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Abstract. An improved and e�cient method for the synthesis of 1- & 5-substituted 1H-
tetrazole derivatives was described in the presence of nano-ordered MCM-41-SO3H as an
e�ective heterogeneous catalyst. This metal-free protocol, [2 + 3] cycloaddition of sodium
azide to various nitriles or ethyl N -phenyl formimidate intermediate under mild reaction
conditions, provides a wide range of 1H-tetrazoles in good to excellent yields. The catalyst
was reused �ve times without signi�cant loss of catalytic activity.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Tetrazoles are poly nitrogen electron-rich heterocyclic
compounds that have been known for over a hundred
years. Five-membered doubly unsaturated tetrazole
rings contain one carbon and four nitrogen atoms.
Tetrazole-containing molecules have a wide range of ap-
plications in organic synthesis as precursors of various
nitrogen-containing heterocyclic compounds (triazoles,
oxazolidones, and thiazoles) [1,2], in material science as
rocket propellants and explosives [3], in coordination
chemistry as ligands [4], and in medicinal chemistry
as isosteric replacements for carboxylic acid (Figure
1) [5]. In addition to this application, they are used as
herbicides, fungicides [6], and plant growth regulators
in the agricultural �eld.

According to the important properties of tetrazole
functionality as biologically active molecules mentioned
earlier, considerable attention has been dedicated to
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the development of environmentally friendly method-
ologies to synthesize these compounds over the past
decades.

Literature reviews indicate that the Huis-
gen 1,3-Dipolar Cycloaddition of a dipolarophile
(e.g., nitrile moiety) with a 1,3-dipolar struc-
ture (e.g., sodium azide) in the presence of a
broad variety of homogeneous or heterogeneous cat-
alysts such as CdCl2 [7], Pd(OAc)2/ZnBr2 [8],
ZnO, ZnBr2, ZnCl2/tungstates, Zn/Al hydrotalcite,
ZnCl2/AlCl3/silica, Zn(OTf)2, Zn hydroxyapatite,
ZnS, Cu(OAc)2, Cu2O, nano ZnO/Co3O4, FeCl3-
SiO2, Fe(OAc)2, nano CuFe2O4, BF3.OEt2, InCl3,
I2, (CH3)2SnO, NH4Cl, TBAF, TBAB, AgNO3, Ag-
NPs, copper triates, �-cyclodextrin, cuttlebone, COY
zeolites, Silica Sulfuric Acid, Pd(PPh3)4, WAlPO-5
microspheres, Fe3O4@SiO2/salen of Cu(II), B(C6F5)3,
AlCl3, Zn-Cu alloy, CAES, CuSO4.5H2O, and cutlle-
boneand In(OTf)3 is a general current mechanism for
the synthesis of 1H-tetrazol derivatives [9-20].

Furthermore, one of the most important methods
for synthesis of tetrazoles is the reaction of substi-
tuted amines with triethyl orthoformate and sodium
azide [21-27].

However, the most common reported methods
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Figure 1. Tetrazole-based biologically active compounds.

su�er from drawbacks such as the use of a catalyst con-
taining transition metals, harsh and stringent reaction
conditions (e.g., volatile or highly corrosive solvents),
metal and expensive catalase, longer reaction time,
and low yields [9,13-14]. Thus, obviation of these
limitations is urgent to develop a simple and e�cient
synthetic method for obtaining diverse 1H-tetrazoles.
In this context, one of the fundamental aspects of
the development of a new alternative is decreasing
pollution in chemical synthesis leading to the elimi-
nation of environmental pollution. The development
of the as-silica-based mesoporous materials (MCMs)
with a hexagonal array, large surface areas (> 1000
m2.g �1), large pore volume (up to 0.99 cm3 g1 ),
and excellent hydrothermal, thermal, mechanical, and
chemical stability has attracted signi�cant attention to
replacing homogeneous catalytic systems [28].

