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Abstract. A control chart is an important tool in statistical process control that plays
a signi�cant role in monitoring and identifying variations in production processes. The
Shewhart, the cumulative sum (CUSUM), and the Exponentially Weighted Moving Average
(EWMA) control charts are commonly used for detecting process shifts. The CUSUM and
the EWMA control charts are more sensitive in detecting smaller shifts, whereas the typical
Shewhart chart is sensitive to large process shifts. The present study incorporates ratio-
type estimators of the population mean based on auxiliary information in the CUSUM
charting structure for monitoring the location of the normal processes. These estimators
are more e�cient than simple mean estimator in the presence of a high correlation between
the study and the auxiliary variables. The Average Run Length (ARL), the standard
deviation of run length, and the extra quadratic loss are used to measure the performance
of the proposed charts. The proposed charts are compared with the existing CUSUM,
CUSUM-FIR, and some other auxiliary information-based control charts on the basis of
out-of-control ARLs. The comparison reveals the superiority of the suggested charts over
the other existing charts. An illustrative example is also provided for the performance
evaluation of the proposed charts.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Statistical process control is a combination of di�erent
methods that are employed to monitor a process
and enhance the quality of the products by reducing
variations in the products [1]. Among these methods,
the control chart is the most important and frequently
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used method for monitoring the quality of the products,
initially developed by Walter A. Shewhart in the early
1920s. A control chart is a graphical display of the
quality characteristics, which is used to monitor the
process stability and is constructed in such a way
that the associated probability of false alarm is very
low. The Shewhart control chart, the cumulative
sum (CUSUM) control chart by Page [2], and the
Exponentially Weighted Moving Average (EWMA)
control chart by Roberts [3] are commonly used for
monitoring the process variation. The process variation
can be classi�ed into common and assignable cause
variations. The process is considered to be in-control
in the presence of common cause variations, which are
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considered to be the inherent parts of any production
process. The classical Shewhart chart is sensitive to
large process shifts, as it utilizes only the current
sample information and ignores the previous samples
information. On the other hand, the CUSUM and the
EWMA charts make use of the past and the current
sample information, enabling them to be more sensitive
to small process shifts.

In the sampling theory, the use of auxiliary
information results in a signi�cant reduction in
the variance of the estimators of the population
parameters. The auxiliary variable is not the variable
of interest, but is instead used to improve the sampling
plan or enhance the precision of the estimators.
The ratio, product, and regression type estimators
are extensively used for estimating the unknown
population parameter, provided that a signi�cant
correlation between the study and auxiliary variables
exists [4]. Di�erent ratio-type estimators are available
in the literature for improving the precision of location
estimators. For more details, the readers can refer
to [5{12] and the references cited therein.

The auxiliary information is also used in the
control charting structure in order to improve the
sensitivity of the control chart. Zhang [13] pro-
posed the cause-selecting control chart by regressing
the study variable on the auxiliary variable. Later,
Riaz [14] proposed the Shewhart-type control chart for
monitoring process location based on the regression
estimator of mean, which incorporates the auxiliary
information and has an attractive detection ability,
as compared to existing charts. In the same context,
Riaz [15] introduced the idea of using the regression-
type estimator of variance based on an auxiliary vari-
able in the control charting structure for improved
monitoring of process dispersion. Few researchers
have presented their ideas in the context of utilizing
auxiliary information in control charting structures
(see [16{19]). The product-di�erence type estimator
of the mean was used by Lee et al. [20] for process
monitoring under repetitive sampling. It is based
on inner and outer control limits so that repetitive
sampling is allowed when the monitoring statistic lies
between the inner and outer limits. The resulting
chart is the extension and improved form of the M-
control chart proposed by Riaz [21] by devising the
two pair of limits. It is worth mentioning that most
of the existing charts based on auxiliary information
are Shewhart-type control charts such as [14,17,20{
22]. Some authors have recently suggested EWMA-
type control charts based on auxiliary information
(see [23{27]). Recently, Sanusi et al. [28] proposed
combined Shewhart CUSUM charts (CSC) based on
auxiliary information by incorporating various types of
ratio and regression estimators to monitor the process
location. The strategy used by them is complicated

for the practitioners as they combined the Shewhart
and the CUSUM charts besides using various complex
estimators of the population mean (speci�cally the last
�ve estimators considered in their study).

In this article, �ve relatively simple and e�cient
auxiliary information based ratio-type estimators of
the study variable are used to estimate the process
location. The traditional ratio estimator proposed by
Cochran [29], the estimators based on quartiles sug-
gested by Al-Omari [8], and a new class of estimators
proposed by Singh et al. [10] are used here. Since
all these estimators are more e�cient than the simple
mean estimator in the presence of a moderate to high
correlation between the study and the auxiliary vari-
ables [8,10], their incorporation in di�erent charting
schemes would result in more e�cient control charts.
The present study integrates the above-mentioned esti-
mators in the CUSUM charting structure with the mo-
tivation to further enhance the sensitivity of the chart
without complicating the charting structure. The per-
formance of the proposed charts is evaluated in terms of
Average Run Length (ARL) and the Standard Devia-
tion of Run Length ( SDRL). The Extra Quadratic Loss
(EQL) is also used to measure the overall performance
of the proposed charts over a range of shifts.

