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1. Introduction

Abstract. For detecting the behavior of a dynamical system, bifurcation analysis is
necessary to be conducted with respect to changes in the parameters of the system. In this
study, based on the solution to ordinary differential equations from the initial value and
parameters, a simple method is presented that can efficiently reveal different bifurcations
of the system. In addition to its simplicity, this method does not require a deep physical
and mathematical understanding of the problem and, because of its high precision and the
speed of solutions, does not need to reduce the order of models for many complex problems
or problems with high degrees of freedom. This method is called Parameter Converting
Method (PCM), which has two steps. In the first step, the parameter varies as a function of
time and, in the second step, time is expressed as the inverse of the assumed function. With
this method at hand, bifurcation and amplitude-frequency diagrams and hidden attractors
of some complex dynamics will be analyzed, and the sensitivity of the multi-potential well
systems to initial conditions is studied. With this algorithm, a simple way to find the
domain of high-energy orbit in bistable systems is obtained.

(© 2020 Sharif University of Technology. All rights reserved.

of the order of equations through different methods
can be effective. Due to the increasing development

Many systems are described by dynamic equations.
These systems exhibit overt and covert behaviors, and
it is necessary to accurately analyze these systems.
Investigation of the system’s bifurcations for changes in
the system parameters is the most important analysis.
Because there is no analytical solution to complex
dynamical equations, numerical solutions are used
instead, or perhaps a semi-analytical solution is an
appropriate choice in some cases; however, in many
cases, a combination of these methods or the reduction
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of computational systems and ease of accessibility, a
combination of many numerical methods is proposed
to investigate the dynamical system.

Perturbation techniques are the most known
methods for analyzing nonlinear systems, although
these methods are used for problems with simple geom-
etry and low dimension. However, the major limitation
of this method lies in the application of this method
to problems with weak nonlinearity, which is usually
introduced by a small parameter e. In this method,
the solution of the problem is expressed in terms of
power €; however, the computational cost of the system
increases with an increase in the assumed terms and
numbers of equations. There are different types of this
method including multiple scales, averaging, Lindstedt-
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Poincare, straightforward expansion, variational itera-
tion, etc. [1-3]. For solving this issue, the combination
of numerical methods and perturbation techniques is a
good strategy, as observed in the referenced study [4];
now, it is called Asymptotic Numerical Method [5,6].
This method is based on the path following, where each
step of the solution is calculated on the basis of the
solution of the truncated vector series. The application
of vector Padé approximation leads to reducing steps
of the solution and increasing the range of validity of
the solution, where a new category of vectors causes
the improvement of this method [7-9].

Algorithms based on the asymptotic numerical
method, such as path-following technique, and nonlin-
ear normal modes were developed to study the behavior
of dynamic systems [10-12]. The basis of numerical
solutions is continuation, in which the solution for
a new parameter of the system is obtained through
the previous solution. Different types of continuation
methods are presented; pseudo-arclength continuation,
parameter continuation, Moore-Penrose continuation,
and piecewise linear continuation are more familiar
instances [13-18]. Numerical methods including the
periodic solutions, connecting orbits, discretization,
and collocation are used for PDEs [19].

In a study conducted by Karkar et al. [20], the
harmonic balance formulations for the continuation
of periodic solutions were used. Karkar et al. [21]
carried out a comparison between the harmonic balance
method and the orthogonal collocation method for
stiff nonlinear systems, which showed that the former
outperformed the latter.

In many engineering problems, one may encounter
equations with infinite or high degrees of freedom. To
solve such problems, dimension reduction or reduced-
order modeling is used, which is an active field in math-
ematics and engineering. These methods consist of cen-
ter manifold method, Lyapunov-Schmidt (LS) method,
Inertial Manifold (IM), various Galerkin methods, and
Karhunen-Loeve or Proper Orthogonal Decomposition
(POD) [22,23]. Based on POD, many methods have
been presented like POD-Galerkin [24-28].