On the other hand, to overcome the low acid
strength of mesoporous silicas, di�erent methods in-
cluding replacement part of Si atoms in the matrix
by metal ions, such as Al, B, Fe, and Zr, or by
anchoring inorganic sulfonic acid (-SO3H) have been
described [29].

Herein, we wish to report a new metal-free
protocol for the synthesis of 1-& 5-substituted 1H-
tetrazoles from a wide variety of nitrile and ethyl N -
phenyl formimidate intermediates using MCM-41 as an
e�ective solid acid catalyst (Scheme 1).

2. Results and discussion

At the beginning, to evaluate the reaction conditions,
cycloaddition reaction of sodium azide (1, 1.3 mmol)
with benzonitrile (2e, 1 mmol) was chosen as the model

reaction under a variety of conditions (Table 1). Our
initial attempts to synthesize 5-phenyl-1H-tetrazole 5e
in the absence of any catalyst in various solvents even
at high temperature have been all disadvantageous to
the reaction. However, DMF exhibits higher perfor-
mance in comparison to other solvents such as DMSO,
H2O, CH3CN, 1,4-dioxane, and CHCl3. Therefore,
we found that the addition of polar solvent and the
presence of a catalyst for the reaction progress were
both necessary. As expected, the desired product
5e formation was observed in moderate yield when
a catalytic amount of Al-MCM-41, B-MCM-41, Zn-
MCM-41, Fe-MCM-41, MCM-41-SO3H, and MCM-41-
3-aminopropyl-SO3H (30 mg) was used in DMF at
80�C (Table 1, entries 1-6). However, MCM-41-SO3H
was the best choice. In the next step, the temperature
increased from 80 to 120�C. However, no signi�cant
di�erence was observed in yield (Table 1, entry 7).
Subsequently, to check the e�ect of catalyst loading,
the model reaction was carried out in the presence of
50, 75, and 100 mg of MCM-SO3H (Table 1, entries 8,
9, and 10). An increase in the yield was obtained by
changing the catalyst loading from 30 to 50 mg.

In an e�ort to develop better reaction condi-
tions, di�erent solvents, such as DMSO, H2O, CH3CN,
CHCl3, 1,4-dioxan, and toluene (Table 1, entries 11-
16), were screened for cycloaddition reaction in the
presence of MCM-41SO3H as an e�ective catalyst. The
result indicated that the desired product was obtained
in low yield as compared with DMF. It is noteworthy
that, due to explosive properties of sodium azide, the
neat reaction condition was not examined.

The results reported in Table 1 highlight the
speci�c role of MCM-41-SO3H in the synthesis of

Scheme 1. Synthesis of 1- & 5-substituted 1H-tetrazoles (5, 6) catalyzed by MCM-41-SO3H mesoporous solid acid.
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Table 1. Optimization of the reaction conditions for the preparation of 5-phenyl-1H-tetrazole (5e)a.

Entry Catalyst Loading
(mg)

Solvent Temp.
(�C)

Yieldb

(%)

1 Al-MCM-41 30 DMF 80 35

2 B-MCM-41 30 DMF 80 50

3 Zn-MCM-41 30 DMF 80 40

4 Fe-MCM-41 30 DMF 80 40

5 MCM-41-SO3H 30 DMF 80 70

6 MCM-41-AP-SO3Hc 30 DMF 80 65

7 MCM-41-SO3H 30 DMF 120 90

8 MCM-41-SO3H 50 DMF 80 90

9 MCM-41-SO3H 75 DMF 80 92

10 MCM-41-SO3H 100 DMF 80 85

11 MCM-41-SO3H 50 DMSO 80 72

12 MCM-41-SO3H 50 H2O 80 38

13 MCM-41-SO3H 50 CH3CN 80 43

14 MCM-41-SO3H 50 CHCl3 Reux Trace

15 MCM-41-SO3H 50 1,4-dioxan 80 Trace

16 MCM-41-SO3H 50 toluene 80 Trace
aReaction conditions: sodium azide (1, 1.3 mmol), benzonitrile

(2, 1 mmol), solvent (2 mL), time (2 h), and required amount of the catalysts;

b the yields refer to the isolated product 5e; and

c MCM-41-3-aminopropyl-SO3H.

tetrazoles. Therefore, according to catalyst loading
of 50 mg and temperature of 80�C, as optimized
conditions, obtained results were applied to di�erent
aliphatic and aromatic nitriles (2a-n). The results are
presented in Table 2.