The rest of this paper is organized as follows:
Section 2 presents the structures and properties of the
ratio-type location estimators based on the auxiliary in-
formation. Section 3 presents the general structures of
the proposed CUSUM charts. Performance evaluations
of the proposed charts are given in Section 4. Compari-
son of the proposed with existing control charts and an
illustrative example are provided in Section 5. Finally,
some conclusions are drawn in Section 6.

2. Location estimators based on auxiliary
information and their properties

It is assumed that the target variable (Y ) and the aux-
iliary variable (X) follow the bivariate normal distribu-
tion with means �Y and �X , standard deviations �Y
and �X , and the correlation coe�cient �XY . Herein,
(X1; Y1); (X2; Y2); � � � ; (Xn; Yn) is a bivariate random
sample with density function f(x; y), the sample statis-
tics based on the measurements of Y and X are de�ned
as �y and �x for the means, respectively, s2

y and s2
x

are for the variances, and rxy is for the correlation
coe�cient. Based on the above preliminaries, some
e�cient estimators Ej(j = 1; 2; � � � ; 5) of the target
variable (Y ) based on auxiliary information (X) are
presented with their respective bias, B(:), and Mean
Square Error, MSE(:). These estimators di�er from
each other in terms of their structures and e�ciencies.

(i) The ratio estimator. The ratio estimator
makes use of the known population information
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of auxiliary variable to improve the weighting
from sample values to population estimates and
is useful when the correlation between the target
and auxiliary variable is high [29]. The ratio
estimator is de�ned as follows:

E1 = �y
�x
�x
: (1)

The bias and MSE of the ratio estimator up to
the �rst degree of approximation are as follows:

B(E1) = ��y
�
C2
X � �xyCyCx� ; (2)

MSE (E1) = ��2
y
�
C2
y + C2

X � 2�xyCyCx
�
; (3)

where Cy = �y
�y , Cx = �x

�x , and � =
�

1�n=N
n

�
.

(ii) The ratio-type estimators suggested by Al-
Omari [8]. These new types of ratio estimators
of the population mean �Y are based on either
the �rst quartile (q1) or the third quartile (q3) of
the auxiliary variable and are de�ned as follows:

E2 = �y
�
�x + q1

�x+ q1

�
; (4)

E3 = �y
�
�x + q3

�x+ q3

�
: (5)

The bias and MSE up to the �rst degree of
approximation are as follows:

B(E2) �= 0; B(E3) �= 0; (6)

MSE (E2) =
�2
y

n
+
�2
x
n
�
L2

1 � 2byxL1
�
; (7)

MSE (E3) =
�2
y

n
+
�2
x
n
�
L2

2 � 2byxL2
�
; (8)

where byx = �xy
�y
�x , L1 = �y

�x+q1 , and L2 = �y
�x+q3 .

(iii) Ratio and product estimator. Singh et al. [10]
suggested the following class of estimators of
the population mean �y using simple random
sampling:

�̂Y = �y
�
a�x + b�x
c�x+ d�x

�
; (9)

where a, b, c, and d are suitable constants and
can be either parametric or any real values.
The present study includes the following two
estimators based on the above class of estimators:

E4 = �y
�
l2�x � Cx�x
l2�x� Cx�x

�
; (10)

where a = c = l2, b = d = �Cx, and l = �xy
Cy
Cx .

E5 = �y
�
2�x � Cy�x
2�x� Cy�x

�
; (11)

where a = c = 2, b = d = �Cy, and 2 is the
coe�cient of kurtosis of the auxiliary variable.

The bias and MSE up to the �rst degree of
approximation are as follows:

B(Ej) = ��yC2
x f (�1 � l)g

for j = 4; 5; (12)

MSE (Ej) = ��2
yfC2

y +  C2
x( � 2l)g

for j = 4; 5; (13)

where  = �1 � �2, �1 = c(c + d)�1, and �2 =
b(a+ b)�1.

3. General structure of the proposed CUSUM
charts

The proposed charts are the integration of the es-
timator Ej for j = 1; 2; � � � ; 5 with the CUSUM
charting scheme. The CUSUM chart is based on
the accumulation of the information of the previous
samples in addition to the current sample. For this
reason, the CUSUM charts are more e�ective than
the Shewhart charts in detecting small process mean
shifts. The present study assumes that the quality
characteristic of interest Y and the auxiliary variable
X follow the bivariate normal distribution, (Y;X) �
N(�y; �x; �2

y; �2
x; �xy), to de�ne new e�cient CUSUM

control charts based on location estimators Ej for
j = 1; 2; � � � ; 5.

