culty level of berthing maneuvers increased,
the workload level increased, too. Using a cognitive
structure, Park et al. developed a mathematical model
of workload considering the e�ects of task-related,
behavior related, and subject-related sources as well
as time pressure [18]. To investigate the ability of the
proposed method, they compared the model's outputs
with the subjective ratings of the NASA-TLX in an Air
Tra�c Control (ATC) task, which led to satisfactory
results. In another applicable study, Winter et al.
carried out some experiments in which participants
from an aviation university completed a ight between
two cities in a �xed-based ight-training device [19].
During each ight, participants applied two types of
instrument approach charts including electronic and
paper; it was indicated that the use of electronic charts
reduced their workload as measured by the NASA-
TLX.

Despite the advantages mentioned above, sub-
jective rating scales do not always lead to a correct
detection necessarily. For example, when the pilot
performance degrades, they tend to unconsciously
display a high degree of mental demand, even if not
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much e�ort is required [14]. Therefore, these forms
of rating are dependent on the people's willingness; if
they are not recorded immediately after the execution
of tasks, they may be disturbed by the e�ect of human
memory, too. In such circumstances, the necessity of
using objective criteria to assess workload is shown.
Accordingly, possible solutions in this respect involve
the use of the information theory. The advent of the
information theory is indebted to the work carried out
by Shannon in the 5th decade of the 20th century.
By employing the concepts related to the probability
theory, the information theory is used to build a quan-
titative index for measuring the information content
obtained through the observation of a signal [20];
in this way, the capacities of this theory in various
domains are illustrated [21-25]. With the advent of the
information theory, quantitative modeling of human
capacity in information processing was facilitated, and
the corresponding results can be explained in the form
of the Hick-Hyman law and Fitts' law. According
to the Hick-Hyman law, the reaction time of humans
is linearly correlated with the amount of information
existing in a stimulus signal [26,27]. In addition, Fitts
proved that the time needed for a person to make a
movement with a given average amplitude is a linear
function of a speci�c di�culty index [28].

Using information theory concepts, Phillips et
al. constructed a theoretical model of human-machine
interaction in the MATB simulator and used it to inves-
tigate the implicit strategy of humans empirically [29].
The implicit strategy is realized when the subject has
no prior knowledge of the contribution of each duty
in the scenario of a test. On the contrary, if the
subject becomes aware of this sort of information prior
to his engagement, the strategy will be explicit. The
outcomes of this study showed that, in the case of
the implicit strategy, humans do not weight di�erent
available tasks equally and, instead, tend to pay greater
attention to some speci�c tasks. In addition, the
operator's response ratio does not necessarily vary in
proportion to the amount of information generated in
the system. In another study, Walters focused on
determining the e�ect of the explicit strategy on a
person's performance in simultaneously running tasks
in the MATB environment [30]. In conducted tests,
subjects were given approximate information weighting
of each MATB-II component to inuence the strategy
they utilized. Following the analysis of collected data,
Walters concluded that human operators adjust their
strategy in response to di�culty changes, that is,
they are highly dependent on the awareness of the
component weighting for the strategy formulation while
dealing with more challenging scenarios. In a follow-
up to these researches, Phillips et al. compared the
performance of MATB operators using the implicit-
strategy with that of those using the explicit strat-

egy [31]. They found that the explicit-strategy group
achieved signi�cantly better performance scores than
the implicit-strategy group for every task di�culty level
tested. Consequently, these authors proved that an
e�ective strategy has a crucial role in human success in
multitasking performance conditions.

Camden validated an information-theory-based
model that provides an objective and meaningful mea-
sure to describe system complexity and overall multi-
tasking performance. Besides, he examined the e�ect
of multi sensorial feedback on an operator strategy
and performance in the MATB simulator [32]. Similar
to previous studies, his work rea�rmed that although
an operator's output increases when the volume of
input information increases, these changes will not
occur at the same rate. Moreover, it was observed
that multi-sensorial feedback related to some of the
MATB subsystems improved human performance in
these tasks, of course with undesirable costs in the
performance of tasks having no feedback. Hence, the
overall performance is not signi�cantly a�ected by the
presence of multi-sensorial feedback. In fact, Camden's
work reminds us again that human operators have a
maximum and �nite capacity to process information.
Lately, Liu et al. proposed and validated a mathemati-
cal model for user performance enhancement in a multi-
tasking platform, MATB-II [11]. This model included
quanti�cation of stimuli from each MATB-II subtask
as bits per second, selection of task di�culty and task
weight, as well as the rearrangement of task weights.
In a two-phase experimental approach, a signi�cant
improvement of user performance was proved after
readjusting tasks in relation to the o�ered method.