Generally, the electronic and steric hindrance of
nitrile has a negligible e�ect on the yield of the desired
product. Nonetheless, it is observed that unsubstituted
and electron-withdrawing groups on the aromatic ni-
trile compounds normally favor the increasing rate of
cycloaddition to azides (Table 2, entries 1-5).

In comparison to aromatic nitriles, a wide range
of alkyl nitriles, such as 4-chloro benzyl cyanide, benzyl
cyanide, and malononitrile, react with NaN3 under
the optimized reaction conditions with subsided yield
(Table 2 entries 12-14).

In the next step, to demonstrate the scope of this
new and impressive methodology to amine compounds
(3a-k), the optimized reaction conditions were devel-
oped to the synthesis of 1-substituted 1H-tetrazoles
(6a-k). The results are summarized in Table 3.

Again, good to excellent yields were obtained for the
desired products. It is noteworthy that ethyl N -phenyl
formimidate intermediate required shorter reaction
times compared to nitrile compounds. The results
suggested that aromatic anilines containing electron
donating groups, particularly in the para positions,
such as �OMe, �CH3, �NH2, and benzyl amine, took
a short reaction time for easy treatment with triethyl
orthoformate and sodium azide to produce 1-aryl-1H-
tetrazoles in high yields (Table 3, entries 6, 9, and 11).

Recovery and reuse of the catalyst are another
useful advantage of catalytic processes in di�erent
aspects such as environmental protection debate, costs
of the catalyst, and toxicity. Therefore, we intended to
check the reusability of the MCM-41-SO3H catalyst in
�ve consecutive runs for the synthesis of 5-phenyl-1H-
tetrazoles under optimized conditions (Table 4). As
shown in Table 4, the MCM-41-SO3H catalyst pro-
motes the reaction with the high and robust catalytic
activity each time.

Finally, compared to various catalysts reported
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Table 2. One-pot synthesis of 5-substituted 1H-tetrazole derivatives in the presence of MCM-41-SO3Ha.

Entry Substrate 2 Productb 5 Time
(min)

Yieldc

(%)
m.p.d

(Obsd)
m.p.d

(Lit)

1 4-bromobenzonitrile
2a

120 85 235-236 234-235 [32]

2 4-chlorobenzonitrile
2b

120 90 258-260 262-264 [33]

3 4-cyanobenzonitrile
2c

100 90 195-197 192 [34]

4 4-nitrobenzonitrile
2d

120 80 220-222 218-219 [35]

5 benzonitrile
2e

120 90 214-216 214-216 [36]

6 4-methylbenzonitrile
2f

120 80 247-249 251-252 [44]

7 2-methylbenzonitrile
2g

180 80 153-155 149-151 [22]

8 3-methylbenzonitrile
2h

120 90 145-147 149-150 [37]

9 4-methoxybenzonitrile
2i

150 80 230-232 231-233 [45]

a Reaction conditions: sodium azide (1, 1.3 mmol), nitrile compounds (2, 1 mmol), MCM-41-SO3H (50 mg) in DMF (2 mL) at
80 �C for the time shown in Table 2; b all compounds are known, and their structures were established from their spectral data
and melting points as compared with authentic samples or literature values; c isolated yield; and d melting point.
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Table 2. One-pot synthesis of 5-substituted 1H-tetrazole derivatives in the presence of MCM-41-SO3Ha (continued).