Let Zjt =
Ejt��Ej
�Ej

be the standardized form of
the jth estimator in the tth subgroup (j = 1; 2; � � � ; 5),
where �Ej = �y + B(Ej) and �2

Ej = MSE (Ej). The
CUSUM monitoring statistics under the ratio type
location estimators Ej based on auxiliary information
are de�ned as follows:8>><>>:

M+
jt = max

h
0; Zjt � k +M+

j(t�1)

i
M�jt = max

h
0;�Zjt � k +M�j(t�1)

i (14)

The statistics M+
jt and M�jt are called the upper and

lower CUSUM under the jth estimator, respectively,
and the initial values of these monitoring statistics are
set equal to zero, i.e., M+

0 = M�0 = 0. The chart is
designed by choosing the two-parameter values, i.e., the
reference value, k, and the decision interval, H. These
values are chosen such that a speci�c in-control ARL is
attained. A process is considered to be out of control
if either M+

jt or M�jt exceeds the decision interval, Hj .
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The mean and variance of the ratio-type estima-
tors Ej , the value of the decision interval Hj at a �xed
in-control ARL0 under the di�erent values of k and
sample size n, and, subsequently, the out-of-control
Average Run Lengths (ARL1) are obtained through
simulation by using the following algorithm.

3.1. Algorithm
1. Sample means and variances of the proposed esti-

mators Ej(j = 1; 2; � � � ; 5).
(1.1) Generate 100,000 samples (subgroups) of size

n, each from the in-control bivariate normal
process having the speci�ed parameters;

(1.2) Calculate Ej(j = 1; 2; � � � ; 5) for each sub-
group;

(1.3) Calculate mean (Ej), bias (Ej), and MSE
(Ej) from 100,000 subgroups.

2. Set up control limits.
(2.1) Generate a random sample of size n from

the in-control bivariate normal process, i.e.,
(Y;X) � N(�y; �x; �2

y; �2
x; �xy);

(2.2) Calculate Ej(j = 1; 2; � � � ; 5);
(2.3) Calculate Zjt based on the information gen-

erated in step 1.3;
(2.4) Calculate the CUSUM monitoring statistics

M+
jt and M�jt ;

(2.5) Choose the reference value, k, and decision
interval, H, for desired ARL0;

(2.6) Repeat steps 2.1{2.4 m times (say 100,000
times) to compute the in-control ARL. If the
in-control ARL is equal to the desired ARL0,
then move to step 3 with the chosen value of
H. Otherwise, revise the value of H in order
to achieve the desired ARL0.

3. Evaluate out-of-control ARLs.
(3.1) Generate a random sample of size n from

the shifted bivariate normal process, i.e.,
(Y;X) � N(�y0 +��y; �x; �2

y; �2
x; �xy), where

� is a magnitude of the shift in terms of
standard deviation;

(3.2) Repeat Steps 2.2{2.4 m times and calculate
the out-of-control ARL and SDRL under
di�erent mean shifts using the same value of
H obtained in step 2.6;

(3.3) Calculate the EQL in order to evaluate the
overall performance of the chart.

4. Performance evaluation of the proposed
charts

This section presents the performance evaluation of the
proposed CUSUM charts by using the (ARL) and the
SDRL for di�erent shifts (�) in the process through
Monte Carlo simulations since it is more accurate and
exible to handle various scenarios than approximation
methods [30]. Moreover, to gauge the overall e�ciency
of the charts based on all the shifts, EQL is used as a
performance indicator. All the simulations are carried
out in R software [31]. The ARL is a popular measure
for gauging the e�ectiveness of the control chart in
detecting the shift in process. It is de�ned as the
average number of sample points plotted until a plotted
sample point indicates an out-of-control signal [1].
Under a �xed ARL0, the chart having the smaller
ARL1s is considered to be superior in detecting process
shifts. Similarly, the smaller SDRL value also indicates
the superiority of the control chart to detect a shift in
the process being monitored [32]. The EQL is de�ned
as the weighted average ARL based on all the shifts
used in a control process. The algebraic expression for
EQL is as follows:

EQL =
1

�max � �min

�maxZ
�min

�2ARL (�)d�;

where �max and �min are the maximum and minimum
values of the shifts considered in a process, and ARL (�)
denotes the ARL at a speci�c shift. More details can
be found in [32{35]. Numerical integration is used to
compute the values of EQL.

Table 1 shows the estimated MSE of the estima-
tors Ej(j = 1; 2; � � � ; 5) for various levels of correlation

Table 1. The estimated Mean Square Errors (MSEs) of the estimators Ej (j = 1; 2; � � � ; 5).

n �xy
Mean square error

E1 E2 E3 E4 E5

5

0.50 0.199908 0.150817 0.150819 0.217996 0.201333
0.60 0.159466 0.129884 0.130021 0.169734 0.161048
0.75 0.100143 0.100079 0.100418 0.103869 0.100661
0.90 0.039643 0.069729 0.070269 0.040981 0.040133