In this paper, by adopting an approach on the
basis of the information theory, the rate of input
information that must be processed by the pilot in the
simulator is calculated; in addition, in this fashion, an
objective methodology will be constructed to estimate
the real workload. Although the results attainable by
subjective approaches are available only after testing
due to their reliance on the operator's judgment, an
important advantage of the proposed idea is its pre-
dictability. In other words, the experiment designer can
satisfactorily approximate the di�culty level associated
with the scenario prior to its execution by subjects.

3. Methods and tools

3.1. Information theory
For a discrete stochastic variable X, h(X) is assumed
to be the function that presents the spatial information
content of X implicitly. In this stage, the formulation
of h(X) is unknown, and we should make an appropri-
ate selection of it. According to the information theory,
being aware of the value of X in each realization of
this stochastic variable will supply us with a certain
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amount of information that is proportional to the
possibility of observing that speci�c value for X. In
other words, if the obtained value has a high probability
of occurrence, the amount of information obtained
from the observation will be low, and vice versa; in
addition, if a value with a low probability of occurrence
is received, a greater volume of information will be
obtained.

This fact implies that h(X) should be determined
so that the �nal expression can be a monotonic function
of the probability distribution, p(X). On the other
hand, as an additional constraint, as expected, the
information resulting from the observations of two
independent discrete random variables X and Y should
be equal to the sum of the information acquired from
observing them separately.

Based on these two requirements, the numerical
metric derived from the information theory would be a
function as follows [33]:

h (X) = �log2p (X) : (1)

Of note, using base 2 in Eq. (1) leads to the expression
of h(X) in terms of binary elements or bits. In addition,
as expected, the negative sign ensures that h(X) is
always non-negative. In a special case, when X has
K states with a uniform probability of occurrence
(i.e., when X entropy is at the maximum), h(X) is
rewritable as in Eq. (2):

h (X) = log2K (2)

On the other hand, the di�culty index, h(X),
related to the Fitts' law stated in Section 2 has a
mathematical representation as follows [28]:

h (X) = log2
A

Ws=2
; (3)

where A is the average amplitude of movement, and Ws
is the tolerance range, i.e., the acceptable area where
the result of the movement is desirable to place.

On the basis of the concepts introduced above,
the baud rate of a stimulus signal can be de�ned. The
baud rate quantity (denoted by B) is calculated by
dividing the spatial information content of a signal by
its temporal information content, where the temporal
information content denoted by �t is de�ned as the
average time between the changes in the signal states
(the occurrence of events) [29]:

B =
h

�t
: (4)

If a system is composed of I subsystems, i =
fi1; :::; iIg, the information is created in each of them
with the independent baud rate of Bi; then, the total
baud rate generated in the system will be the sum of
the baud rates produced in all independent subsystems.
In other words [29]:

BTotal = �iBi = �i
hi

�ti
: (5)

3.2. MATB-II simulator
Figure 1 depicts the user interface of the MATB-II
simulator. Accordingly, for this simulator, the set of
i in Eq. (5) is i = fT, S, L, R, Cg, where T, S as well
as L, R, and C represent Tracking subsystem, Scales
and Lights sections of monitoring subsystem, Resource
management subsystem, and Communication subsys-
tem, respectively. Additional details of the MATB-
II subsystems will be discussed in the subsequent
sections [8].

3.2.1. Tracking subsystem
The tracking subsystem is the only part of the MATB-
II that simulates a continuous task. In this subsystem,
it is demanded to always keep a moving circle with
the diameter of D = l = 9 pixels at the minimum
distance from the center of the box so that it never goes
outside a �xed circle with the diameter of D0 = 3l = 27
pixels. Based on Fitts' law, such a constraint leads to
a tolerance range of Ws = D0 �D = 2D.