Entry Substrate 2 Productb 5 Time
(min)

Yieldc

(%)
m.p.d

(Obsd)

m.p.d

(Lit)

10 2-aminobenzonitrile

2j

180 75 135-137 135-137 [39]

11 4-hydroxybenzonitrile

2k

150 90 225-227 228-231 [40]

12 (4-chlorophenyl) acetonitrile

2l

180 80 222-224 225 [23]

13 Benzyl cyanide

2m

180 85 120-122 117-119 [33]

14 Malononitrile

2n

180 75 110-112 116-118 [46]

a Reaction conditions: sodium azide (1, 1.3 mmol), nitrile compounds (2, 1 mmol), MCM-41-SO3H (50 mg) in DMF (2 mL) at

80 �C for the time shown in Table 2; b all compounds are known, and their structures were established from their spectral data

and melting points as compared with authentic samples or literature values; c isolated yield; and d melting point.

earlier, [3+2] cycloaddition reaction of benxonitriles
with sodium azide in the presence of MCM-41-SO3H,
provides 5-phenyl-1H-tetrazole (5e) (Table 5). Ac-
cording to Table 5, many proposed that catalytic
methods would take a very long reaction time to
achieve suitable yields and would use hazardous or
expensive catalysts and a tedious work-up procedure.

3. Conclusion

In conclusion, an innovative and highly e�cient
methodology was developed for the synthesis of divers
1-& 5-substituted 1H-tetrazoles using reusable MCM-
41-SO3H as the nonporous heterogeneous catalyst un-
der mild reaction conditions. This strategy enjoys good

to excellent yields, metal-free conditions, short reaction
times, low cost, regiospeci�c products, lower number of
reaction and work-up steps, and operational simplicity.

4. Experimental

4.1. Materials and techniques
All solvents, reagents, and chemicals were obtained
from Merck (Germany) and Fluka (Switzerland) com-
panies. FTIR spectra of samples were determined by
an ABB Bomem MB-100 FTIR spectrophotometer. 1H
NMR and 13C NMR spectra were determined by a
Bruker (Avance DRX-400) spectrometer using DMSO
as a solvent and TMS as an internal standard at room
temperature.
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Table 3. One-pot synthesis of 1-substituted 1H-tetrazole derivatives in the presence of MCM-41-SO3Ha.

Entry Substrate 3 Productb 6 Time
(min)

Yieldc

(%)
m.p.d

(Obsd)
m.p.d

(Lit)

1 4-bromoaniline
3a

120 85 170-172 168-170 [41]

2 4-choloromoaniline
3b

120 80 151-153 157-158 [24]

3 3-choloromoaniline
3c

100 90 140-141 137-139 [25]

4 4-nitromoaniline
3d

120 80 195-197 199-200 [41]

5 Aniline
3e

90 85 66-67 65-66 [42]

6 4-methoxyaniline
3f

90 95 117-119 117-118 [43]

7 3-methylaniline
3g

120 85 50-52 53-55 [24]

8 4-methylaniline
3h

80 90 98-100 94-95 [42]

9 4-aminophenol
3i

100 80 208-210 210-211 [47]

10 1-naphthylamine
3j

100 90 95-97 98 [27]

11 Benzylamine
3k

90 95 51-53 48-50 [26]

aReaction conditions: sodium azide (1, 1.3 mmol), amine compounds (2, 1 mmol), triethyl orthoformate (1 mmol), and
MCM-41-SO3H (50 mg) in DMF (2 mL) at 80�C for the time shown in in the table; b all compounds are known, and their structures
were established from their spectral data and melting points as compared with authentic samplesor literature values;
c isolated yield; and d meltting point.
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Table 4. Recovery and reuse of the MCM-41-SO3H
catalysta.

Run
1 2 3 4 5

Yield 90 85 85 83 79
aReaction conditions: sodium azide
(1, 1.3 mmol), benzonitrlie (2, 1 mmol), and
MCM-SO3H (50 mg) in DMF (2 mL) at 80�C, 2 h.