10

0.50 0.100273 0.075222 0.075222 0.107831 0.099609
0.60 0.080092 0.064615 0.064684 0.085619 0.081225
0.75 0.04994 0.049773 0.049941 0.052022 0.050412
0.90 0.019966 0.035002 0.035273 0.020473 0.020046
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Table 2. The run length characteristics of the proposed charts when �xy = 0:50, k = 0:50, and n = 5.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:780 H = 4:754 H = 4:756 H = 4:785 H = 4:772
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 369.89 362.53 370.55 368.21 371.47 363.49 369.88 367.68 369.20 363.82
0.05 264.69 259.59 244.24 239.7 247.32 237.18 276.96 273.58 268.46 261.98
0.10 139.25 131.75 115.68 109.38 114.43 108.02 150.37 141.38 141.18 137.31
0.15 74.41 67.73 57.28 51.52 57.85 51.74 81.52 74.92 75.52 68.04
0.20 43.28 36.11 32.92 26.25 33.05 26.79 47.85 41.71 43.89 37.83
0.25 28.16 22.09 21.63 15.93 21.34 15.25 31.13 24.93 29.05 22.92
0.50 8.28 4.08 6.79 3 6.78 3.06 8.86 4.48 8.39 4.09
0.75 4.79 1.77 3.99 1.33 4.00 1.33 5.05 1.92 4.81 1.75
1.00 3.39 1.03 2.90 0.81 2.90 0.82 3.57 1.13 3.41 1.05
1.50 2.25 0.52 2.00 0.4 2.00 0.4 2.33 0.57 2.25 0.53
2.00 1.80 0.43 1.54 0.5 1.53 0.49 1.85 0.42 1.79 0.43
2.50 1.37 0.48 1.12 0.32 1.12 0.32 1.47 0.49 1.38 0.49
3.00 1.08 0.27 1 0.07 1 0.07 1.12 0.33 1.08 0.27
4.00 1 0 1 0 1 0 1 0.02 1 0.01
5.00 1 0 1 0 1 0 1 0 1 0
EQL 5.278 4.796 4.794 5.460 5.296

Table 3. The run length characteristics of the proposed charts when �xy = 0:60, k = 0:5, and n = 5.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:787 H = 4:773 H = 4:771 H = 4:090 H = 4:082
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 369.62 364.52 369.29 364.03 371.8 361.48 372.12 363.96 370.65 361.04
0.05 243.91 233.33 227.6 217.96 226.06 218.34 267.62 262.57 263.32 260.35
0.10 118.26 111.47 102.77 95.23 104.4 97.37 141.59 136.47 135.87 129.63
0.15 60.36 53.45 50.82 43.84 50.13 43.21 74.25 69.31 70.13 64.99
0.20 34.15 27.06 28.49 22.32 28.66 22.32 42.75 37 39.99 34.7
0.25 22.5 16.37 18.53 12.73 18.65 12.73 27.38 22.67 24.99 20.05
0.50 7.06 3.22 6.10 2.52 6.14 2.57 7.29 3.8 6.93 3.49
0.75 4.16 1.39 3.68 1.17 3.68 1.2 4.07 1.57 3.91 1.44
1.00 2.99 0.86 2.69 0.72 2.69 0.73 2.86 0.9 2.78 0.86
1.50 2.05 0.44 1.91 0.39 1.89 0.39 1.92 0.48 1.89 0.48
2.00 1.62 0.49 1.38 0.48 1.38 0.48 1.43 0.49 1.39 0.49
2.50 1.17 0.37 1.04 0.21 1.04 0.21 1.08 0.27 1.06 0.23
3.00 1.01 0.11 1 0.03 1 0.03 1 0.06 1 0.04
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 4.89 4.613 4.609 4.849 4.775

coe�cient and di�erent sample sizes. The values of
ARL, SDRL, and EQL of the proposed control charts
for a sample of size n = 5 and k = 0:50 are given in Ta-
bles 2{5 at di�erent levels of the correlation coe�cient
(�xy) for various shifts. On the other hand, the ARL,
SDRL, and EQL values for a sample of size n = 10 and
k = 0:50 at various levels of the correlation coe�cient
(�xy) are presented in Tables 6{9 for a range of shifts.
To highlight the best chart, the ARL values are written
in bold font against each magnitude of shifts.

The main �ndings regarding the proposed charts
based on the results given in Tables 2{9 are summarized
as follows:

(i) For a sample of size n = 5 and given the
moderate correlation between the study and the
auxiliary variable, i.e., �xy = 0:5; 0:6, the sug-
gested CUSUM control charts based on the es-
timators E2 and E3 have smaller ARL1s than
other proposed charts (cf., Tables 2 and 3). These
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Table 4. The run length characteristics of the proposed charts when �xy = 0:75, k = 0:5, and n = 5.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:768 H = 4:765 H = 4:770 H = 3:341 H = 3:339
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 371.72 366.31 370.79 365.03 369.95 363.74 372.91 369.45 369.38 367.35
0.05 203.56 198.99 210.46 204.71 210.47 201.33 249.79 245.89 245.11 239.56
0.10 83.11 76.12 83.52 76.80 84.90 77.49 119.25 118.01 115.10 111.47
0.15 38.51 32.23 39.24 32.46 39.06 32.66 57.56 53.16 55.99 51.85
0.20 21.82 15.82 21.86 15.79 22.06 15.89 30.83 26.66 29.89 25.61
0.25 14.65 9.35 14.68 9.29 14.77 9.33 18.80 15.1 18.26 14.53
0.50 5.15 1.96 5.16 1.97 5.14 1.97 4.89 2.48 4.71 2.32
0.75 3.16 0.93 3.17 0.93 3.18 0.93 2.79 0.99 2.72 0.97
1.00 2.35 0.59 2.36 0.57 2.36 0.58 2.02 0.61 1.98 0.59
1.50 1.71 0.46 1.70 0.46 1.70 0.46 1.29 0.45 1.26 0.44
2.00 1.14 0.35 1.14 0.35 1.15 0.35 1.02 0.13 1.01 0.12
2.50 1 0.06 1 0.07 1 0.07 1 0 1 0
3.00 1 0 1 0 1 0 1 0 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 4.368 4.371 4.374 4.328 4.301