Throughout each simulation, the tracking subsys-
tem can operate in either automatic or manual mode.
Pilot inputs are ine�ective, and the tracking operation
is performed automatically by the autopilot in the
automatic mode; however, as soon as it is switched
to the manual mode, the task is delegated to the pilot.
In this condition, the operator will be able to control
the moving circle using a joystick; in doing so, it is
maintained at the center of the window as much as
possible. It is worth noting that, in our intended
application, switching to the manual mode, in fact, in-
dicates the occurrence of a failure in the autopilot. The
disturbance involved in the autopilot failure mode owns
a stochastic behavior, i.e., the cursor direction and the
amount of movement are random and not predictable
for the subject. In addition, the disturbance intensity
is adjustable by the experiment designer in one of the
three approximate average velocities of:

�VT = 4:50; 8:52; 12:35
pixels

s
:

If the scenario in which the moving circle drifts
with an average amplitude of AT = 3D over the mean
time step of �tT is considered, the continuous rejection
of this disturbance and keeping the moving circle inside
the �xed circle lead to the spatial information content
equivalent to the estimation attained based on Fitts'
law [28]:

hT = log2
3D

2D=2
= 1:59 bits: (6)

�tT is calculated through Eq. (7) at three di�erent
levels of the average velocity:
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Figure 1. General scheme of the MATB-II simulator.

�tT =
AT
�VT

=
27
�VT
: (7)

3.2.2. Monitoring subsystem
The monitoring subsystem comprises two subtasks
including scales and lights. Regarding this subsystem,
the subject is responsible for monitoring di�erent
components of the two subtasks and appropriately
responding to the occurred discrete stimulus. The
scales section, which appears at the bottom of the
window, consists of four graded columns. Under
normal conditions, the indicator of each column has
slight uctuations around the center. If one of the
indicators leaves the normal state, it will be transferred
to the top or bottom of the column and will continue
to uctuate there. Whenever this kind of deviation is
detected, the pilot's duty is to immediately react to
this event by pressing the relevant key (F1, F2, F3, or
F4).

Thus, in the scales segment, for each stimulus, the
subject encounters four possible keys to choose, that is,
Ks = 4. Substituting this value in Eq. (2) leads to:

hs = log24 = 2 bits: (8)

The lights section includes two symbolic lamps
with di�erent functionalities. During the regular
operation of the system, the lamp on the left with a

green light is continuously on as a sign of a normal
state. When it turns o�, indicating the departure from
the standard condition, the pilot should recover this
anomaly by pressing F5 key as soon as possible. On the
other hand, the lamp on the right is typically o� unless
it appears symbolically with a red light as evidence of
the occurrence of an emergency situation. Once the
red light turns on, the pilot has to show his awareness
of this situation in a short time by pressing F6 key and
turning the light to the o� mode.

Hence, for each event in the lights segment, there
is a possibility to press F5 or F6 key that will result in
KL = 2. Subsequently:

hL = log22 = 1 bit: (9)

Considering Eq. (5), �ts and �tL are the parameters
in the scenario that can be adjusted with regard to the
desired baud rate.

3.2.3. Resource management subsystem
Concerning the resource management subsystem, the
pilot's task is to maintain the levels of the remaining
fuel in tanks A and B within the acceptable range by
managing pumps 2 and 4. It is possible to turn on
and o� these two pumps by pressing keys 2 and 4 from
the keyboard so that they will change into green (active
mode) or background (passive mode) colors. Therefore,
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KR = 2 and the value of hR will be:

hR = log22 = 1 bit: (10)

At the beginning of the test, both tanks contained
2500 units of fuel with �xed consumption rates of _V =
500units

min . As a requirement for the normal operation of
the system, the fuel level in each tank should not exceed
the range of 2500 � �V units with �V = 100 units.
Moreover, the ow rates of pumps 2 and 4 are always
�xed at 2 _V ; therefore, regardless of pumps' on or o�
modes, the net ow rates will be permanently the same
constant of _V over time. With this con�guration, �tR
in Eq. (5) is the time needed for the fuel level to
reach from the middle reference line to one of the two
allowable upper or lower limits. Thus, it is possible to
obtain �tR through [30]:

�tR =
�V

_V
: (11)

In addition, as can be seen in Figure 1, at any
moment, one can �nd the remaining amount of fuel in
tanks A and B by checking the existing boxes under
these two tanks.