4.1.1. General synthesis procedure for MCM-41-SO3H
MCM-41 mesoporous silica was synthesized according
to the previously reported method [29]. A suction
ask of 100 mL was charged with MCM-41 (1 g) and
CH2Cl2 (15 mL) equipped with a dropping funnel
containing chlorosulfonic acid (ClSO3H, 2 ml) and
gas inlet tube for conducting HCl gas over a NaOH
solution. After adding all of ClSO3H in a drop-
wise way, the solvent was evaporated under reduced
pressure to obtain MCM-41-SO3H as a light gray solid
[30,31].

4.1.2. General procedure for 5a-5n
A mixture of nitrile compounds (1 mmol), sodium
azide (1.3 mmol), MCM-41-SO3H (50 mg), and DMF
(2 mL) was taken in a screw-capped vial and stirred
at 80 �C temperature until completion of the reac-
tion. The reaction progress was tracked by Thin
Layer Chromatography (TLC). After completion of
the reaction, the reaction mixture was �ltered to
remove the catalyst, and the mixture was diluted with
ethyl acetate (20 mL) and acidi�ed with 1N HCl to
pH = 4. The resulting organic layer was separated,
and the extraction procedure was repeated two times
with ethyl acetate (3 � 20 mL). The organic layers
were washed with brine solution two times, dried over
anhydrous MgSO4, and evaporated under vacuum.

To obtain higher puri�cation, the crude material was
chromatographed on SiO2 column chromatography.

4.1.3. General procedure for 6a-k
A mixture of amine compounds (1 mmol), triethyl
orthoformate (1 mmol), sodium azide (1.3 mmol),
MCM-41-SO3H (50 mg), and DMF (2 mL) was taken
in a screw-capped vial and stirred at 80�C tempera-
ture until completion of the reaction. The reaction
progress was tracked by Thin Layer Chromatography
(TLC) (EtOAc/n-hexane, 1:3). After completion of the
reaction, the reaction mixture was �ltered to remove
the catalyst, and the crude products were extracted
with ethyl acetate (3 � 20 mL). The organic layers
were washed with brine solution two times, dried
over anhydrous MgSO4, and evaporated under vac-
uum. To obtain higher puri�cation, the crude material
was chromatographed on SiO2 column chromatography
(hexane-EtOAc, 1:1).

4.2. Selected spectral data
5-(4-bromophenyl)-1H-tetrazole (5a)

Pale yellow crystals; m.p. 235-236�C (Lit. [32] 234-
235�C); IR (KBr): � = 3430, 3090, 3033, 2900, 2847,
1612, 1488, 1459, 1165, 1100, 1004, 829 cm�1; 1H NMR
(500 MHz, DMSO-d6 ppm) �: 7.52 (d, 2H, J = 8:42
Hz, Ar), 8.04 (d, 2H, J = 8:2 Hz, Ar).

5-(4-chlorophenyl)-1H-tetrazole (5b)

Colorless crystals; m.p. 258-260�C (Lit. [33] 261-
263�C); IR (KBr): � = 3410, 3071, 2992, 2936, 2809,
2725, 1621, 1492, 1461, 1431, 1387, 1350, 1164, 1102,
1057, 830 cm�1; 1H NMR (500 MHz, DMSO-d6 ppm)
�: 7.66 (d, 2H, J = 8:45 Hz, Ar), 8.01 (d, 2H, J = 8:45
Hz, Ar).

Table 5. Comparison of various catalysts in [3+2] cycloaddition reaction of nitriles with sodium azide.

Entry Catalyst Solvent Temp.
(�C)

Time
(h/or min)

Yield
(%)

Ref.