Table 5. The run length characteristics of the proposed charts when �xy = 0:90, k = 0:5, and n = 5.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:820 H = 4:782 H = 4:783 H = 2:809 H = 2:811
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 370.34 367.67 370.72 362.64 371.60 365.05 370.88 368.96 370.07 374.3
0.05 118.02 108.97 176.18 168.93 177.15 169.34 182.47 179.95 179.56 177.27
0.10 34.92 28.33 60.75 53.56 61.37 55.3 62.58 59.9 61.03 58.25
0.15 16.06 10.57 27.31 20.84 27.79 21.32 24.67 21.54 24.53 21.53
0.20 9.85 5.24 15.96 10.53 16.07 10.69 12.65 9.83 12.40 9.62
0.25 7.03 3.18 10.81 6.02 10.95 6.13 7.69 5.17 7.56 5.00
0.50 3.01 0.85 4.14 1.39 4.11 1.37 2.46 0.96 2.42 0.93
0.75 2.05 0.42 2.62 0.69 2.63 0.7 1.52 0.54 1.50 0.54
1.00 1.62 0.48 2.04 0.41 2.04 0.42 1.11 0.31 1.10 0.3
1.50 1.01 0.11 1.34 0.47 1.35 0.47 1 0.02 1 0
2.00 1 0 1.01 0.11 1.01 0.1 1 0 1 0
2.50 1 0 1 0 1 0 1 0 1 0
3.00 1 0 1 0 1 0 1 0 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 3.912 4.133 4.138 3.907 3.902

two charts perform almost identically in detecting
the shift in the process mean for all magnitudes
of shifts. It is indicated that these charts are
faster in detecting the smaller shift in the process
mean than the other charts. These �ndings
are further supported by smaller SDRL values
for these two charts. The overall performance
indicator EQL con�rms the competitiveness of
the control charts based on the estimators E2 and
E3 and their dominance in detecting the shift in

the process mean as compared to other proposed
charts. Similar results are found for a sample of
size n = 10 (cf., Tables 6 and 7);

(ii) In the scenario in which the sample size is n = 5
and, yet, the correlation between the study and
auxiliary variable is high, i.e., �xy = 0:75; 0:90,
the CUSUM control chart based on the estimator
E1 has smaller ARL1 and SDRL values than
other suggested charts for the small magnitude
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Table 6. The run length characteristics of the proposed charts when �xy = 0:50, k = 0:5, and n = 10.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:769 H = 4:774 H = 4:773 H = 4:825 H = 4:820
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 369.93 363.75 369.65 368.19 369.48 355.67 371.26 365.23 370.07 364.32
0.05 209.79 202.06 180.62 176.39 182.32 173.70 213.83 209.17 205.45 197.16
0.10 85.88 80.33 65.04 57.95 65.91 59.92 87.96 80.12 84.65 78.70
0.15 39.63 33.29 29.61 22.99 29.24 22.64 42.43 35.99 39.88 33.70
0.20 22.47 16.49 17.12 11.58 16.95 11.50 23.83 17.46 22.14 16.06
0.25 14.98 9.58 11.39 6.48 11.58 6.61 15.80 10.31 14.83 9.47
0.50 5.18 1.98 4.31 1.48 4.29 1.49 5.45 2.16 5.18 1.99
0.75 3.20 0.96 2.73 0.75 2.72 0.74 3.35 1.02 3.21 0.95
1.00 2.37 0.59 2.09 0.44 2.09 0.44 2.47 0.63 2.39 0.59
1.50 1.71 0.47 1.43 0.49 1.43 0.49 1.78 0.44 1.72 0.46
2.00 1.16 0.36 1.02 0.15 1.02 0.14 1.22 0.41 1.16 0.36
2.50 1.01 0.07 1 0 1 0.01 1.01 0.11 1.01 0.07
3.00 1 0 1 0 1 0 1 0.01 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 4.390 4.178 4.178 4.448 4.391

Table 7. The run length characteristics of the proposed charts when �xy = 0:60, k = 0:5, and n = 10.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:773 H = 4:796 H = 4:794 H = 4:057 H = 4:055
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 370.12 356.22 369.93 362.70 369.78 365.29 369.46 360.01 370.94 363.21
0.05 185.25 176.43 167.01 158.83 164.33 157.78 207.84 205.49 200.85 196.38
0.10 67.54 61.63 56.00 49.81 57.52 51.15 83.05 77.71 79.88 73.88
0.15 31.22 24.79 25.43 19.23 25.39 19.52 37.40 32.26 35.64 30.44
0.20 18.07 12.35 14.89 9.45 14.86 9.41 20.63 15.88 19.60 14.77
0.25 12.07 7.10 10.13 5.38 10.20 5.46 13.33 8.85 12.69 8.25
0.50 4.46 1.59 3.92 1.29 3.97 1.31 4.40 1.75 4.28 1.69
0.75 2.83 0.79 2.53 0.66 2.54 0.66 2.68 0.81 2.62 0.79
1.00 2.15 0.47 1.98 0.39 1.98 0.39 2.03 0.50 1.98 0.50
1.50 1.49 0.50 1.27 0.45 1.27 0.45 1.32 0.47 1.27 0.44
2.00 1.03 0.18 1.01 0.07 1.01 0.08 1.01 0.12 1.01 0.10
2.50 1 0.01 1 0 1 0 1 0.01 1 0
3.00 1 0 1 0 1 0 1 0 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 4.215 4.094 4.095 4.198 4.168