3.2.4. Communications subsystem
In the activities related to the communication subsys-
tem, the pilot is asked to change the current radio
and frequency to the requested radio and frequency
based on the voice message received. Each message
can structurally be divided into three main parts. Ini-
tially, the message begins by announcing the aircraft's
identi�cation code \NASA 504", which is constant in
all messages. Then, in the second part, one of the
four available radios including NAV1, NAV2, COM1,
or COM2 is instructed to tune, and the pilot will be
able to select this intended radio through one of F9,
F10, F11, or F12 keys. Consequently, according to
KCR = 4, the value of spatial information hCR will
be equal to:

hCR = log24 = 2 bits: (12)

At the end of the message, the required frequency,
which is composed of two integer and decimal parts,
is declared. To set the integer part of frequency,
the subject must use one of the upward or downward
arrows while holding the Ctrl key. The same procedure
is to be carried out for the decimal part except that Alt
key must be pressed instead of Ctrl. After completing
this process, it is necessary for the pilot to register the
values by pressing the Enter key. It should be noted
that, in the simulator, the frequency of NAV1 and
NAV2 ranges from 108.000 to 117.950 Hz with an incre-
ment of 0.050, and the frequency of COM1 and COM2
ranges from 118.000 to 135.975 Hz with an increment
of 0.025. In such a con�guration, after some algebraic

systematic operations, it can be demonstrated that the
average number of clicks required for the adjustment of
frequency is 14.63. Thus, KCF = 14:63 and we have:

hCF = log214:63 = 3:84 bits: (13)

Through a summation of the numbers calculated
for hCR and hCF , the value of hC can be obtained as
follows:

hC = hCR + hCF = 2 + 3:84 = 5:84 bits: (14)

Similar to the monitoring subsystem, �tC in the
communications subsystem, i.e., the mean time inter-
val, between the announcements of the voice messages
is determined according to the designer's preferred
baud rate.

3.3. NASA-TLX questionnaire
By calculating the mean of scores assigned by the
operator to each of its six subscales, the NASA-TLX
presents a single number as an indicator of the overall
workload. These subscales include mental demand,
physical demand, temporal demand, performance, ef-
fort, and frustration, each of which is briey explained
as follows [15].

Within the mental demand subscale, the lev-
els of required perceptual activities, such as think-
ing, decision-making, calculation, memory utilization,
searching, etc., are of high priority in this section.
The physical demand subscale monitors the intensity
of required physical activities such as pulling, pushing,
turning, controlling, activating, and so on. The
temporal demand subscale assesses the amount of
time available for applying an appropriate response
with regard to the speed of events that occur in the
system. In the performance subscale, the question to
answer is how much a person believes to have earned
success in satisfying the predetermined objectives of
the underlying tasks. The e�ort subscale evaluates the
number of needed attempts to achieve an acceptable
level of performance. Finally, in the frustration sub-
scale, the operator must reveal his personal opinion
about the uncertainty, unwillingness, anger, and stress
experienced during interaction with the system.

From a quantitative standpoint, based on the
tunings made by the operator in the NASA-TLX panel,
a number, which ranges between 0 and 100, is assigned
to each subscale. By averaging six numbers obtained
by a subject's personal judgment, a numerical value
is ultimately extracted as a measure of the overall
perceived workload.

4. Experiment

4.1. Description of validation test
As described in the previous sections, by using the baud
rate quantity as the framework, the information theory
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provides a numerical index to achieve an estimate of
the actual workload experienced by the pilot in the
simulator environment. In this stage, by designing
some practical tests, we aim to compare the workload
perceived by humans with the prediction made by the
aforementioned approach. In consequence, the objec-
tive is to answer a question concerning whether the
di�erent workload levels determined based on the infor-
mation theory will lead to signi�cant di�erences in the
overall workload scores assigned by the subjects or not.