Generally, numerical methods are the essential
parts of bifurcation analysis to observe how the sys-
tem’s behavior changes with the varying parameters
of the system. There are many important and valuable
research studies in this area, which are the main focuses
of many researchers in different fields whose related
algorithms are continuously improving [29-39]. On
the basis of numerical continuation methods, AUTO,
HOMCONT, MATCONT, Manlab, PyDSTool, COCO
software, and other valuable software products are
available. For example, Manlab is based on MATLAB
programming and analyzes the stability and bifurcation
at the equilibrium point. This software uses harmonic
balance method and continuation algorithms to analyze

stability and bifurcation and periodic orbits in the
given dynamical system. The related algorithm is
based on asymptotic numerical methods and Padé
approximation [40]. In addition, Continuation Core
and Toolboxes (COCO) project is written based on
MATLAB and is a Toolbox for parameter continuation
and bifurcation [41]. PyDSTool is a comprehensive
software application for simulating physical systems
(ODEs, DAEs, maps, and hybrid systems). PyDSTool
is written in Python and, to increase its speed, its code
is written in the language of FORTRAN and C [42].

AUTO is written in the Fortran language and is
applied to the continuation and bifurcation problems in
ordinary differential equations. Due to multi-core pro-
cessing capabilities, this software is able to analyze the
dynamic equations with high degrees and a high speed
[43]. HomCont is a numerical toolbox for homoclinic
bifurcation analysis. It is designed for use with AUTO.
Specifically, HomCont deals with the continuation of
codimension-one heteroclinic and homoclinic orbits
to hyperbolic and saddle-node equilibria, including
the detection of many codimension-two singularities
and the continuation of these singularities in three
or more parameters. MATCONT is a MATLAB-
based software product for the bifurcation study of
dynamical systems. The aim of this toolbox is to
provide an interactive environment for the continuation
and normal form analysis of dynamical systems. This
software can analyze the continuation of branch points
in three parameters, the universal use of minimally
extended systems, and the computation of normal form
coefficients for bifurcations of limit cycles.

Classical attractors such as Lorenz [44],
Rossler [45], Chua and Lin [46], Chen and Ueta
[47], and other absorbers are excited through the
unstable equilibriums (self-excited attractors). In
terms of computation, in nonlinear dynamical systems,
attractors in two forms of self-excited and hidden are
presented. To achieve the self-excited attractor, it
is possible to differentiate the path of oscillation in
the nearby region of equilibrium point from the point
on the unstable manifold with a transient solution.
Hence, these types of absorbers are simply identified.
In contrast, the achievement of hidden attractors is
a difficult task, because they are not placed near the
equilibrium point.

To find the self-excited attractor, conventional
numerical methods can be used; however, to achieve
the hidden attractor, it is necessary to propose a new
solution method or extend available algorithms, since
a transient solution similar to the self-excited attractor
does not exist for the hidden attractor. In terms of
applications, the issue of finding the hidden attractor
is very important, since the knowledge about this
hidden behavior can decrease the risk of a sudden and
unexpected jump of the system [48]. To determine
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the location of the hidden attraction, many algorithms
were developed and established [49-56].

Reducing the system’s degrees of freedom without
losing the main part of the behaviors of the system
and reducing the required precision needs very strong
mathematical tools. All semi-analytical solutions or
reduced forms shift the bifurcation diagrams or, in
some cases, may have a low degree of accuracy.

According to the above discussion, it is pleasure
to provide a simple and efficient alternative method;
a method that does not require a deep mathematical
foundation and, instead, enjoys ease of implementation.
In this work, a new method is presented based on
the solution with ordinary differential equations. Due
to its simplicity, it can easily be implemented and
used to analyze the effect of changing parameters
of the dynamic equation. This method does not
require a deep understanding of mathematical concepts
and, because of its high speed for solutions, does not
need to reduce equations in many complex engineering
problems, or problems with a high degree of freedom.
Further, this algorithm can find the hidden attractor
of the problem with a good degree of accuracy.