of shifts, i.e., � � 0:25 (cf., Tables 4 and 5).
For the moderate to large magnitude of shifts,
i.e., � > 0:25, the CUSUM chart based on the
estimator E5 has smaller ARL1 values than other
proposed charts. On the overall performance
front, the EQL indicates that E5 based CUSUM
chart enjoys superior e�ciency in detecting the
shift in the process mean. A similar pattern
is observed for the sample of size n = 10 (cf.,
Tables 8 and 9);

(iii) Generally, all the proposed charts almost perform
alike in detecting large shifts in the process
irrespective of the sample size and the magnitude
of the correlation between the study and auxiliary
variable (cf., Tables 2{9). Furthermore, the
suggested control charts have unbiased ARL since
the ARL0 remains to be higher than ARL1 for all
choices of shifts (�). Moreover, as the magnitude
of shift increases, the ARL and SDRL values
approach 1 and 0, respectively (cf., Tables 2{9).
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Table 8. The run length characteristics of the proposed charts when �xy = 0:75, k = 0:5, and n = 10.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:772 H = 4:782 H = 4:782 H = 3:332 H = 3:330
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 370.48 367.01 370.28 363.58 370.62 362.35 371.19 364.48 372.33 371.03
0.05 140.08 133.49 142.43 135.14 143.58 137.20 188.75 185.41 183.77 180.29
0.10 43.67 37.36 43.77 37.46 43.74 36.82 65.17 61.21 62.46 58.53
0.15 19.88 14.47 19.89 13.82 19.98 13.97 27.50 23.90 26.58 23.07
0.20 11.82 6.91 11.84 6.79 11.92 6.90 14.26 10.75 13.84 10.52
0.25 8.34 4.09 8.38 4.06 8.37 4.06 9.07 5.92 8.83 5.69
0.50 3.41 1.04 3.39 1.02 3.38 1.04 2.99 1.13 2.95 1.09
0.75 2.24 0.52 2.23 0.51 2.24 0.52 1.90 0.58 1.87 0.57
1.00 1.80 0.43 1.80 0.42 1.80 0.42 1.40 0.49 1.36 0.48
1.50 1.08 0.27 1.07 0.25 1.08 0.26 1.01 0.07 1 0.07
2.00 1 0.01 1 0.01 1 0.02 1 0 1 0
2.50 1 0 1 0 1 0 1 0 1 0
3.00 1 0 1 0 1 0 1 0 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 3.980 3.978 3.981 3.970 3.957

Table 9. The run length characteristics of the proposed charts when �xy = 0:90, k = 0:5, and n = 10.

Shift
(�)

E1 E2 E3 E4 E5

H = 4:782 H = 4:757 H = 4:759 H = 4:813 H = 4:812
ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL

0.00 368.73 356.79 371.06 364.66 369.15 362.08 370.51 363.16 371.02 368.83
0.05 66.39 60.24 109.51 101.12 110.89 106.85 116.71 114.00 112.27 109.31
0.10 17.98 12.42 30.60 23.91 30.84 24.52 28.32 25.08 28.28 25.14
0.15 9.02 4.57 14.56 9.03 14.42 9.09 11.30 8.50 10.79 8.00
0.20 5.87 2.40 8.89 4.47 8.94 4.58 6.01 3.64 5.89 3.53
0.25 4.46 1.57 6.48 2.82 6.51 2.81 4.12 2.09 4.24 2.05
0.50 2.14 0.46 2.79 0.77 2.80 0.77 1.63 0.58 1.61 0.57
0.75 1.49 0.50 1.95 0.39 1.96 0.39 1.07 0.26 1.06 0.24
1.00 1.03 0.18 1.46 0.49 1.47 0.50 1 0.01 1 0.01
1.50 1 0 1 0.06 1 0.05 1 0 1 0
2.00 1 0 1 0 1 0 1 0 1 0
2.50 1 0 1 0 1 0 1 0 1 0
3.00 1 0 1 0 1 0 1 0 1 0
4.00 1 0 1 0 1 0 1 0 1 0
5.00 1 0 1 0 1 0 1 0 1 0
EQL 3.783 3.882 3.884 3.773 3.769

5. Comparison of the proposed and existing
control charts

The performance of the proposed CUSUM charts is
compared with that of some existing control charts such
as the CUSUM chart introduced by Roberts [3], Mean-
FIR control chart suggested by Lucas and Crosier [36],
robust CUSUM charts based on median, Mid-Range
(MR), and Hodges-Lehmann (HL) and Tri-Mean (TM)
suggested by Nazir et al. [37]. Moreover, the per-

formance of the proposed charts is also evaluated in
comparison to the auxiliary information based M-type
control chart introduced by Riaz [21], the modi�cation
of M-type charts by using repetitive sampling proposed
by Lee et al. [20], and the combined Shewhart CUSUM
(CSC) charts suggested by Sanusi et al. [28].