4.1.1. Equipment
All the relevant experiments were performed by a desk-
top computer equipped with a quad-core processor of
Intel Core i5 clocked at 3 GHz, 4 GB main memory, and
64-bit Windows 7 operating system. An X. Vision 18.5-
inch monitor, an A4Tech keyboard, and a MaxFighter
F-23U joystick manufactured by the Genius Company
were the rest of equipment used in this regard. On
the other hand, the codes required for building tests'
scenarios as well as running the simulator based on
the planned goals were written in MATLAB and visual
basic programming environments, respectively [34,35].
In addition, for the statistical analysis of data obtained
by experiments, version 23 of the SPSS software was
employed [36].

4.1.2. Participants
Thirteen male students studying at the Department
of Aerospace Engineering at Amirkabir University of
Technology with a mean age of 26:09�3:25 voluntarily
declared their readiness for the tests. As a prerequisite,
it was expected that the subjects have normal visions
and hearings and enough skills in working with the
ight simulators. The initial investigation con�rmed
the establishment of this requirement for all the par-
ticipants. In addition, all volunteers o�cially expressed
their agreement with collaboration in this research by
signing a consent form.

4.1.3. Procedure
After obtaining the �nal approval of subjects to par-
ticipate in the experiments, �lling and signing of the
related forms, and making necessary arrangements,
the training phase was initialized. At the beginning
of this phase, by studying the �le of familiarity with
the MATB-II and attending the introductory meetings,
individuals were familiarized with di�erent parts of the
simulator and how to interact with it. In the next
step, by implementing training scenarios throughout
eight separate days, the volunteers had experience in
working with the simulator practically. This procedure
lasted for an average of two hours for each subject who
was required to achieve a stable performance.

When the e�ect of learning was removed and the
training phase completed, the �nal evaluation phase
began in which the main intended scenarios to assess

subjects' performances were applied. In planning and
designing the experiments, an attempt was made to
minimize the probable adverse e�ects reasonably. This
means that degrees of fatigue, irritation of the eyes,
pain in the wrist or neck, etc. were not di�erent
from the normal conditions of daily working with a
computer during the execution of a test. Moreover,
the participants were asked to make their highest
e�orts and employ mental capabilities for a perfect
management of the delegated tasks in the scenarios.
Nevertheless, they were informed about a possibility
that some parts of the scenarios may not be fully
realizable, and this problem must not lead to a feeling
of dissatisfaction.

In this phase, all participants carried out three
distinct tests on three separate days; hence, the total
number of runs was 39. Each test, with a total
duration of 15 minutes, comprised three 5 minute
sections. In each 5 min section, one of the desired
levels for workload, including low, medium, or high,
was implemented. Previous studies have demonstrated
that the approximate baud rate of 1 bit/s is fairly
the central limit of a human's ability for processing
information, while the baud rates much lower than this
value are not so challenging; conversely, achieving a
baud rate more than 2 bits/s brings the person close
to the threshold of processing capacity [30,32].

With regard to this fact, low, medium, and high
levels of workload were created by setting the corre-
sponding total baud rates of about 0.5 bits/s, 1 bit/s,
and 1.5 bits/s, respectively. The details can be found
in Tables 1 and 2. According to these two tables, in
the �rst, second, and third 5 min sections, the autopilot
was set to an automatic mode by selecting �VT = 0pixels

s ,
a light failure mode by selecting �VT = 4:50pixels

s , and
a severe failure mode by selecting �VT = 12:35pixels

s ,
respectively. At the end of each 5 min section, the
subject's opinion about the perceived workload was
recorded immediately by means of the NASA-TLX
questionnaire.

After all of the validation tests were carried out
by all participants, attained data were processed while
keeping speci�c results of each subject con�dential. In
this procedure, the tools available in SPSS 23 software
were employed in order to apply appropriate techniques
of descriptive and analytical statistics.

4.2. Results
MATB-II stores the history of all events and responses
occurring during an experimental run in the form of
several arranged output �les. By processing these �les
accurately, it is possible to obtain some interesting
information about the performance of each subject
considering all subsystems of MATB-II. In this regard,
root-mean-square deviation of moving cursor from its
ideal position (RMSDT ), subject's reaction times for
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Table 1. Time intervals between two successive stimuli for each subsystem of the simulator in the �nal validation tests.