1 Silica sulfuric acid DMF Reux 5 h 88 [20]

2 Chitosan derived magnetic ionic liquid - 70 7 h 87 [23]

3 Mesoporous ZnS DMF 120 36 h 96 [48]

4 Fe3O4@SiO2/Salen Cu(II) DMF 120 7 h 90 [17]

5 Zn Hydroxyapatite DMF 120 12 h 78 [49]

6 CoY zeolite DMF 29 14 h 90 [46]

7 Cuttlebone DMSO 110 20 min 98 [50]

8 Imidazole-based zwitterionic-type molten salts - 120 12 h 84 [51]

9 CuFe2O4 DMF 120 12 h 82 [45]

10 MCM-41-SO3H DMF 80 120 min 90 This
Work
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4-(1H-tetrazol-5-yl)benzonitrile (5c)

White solid; m.p. 195-197�C (Lit. [34] 195); IR (KBr):
� = 3148, 3090, 3015, 2923, 2859, 2760, 2609, 2229,
1590, 1558, 1488, 1438, 1283, 1155, 1021, 981, 950, 848,
754, 555 cm�1; 1H NMR (500 MHz; DMSO-d6 ppm):
�: 8.20 (d, 2H, J = 8:60 Hz), 8.05 (d, 2H, J = 8:30 Hz).

5-(4-nitrophenyl)-1H-1,2,3,4-tetrazole (5d)

Yellow solid; m.p. 220-222�C (Lit. [35] 218-219); IR
(KBr): � = 3451, 3329, 3240, 3112, 3085, 2978, 2903,
2823, 2662, 1565, 1528, 1492, 1357, 1344, 1320, 1145,
1110, 992, 864, 855, 732, 711 cm�1; 1H NMR (500
MHz, DMSO-d6 ppm): �: 8.34 (d, J = 8:6 Hz, 2H,
Ph), 8.48 (d, J = 8:8 Hz, 2H, Ph).

5-phenyl-1H-tetrazole (5e)

Colorless crystals, m.p. 214-216�C (Lit. [36] 214-
216�C); IR (KBr): � = 3130, 3100, 2982, 2921, 2825,
2692, 2610, 2561, 2492, 1618, 1567, 1490, 1413, 1171,
1059 cm�1; 1HNMR (500 MHz, DMSO-d6 ppm) �:
7.62-7.77 (m, 3H, Ar), 8.04-8.29 (m, 2H, Ar).

5-(p-tolyl)-1H-tetrazole (5f)

Colorless crystals; m.p. 247-249�C (Lit. [53]. 251-
252�C); IR (KBr): � = 3048, 2976, 2968, 2977, 1601,
1488, 823 cm�1; 1H NMR (500 MHz, DMSO-d6 ppm):
�: 2.38 (s, 3H), 7.39 (d, J = 8:12 Hz, 2H, Ar), 7.93 (d,
J = 8:12 Hz, 2H, Ar).

5-(o-tolyl)-1H-tetrazole (5g)

Colorless crystals; m.p. 153-155�C (Lit. [22] 149-
151�C); IR (KBr): � = 3330, 3112, 2899, 2773, 2615,
2501, 1728, 1631, 1492, 1162, 1043, 802, 741 cm�1; 1H
NMR (500 MHz, DMSO-d6 ppm): �: 7.73 (d, J= 7.74
Hz, 1H, Ar), 7.59 (t, J = 7:58 Hz, 1H, Ar), 7.45 (d,
J = 7:77 Hz, 1H, Ar), 7.37 (t, J = 7.60 Hz, 1H, Ar).

5-(m-tolyl)-1H-tetrazole (5h)

Colorless crystals; m.p. 145-147�C (Lit. [37] 149-
150�C); IR (KBr): � = 3120, 3061, 2912, 2871, 2753,
2617, 2491, 1728, 1605, 1486, 1150, 1064, 1038, 802,
741 cm�1; 1H NMR (500 MHz, DMSO-d6 ppm): �:
2.6 (s, 3H), 7.32-7.47 (m, 2H, Ar), 7.81 (d, J = 8:0 Hz,
1H, Ar), 7.85 (s, 1H, Ar).