When n = 5, k = 0:5, �xy = 0:75, and ARL0 =
370, the proposed auxiliary information based CUSUM
control charts using E1, E2, and E3 considerably
outperform the existing CSC control charts for small to
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Table 10. The Average Run Length (ARLs) comparison of the proposed CUSUM charts and the existing combined
Shewhart CUSUM (CSC) chart suggested by Sanusi et al. [28] when n = 5, � = 0:75, and k = 0:5 at ARL0 = 370.

Chart
type

Estimator Shift (�)
0.00 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00 1.50 2.00

E
xi

st
in

g
C

SC

M1 370.04 288.21 163.42 86.64 50.12 31.69 8.85 4.89 3.26 1.65 1.11
M2 370.12 272.48 145.40 69.90 36.74 22.81 7.06 4.17 2.94 1.59 1.07
M3 370.53 240.41 99.71 45.52 25.19 16.23 5.36 2.94 1.85 1.06 1.00
M4 371.48 231.62 97.28 44.83 25.05 16.43 5.34 2.90 1.80 1.06 1.00
M5 369.85 260.53 125.32 56.28 30.37 20.58 6.86 4.07 2.84 1.42 1.03
M6 370.03 312.25 229.14 146.34 90.65 59.18 14.40 7.55 5.08 3.09 2.05
M7 370.83 322.73 232.18 147.78 92.51 61.03 14.40 7.62 5.14 3.10 2.07
M8 368.23 309.06 217.54 136.90 84.03 53.63 13.30 7.13 4.84 2.98 2.03
M9 371.10 326.80 236.50 152.58 94.49 60.57 14.53 7.63 5.17 3.12 2.09
M10 369.85 286.99 154.56 75.70 40.75 25.08 7.57 4.43 3.16 1.76 1.12

P
ro

po
se

d
C

U
SU

M

E1 371.72 203.56 83.11 38.51 21.82 14.65 5.15 3.16 2.35 1.71 1.14
E2 370.79 210.46 83.52 39.24 21.86 14.68 5.16 3.17 2.36 1.7 1.14
E3 369.95 210.47 84.9 39.06 22.06 14.77 5.14 3.18 2.36 1.7 1.15
E4 372.91 249.79 119.25 57.56 30.83 18.8 4.89 2.79 2.02 1.29 1.02
E5 369.38 245.11 115.1 55.99 29.89 18.26 4.71 2.72 1.98 1.26 1.01

Table 11. The Average Run Length (ARLs) comparison of the proposed charts Ej (j = 1; 2; � � � ; 5) and Riaz [21] and Lee
et al. [20] M-type charts based on auxiliary information when n = 20, �xy = 0:50 at ARL0 = 220.

Shift
(�)

E1 E2 E3 E4 E5 M-chart M-chart under
rep. sampling

H = 4:264 H = 4:277 H = 4:266 H = 4:269 H = 4:261 k = 6:128 k1 = 5:7
k2 = 4:3

0.00 221.28 220.94 219.22 222.85 221.36 223.4 223.6
0.10 36.32 27.09 27.04 39.7 35.84 99.3 97.7
0.20 10.91 8.43 8.32 11.28 10.67 29.9 28.8
0.30 5.83 4.78 4.76 6.21 5.83 10.8 10.0
0.40 4.04 3.37 3.37 4.26 4.05 4.8 4.4
0.50 3.1 2.65 2.64 3.27 3.1 2.6 2.4
1.00 1.62 1.35 1.34 1.7 1.62 1 1
1.50 1.03 1 1 1 1 1 1
2.00 1 1 1 1 1 1 1

moderate shifts in the process mean, i.e., � < 0:75 (cf.,
Table 10). For large shifts (� > 0:75), the existing CSC
and proposed CUSUM charts almost perform alike
as the di�erences in ARLs are negligible. A similar
comparison can be made for various combinations of
n, k, and �xy. A comparison between the proposed
CUSUM charts and M-Type control charts of Riaz [21]
and Lee et al. [20] is made for n = 20 and �xy = 0:50
at ARL0 = 220. Riaz [21] did not report the ARL
performance of his chart; however, Lee et al. [20]
provided the ARL comparison between their chart and
that of Riaz [21]. The suggested charts have shown a

better shift detection ability in the process mean than
the auxiliary information based M-Type control charts
proposed by Riaz [21] and Lee et al. [20]. Particularly
for the smaller magnitude of shifts, the performance of
the suggested CUSUM charts is very dominating (cf.,
Table 11).

To further support the above �ndings, the ARL
curves of the three of our suggested CUSUM control
charts based on E1, E2, and E5 are drawn against the
existing CUSUM charts. We have not included E3 and
E4 since the performances of E2 and E3 are almost
the same as those of E4 and E5. Figure 1 depicts
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Figure 1. Average Run Length (ARL) curves of the
proposed CUSUM charts using Ej(j = 1; 2; 5) and the
existing CUSUM mean and FIR CUSUM charts when
n = 5, k = 0:5, and �xy = 0:90 at ARL0 = 370.