Test no. Workload level �tT (s) �ts(s) �tL(s) �tR(s) �tC(s)

1
Low 1 16 12 12 41

Medium 6 13 11 12 22
High 2.2 7 10 12 18

2
Low 1 16 12 12 41

Medium 6 13 11 12 22
High 2.2 6 10 12 17

3
Low 1 20 15 12 40

Medium 6 8 10 12 18
High 2.2 5 10 12 15

Table 2. Baud rates (bits/sec) pertaining to each subsystem of the simulator in the �nal validation tests.

Test no. Workload level BT BS BL BR BC BTotal

1
Low 0 0.125 0.083 0.083 0.143 0.435

Medium 0.264 0.154 0.091 0.083 0.267 0.859
High 0.725 0.286 0.100 0.083 0.326 1.520

2
Low 0 0.125 0.083 0.083 0.143 0.435

Medium 0.264 0.154 0.091 0.083 0.267 0.859
High 0.725 0.333 0.100 0.083 0.345 1.587

3
Low 0 0.100 0.067 0.083 0.147 0.397

Medium 0.264 0.250 0.100 0.083 0.326 1.023
High 0.725 0.400 0.100 0.083 0.391 1.699

Table 3. Means and standard deviations of di�erent quantities related to the subjects' performance in the �nal validation
tests.

Workload level RMSDT (pixel) RTS (s) RTL (s) MAERA (unit) MAERB (unit) RTC(s)

Low 0 2:98� 0:82 2:09� 0:45 96:90� 57:66 96:65� 57:75 2:85� 1:21
Medium 22:66� 7:53 3:34� 0:96 2:09� 0:44 96:92� 67:42 97:19� 68:02 3:08� 1:12

High 49:04� 9:43 3:97� 1:21 2:45� 0:68 110:75� 70:64 110:52� 71:66 4:11� 1:81

Scales and Lights tasks (RTS and RTL), mean absolute
error of the fuel level in tanks A and B (MAERA and
MAERB ), and subject's reaction time in response to
a received voice message (RTC) are some quantities
that can be extracted from generated output �les.
For each subject and for each level of workload, the
averages of the quantities related to his performance are
calculated; then, the mean(s) and standard deviations
of the results are reported (Table 3).

By investigating each column of Table 3 sepa-
rately, one �nds a general pattern in the performance
data, that is, the more amount of workload will weaken
individuals' performance in almost all subsystems of a
simulator. When workload level increases, the mean

values of RMSDT for tracking subsystem, RTS and
RTL for monitoring subsystem, MAERA and MAERB
for resource management subsystem, RTC and for com-
munications subsystem seem to increase; in addition,
this behavior can be interpreted as a performance
degradation. Of course, it should be noted that this
proposition is only a hypothesis, and its proof requires
statistical analysis of the data, which is beyond the
scope of this paper and requires a more comprehensive
research.

On the other hand, Figure 2 shows the means
of di�erent NASA-TLX subscales at three levels of
workload based on the evaluations conducted by the
subjects.
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Figure 2. Means of di�erent NASA-TLX subscales at the three levels of workload per subject.

According to Figure 2, in spite of some existing
exceptions, for most subjects in most subscales, there is
an increasing trend in response to a rising workload. As
noted in Section 3.3, in the NASA-TLX, the main index
for workload determination is the mean of scores as-
signed by humans to all existing subscales, and the sub-
scales are not usually analyzed separately. According
to Figure 3, the overall workload scores appear to have
a more regular behavior across subjects since all partic-
ipants (except subject 7) have detected a growth in the
total workload during the execution of tests. In fact,
the overall workload score converts the humans' multi-
dimensional judgment of the workload to a single num-
ber; in addition, with respect to the clear pattern avail-
able in this quantity, it is su�cient to use it as a single
index to assess the workload perceived by humans.

4.2.1. Statistical analysis
Table 4 displays the descriptive information of di�er-
ent NASA-TLX subscales at three levels of workload
containing various degrees of autopilot failure.

Figure 3. Overall workload scores at three levels of
workload per subject.