5-(4-methoxyphenyl)-1H-tetrazole (5i)

White solid; m.p. 230-232�C (Lit. [38] 231-233). FT-IR
(KBr): � = 3430, 2938, 2751, 2659, 1620, 1510, 1449,
1411, 1301, 1270, 1184, 1035, 811, 752 cm�1; 1H NMR
(500 MHz; DMSO-d6 ppm): �: 7.90 (d, 2H, J = 8:8

Hz), 7.10 (d, 2H, J = 8:8 Hz), 3.84 (s, 3H), 3.95 (brs,
1H, NH).

2-(1H-tetrazol-1-yl)aniline (5j)

Pale yellow solid; m.p. 135-137�C (Lit. [39] 135-137�C);
IR (KBr): � = 3421, 3369, 1631, 1562, 1495, 1459,
1317, 1258, 1154, 1076, 1028 cm�1; 1H NMR (500 MHz,
DMSO-d6 ppm): �: 7.80 (d, J = 7:19 Hz, 1H, Ph), 7.39
(t, J = 8:13 Hz, 1H, Ph), 6.92 (d, J = 8:44 Hz, 1H,
Ar), 6.90 (t, J = 7:4 Hz, 1H, Ar).

4-(1H-tetrazol-5-yl)phenol (5k)

White solid; m.p. 208-210�C (Lit. [40] 210-211�C); IR
(KBr): � = 3249, 3106, 3070, 3022, 3000-2200, 1620,
1600, 1522, 1470, 1416, 1285, 834, 757, 515 cm�1; 1H
NMR (500 MHz, DMSO-d6 ppm): �: 6.98 (d, J = 8:4
Hz, 2H, Ph), 7.88 (d, J = 8:8 Hz, 2H, Ph), 10.15 (br s,
1H, OH).

5-benzyl-1H-tetrazole (5m)

White solid; m.p. 120-122�C (Lit. [33] 117-119�C); IR
(KBr): � = 3112, 3033, 2979, 2948, 2867, 2780, 2695,
2596, 1771, 1710, 1642, 1551, 1537, 1501, 1459, 1244,
1112, 1075, 773, 730, 691 cm�1; 1H NMR (500 MHz,
DMSO-d6 ppm) �: 4.28 (s, 2H, CH2), 7.31 (s, 5H, Ph).

1-(4-boromophenyl)-1H-tetrazole (6a)

White solid; m.p. 170-172�C (Lit. [41] 168-170�C); 1H
NMR (500 MHz, CDCl3 ppm) �: 6.95-6.98 (d, 2H),
7.38-7.43 (d, 2H), 8.11 (s, 1H).

1-(4-Chlorophenyl)-1H-tetrazole (6b)

White solid; m.p. 151-153�C (Lit. [24] 157-158�C); 1H
NMR (500 MHz, CDCl3 ppm) �: 7.01-7.06 (d-2H),
7.30-7.34 (d-2H), 8.06 (s-1H).

1-phenyl-1H-tetrazole (6e)

Pale yellow solid; m.p. 66-67�C (Lit. [42] 65-66�C); 1H
NMR (500 MHz, CDCl3 ppm) �: (7.06-7.59 (m, 5H,
Ar), 8.27 (s, 1H).

1-(4-methylphenyl)-1H-tetrazole (6f)

Pale yellow solid; m.p. 117-119�C (Lit. [43] 117-118�C);
1H NMR (500 MHz, CDCl3 ppm) �: 3.72 (s, 3H), 6.90
(d, 2H, J = 8:95 Hz, Ar), 7.52 (d, 2H, J = 8:95 Hz,
Ar), 8.19 (s, 1H).

1-(4-methylphenyl)-1H-tetrazole (6h)

Pale yellow solid; m.p. 98-100�C (Lit. [42] 94-95�C); 1H
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NMR (500 MHz, CDCl3 ppm) �: 2.28 (s, 3H), 6.89 (d,
2H, J = 8:55 Hz, Ar), 7.50 (d, 2H, J = 8:50 Hz, Ar),
8.20 (s, 1H).
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