Figure 2. Average Run Length (ARL) curves of the
proposed CUSUM charts using Ej(j = 1; 2; 5) and the
existing CUSUM charts based on median, mid-range, HL,
and trimean when n = 5, k = 0:5, and �xy = 0:75 at
ARL0 = 370.

the superiority of the proposed CUSUM charts over
the existing CUSUM-Mean and CUSUM-FIR charts
for n = 5, k = 0:50, and �xy = 0:90 at ARL0 = 370.
However, Figure 2 demonstrates the supremacy of the
suggested CUSUM control charts over robust CUSUM
charts introduced by Nazir et al. [37] for n = 5,
k = 0:50, and �xy = 0:75 at ARL0 = 370.

5.1. Illustrative example
To show the sensitivity of the control charts under
investigation, an example is provided that compares
the proposed CUSUM control charts based on ratio-
type estimators Ej(j = 1; 2; � � � ; 5) with the existing
CUSUM mean chart. The target variable (Y ) and the
auxiliary variable (X) may be respectively de�ned as
follows:

(i) Single-strand break factor (a measure of breaking
strength) and weight of textile �bers (hanks per
pound) in the �ber production process;

(ii) Tensile strength (psi) and the amount of molyb-
denum in the production industry of steel wire;

(iii) The amount of power generated (MW) and the
amount of ue gas in the power generation sector;

(iv) The pharmaceutical product and temperature in
the pharmaceutical industry.

Some real-life applications of the use of auxiliary
variables in control charts were provided by Ahmad
et al. [38].

To demonstrate the detection ability of the pro-
posed charts, 35 samples, characterized by size 10 each,
are generated from a bivariate normal distribution with
�xy = 0:75. The �rst 20 samples are generated from the
in-control bivariate normal process with � =

�
4 4

�
and � =

�
1 0:75

0:75 1

�
, and the last 15 samples

are also generated from a shifted bivariate normal
distribution, where a mean shift of magnitude � = 0:25
is introduced in the study variable. Under a �xed
ARL0 = 370, the upper-CUSUM charts based on the
mean and the ratio estimator E1 with parameters k =
0:5 and H1 �= H = 4:77 are constructed and shown in
Figure 3. Moreover, the monitoring statistics (M+

jt ; j =
2; 3; 4; 5) based on the estimators Ej(j = 2; 3; 4; 5) are
plotted against the decision interval Hj(j = 2; 3; 4; 5)
to guarantee that ARL0 = 370. The respective control
charts are presented in Figures 4 and 5.

From Figures 3{5, it is apparent that the
CUSUM charts based on the mean and the estimators

Figure 3. Upper-CUSUM chart based on the mean and
the ratio estimator E1 for the simulated data using
k = 0:5 and �xy = 0:75 at n = 10 and ARL0 = 370.

Figure 4. Upper-CUSUM chart based on the ratio type
estimators E2 and E4 for the simulated data using k = 0:5
and �xy = 0:75 at n = 10 and ARL0 = 370.
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Figure 5. Upper-CUSUM chart based on the ratio type
estimator E3 and E5 for the simulated data using k = 0:5
and �xy = 0:75 at n = 10 and ARL0 = 370.

Ej(j = 1; 2; � � � ; 5) trigger the out-of-control signals
in Samples 34{35, 29{35, 29{35, 29{35, 30{35, and
28{35, respectively. The results indicate that the
proposed control charts detect the shift in the process
mean more rapidly than the existing CUSUM mean
chart. According to Figures 3{5, the CUSUM chart
based on E5 requires eight samples to detect a mean
shift, which is faster than other charts. This example
clearly reveals the superiority of the proposed charts
over the existing charts.

6. Conclusion

In this study, new CUSUM control charts were pro-
posed for monitoring the location of the normal pro-
cesses. The scheme incorporated the auxiliary infor-
mation to estimate the process mean by making ad-
vantageous use of the correlation between the auxiliary
and the study variables. The suggested charts modify
Robert's CUSUM chart by replacing the sample mean
with more e�cient ratio-type estimators of the mean.
In general, the proposed CUSUM charts based on E2
and E3 had smaller ARL1s, SDRLs, and EQL under
a moderate correlation than other charts. In case of
a high correlation, the CUSUM chart based on E1
gave smaller ARL1s for small mean shifts (� � 0:25),
whereas the CUSUM chart based on E5 produced
better results in terms of ARL1s for larger mean shifts
(� > 0:25). The superiority of the new CUSUM
control charts was con�rmed by comparing the out-
of-control ARLs of the various existing charts with
the proposed charting schemes using a range of mean
shifts, sample sizes, and di�erent levels of correlation.
An illustrative example was also given to assess the
performance of the proposed charts, which showed
that the proposed charts detected the process shift
more quickly. The sensitivity of the proposed charts
increased with an increase in the correlation between
the study and auxiliary variables. The present work
can be further extended to design other control charts
under the improved form of estimators based on the
auxiliary information.
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