Figure 4 exhibits the means and con�dence in-
tervals of the scores assigned to the overall workload.
Considering the signi�cance level of � = 0:05, the
hypothesis of the presence of signi�cant di�erences
between the mean scores of the overall workload across
the three levels is investigated.

According to the output obtained through the
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Table 4. Means and standard deviations of the NASA-TLX subscales resulting from the evaluations conducted by the
subjects.

Workload level
Low Medium High

Mental demand 31:94� 18:41 42:58� 22:59 57:54� 25:64
Physical demand 27:60� 20:12 44:85� 21:13 60:62� 24:57
Temporal demand 31:27� 19:21 42:55� 21:02 59:62� 24:31

Performance 29:14� 26:29 34:32� 24:21 47:14� 21:39
E�ort 31:01� 20:00 45:68� 19:27 60:31� 24:94

Frustration 30:31� 19:86 39:97� 21:03 50:18� 27:65
Overall 30:20� 17:31 41:65� 18:28 55:98� 20:90

Figure 4. Means and con�dence intervals of the overall
workload scores at the three levels of workload.

Kolmogorov-Smirnov test, it is inferred that the de-
pendent variable of the overall workload score has a
normal distribution over di�erent levels of workload as
independent variables (P value > 0.05). This enables
us to apply the parametric method compatible with the
analysis we are dealing with, i.e., One-Way ANOVA.
The outcome of the One-Way ANOVA indicates that
there are signi�cant di�erences between the means
of the overall workload scores at low, medium, and
high levels (P value < 0.001). In the next step, the
output of the Levene test shows that the variance of
the stochastic variable under study could be assumed
homogenous over the three existing groups (P value =
0.571). Thus, the Tukey HSD test is a suitable choice
for making a pairwise comparison among the groups in
the post hoc analysis. The results are summarized in
Table 5.

4.2.2. Clustering
In this section, the overall workload scores of subjects
are analyzed with clustering as a new approach. In
this regard, K-means algorithm is utilized for data
clustering. Generally, in K-means algorithm, available
data are divided into K categories based on their
similarity to each other so that the members of each
group have the smallest distance from each other than
the points outside it. It should be noted that clustering
is an unsupervised classi�cation method, i.e., the data
are categorized irrespective of which class they belong
to; then, the accuracy of the classi�cation is calculated
based on the actual label of samples. Since the data
collected in the conducted tests have three classes (low,
medium, and high), they are divided into three distinct
clusters by K-means, the results of which are given in
Table 6. In this table, the actual class is equivalent
to the real label of samples, and the predicted class
is determined with respect to the output of K-means
algorithm.

According to Table 6, at the low workload level,
the majority of errors (43.59%) have been assigned
to the medium level, with only 7.69% misclassi�ed
as high. The errors related to the medium level are

Table 6. Classi�cation performance of K-means
algorithm at the three levels of workload.

Predicted
Low Medium High

Actual
Low 48.72% 43.59% 7.69%

Medium 35.90% 33.33% 30.77%
High 15.38% 25.64% 58.97%

Table 5. Pairwise comparison between the means of overall workload scores at the three levels of workload.

Workload level Mean di� Std. error P -value 95% con�dence interval

Low-medium -11.45 4.28 0.023 [-21.61 -1.29]
Medium-high -14.33 4.28 0.003 [-24.48 -4.17]

Low-high -25.78 4.28 < 0:001 [-35.93 -15.62]
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approximately of the same order, where 35.90% and
30.77% of samples have been recognized as low and high
conditions, respectively. Most of the errors at the high
level (25.64%) are misses categorized as those which
belong to the medium level, with 15.38% misclassi�ed
as the low level. To illustrate, this table shows that
the accuracy degree of the classi�cation at the three
levels of workload is not su�ciently satisfactory, and
only 48.72%, 33.33%, and 58.97% of the samples have
been correctly distinguished.

The clustering approach's poor performance in
the categorization of the overall workload scores is due
to the di�erences in the personal points of view of
the subjects concerning the absolute scores of existing
workload levels. According to Figure 3, although the
trend of the given scores is similar at the three levels
of workload for most participants and the expected
variations are seen, the absolute value of scores among
the subjects has a complicated pattern since it is
considerably susceptible to personal judgments. For
example, while subject 5 has assigned the lowest score
to the low level in his assessment of workload, this score
is greater than the highest score that subject 6 has
selected at the high level of workload. Such a condition
degrades the e�ectiveness of the clustering algorithm in
the process of separating di�erent levels of workload
based on existing scores. In the statistical analysis
presented in the previous section, the means of the
groups are compared, and the e�ect of these types of
di�erences in the absolute values is eliminated. There-
fore, compared to the clustering approach, statistical
analysis is a more e�cient way to deal with the output
of subjective evaluations of workload.

4.3. Discussion
In this paper, an e�ective and helpful quantitative
index, called overall input baud rate (BTotal), was
utilized to signi�cantly facilitate the creation of the
needed scenario in the MATB-II simulator. BTotal is
actually a measure of information totally generated in
all subsystems of the simulator which can be explicitly
linked to the perceived workload. By selecting an
appropriate value for BTotal and dividing it between
di�erent subsystems of the simulator, one can directly
manage the tunable parameters of the scenario and
generate his intended levels of workload more easily
and quickly. To check the applicability of the proposed
method, some experimental tests were conducted in
which several individuals performed three prede�ned
scenarios with varying degrees of workload in the
MATB-II simulator. On the one hand, di�erent levels
of workload were created based on the baud rates
estimated by the theoretical model; on the other
hand, subjects' opinions about the existing workload
were recorded empirically by the NASA-TLX as a
reliable and standard tool. This procedure, in turn,

provides an opportunity to compare the prediction by
the mathematical model with the real data obtained
through the subjective judgment. In doing so, the
proposed mathematical model is validated by means
of the real data gathered in conducted experimental
tests, which appears to be an acceptable idea.

According to Table 5, it is concluded that the
di�erences between the means of the overall workload
scores at the three levels of workload are signi�cant
such that this quantity shows a substantial increase
from low to medium and medium to high levels. Such
a trend is in perfect agreement with the prediction
achieved based on the information theory, which was
accomplished based on the foundation of the overall
baud rate calculated for each level. Therefore, if the
workload self-assessment is considered as the basis of
our judgment, it can be stated that the information
theory has successfully classi�ed various di�culty levels
synthesized in the scenario of the simulator, interest-
ingly before the execution of tests by the subjects. In
other words, results demonstrate that the o�ered model
is capable enough to estimate the generated input
information in the simulator of piloting tasks and give
us the ability to adjust the di�culty levels available in
the scenario of an arbitrary test in a structured manner.

It is worth noting that the subjective rating scales
represent each person's opinion on available workload,
which can be referred to as the perceived workload
compared to the real one. In this respect, there
is no guarantee that a personal approach leads to
a completely accurate identi�cation of the workload,
since this type of evaluation is clearly susceptible to
distortion. For instance, the real workload may occur
at a low level; however, an operator considers it as high
for some reasons such as a lack of the required ability
essential for working with the system. In contrast, it
is possible that the real workload is high; however,
the operator regards it as low due to some factors
such as con�dence or misplaced pride. In the research
carried out in this paper, because of enough time
allocated to the selection and training of the subjects,
all participants reached an acceptable level of expertise
in handling the given tasks. Therefore, the e�ects of
these factors should be minimized as much as possible.

5. Conclusion

In this paper, an objective method was developed to
facilitate the assessment of the workload level in the
standard simulator of piloting tasks. By employing the
information theory, the proposed technique estimates
and combines the baud rates produced in di�erent
subsystems of the simulator and, in this way, presents
a single quantitative criterion as an index of the
overall workload. In addition, in the validation stage,
three tests containing di�erent levels of autopilot
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failure were conducted. A group of subjects performed
these tests in the role of the pilot while recording their
own experience about the perceived workload. The
results showed that there were signi�cant di�erences
between the means of the scores assigned by the
subjects to three workload levels. This con�rms that
the suggested numerical index has acceptable accuracy
in determining the workload level experienced by
humans during work with the simulator. Besides its
simplicity, this approach is considerably practical and
accelerates the procedure of the scenario generation
for use in the simulator.
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