The method discussed here is based on a very slow
change in parameters of the system during the solving
process of Ordinary Differential Equations (ODE). This
method can be simply implemented by available soft-
ware products such as FORTRAN, C++, MATLAB,
and other applications that have the ability to solve
ODE equations. Moreover, this algorithm can be added
to available continuation toolboxes such as MatCont,
HomCont, Auto, etc.

In the first part of this work, the mathematical ba-
sis of this method is presented, and the implementation
of this algorithm is outlined. In the second part, bifur-
cation diagrams of several complex dynamic systems
are investigated and some of their hidden attractors are
explored. In the third part, the amplitude-frequency
diagram of the Duffing equation is investigated. A
special case of the Duffing equation is treated, in which
the equation has double-well potential and has hidden
attractors under different initial conditions. In the final
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section, the conclusion along with some guidelines for
future works is presented.

2. Base of algorithm

Many systems can be described by time-varying differ-
ential equations, as indicated below:

&= flz(t),a], z€R", a€R"™, (1)

where x is the state variable (a vector), 4 is the time
derivative of the state variables, and « is the parameter
of the system. Let’s assume that the steady state
response of the system for the assumed parameter set of
ag is known and the steady state response of the system
for small variations in the parameter of the system, i.e.,
a = ag + 6, is desired, where ¢ is sufficiently small.
This problem falls in the category of the continuation
theory, in which a solution to the problem with varied
parameters from the available solution is requested.
There are some famous continuation algorithms, as
shown in Figure 1, among which natural continuation
and pseudo arc-length continuation are used to a
greater degree.

Natural parameter continuation is similar to an
iterative solver, by which the solution at one value of o
is used as the initial guess for the solution at parameter
a+ 06, where ¢ is sufficiently small. Hence, with a small
number of iterations, convergence to the true solution
is applied. This algorithm is used in solvers such
as LOCA. However, natural parameter continuation
fails at turning points. The arclength continuation
is based on the parameterization of the length of
curve or arclength. This method is an approximation
of the arclength in the direction towards the curve.
The algorithm is a predictor-corrector method. The
prediction step finds the point along the tangent vector;
in addition, the corrector is usually Newton’s method,
or some variants, to solve the nonlinear system. This
method can follow the curve through turning points
and is used in solvers such as AUTO and Matcont.

The above-mentioned algorithms are mainly used
in nonlinear algebraic equations, i.e., problems with in
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Figure 1. Continuation methods: (a) Natural and (b) arclength.
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— Steady response for “amin”

m— Steady response for “apmax”

w—— Transiant solution (PCM)
from amin t0 max

Eq. (1). The goal of the present work is to obtain the
bifurcation of Eq. (1) with respect to the variation of
parameter a.

Let’s assume that the steady state response of the
system for the initial parameter « is available through
solving Eq. (1). Now, if the variation of the system’s
behavior for a parameter of a in a region of ap;, <
a < Qpax 18 desired, the following change of parameter
(the first step of the parameter conversion) is applied:

Replacing “a” by:

for increase (forward)“a”

[1P k)

amill+€(a111ax_amin)a
for decrease (backward)“a (2)

Omax—¢€ ( Omax—®Fmin ) ]

with,
de 1

At ty—t;

Hence, z,411 = ¢ is the n + 1th state variable. The
parameter o can be the amplitude of the exciting force,
the frequency of the excitation force, or any other
parameter of the system. Moreover, ¢, is the required
simulation time to achieve the steady-state solution at
parameter Quni, Or Qmax, 1-€., the starting point, and
ty is the virtual time (pseudo-time) and is similar to
the parameter s used in the arc-length continuation
procedure. It should be noted that t5 is not the real
time; it only determines the rate of change in « or

Steady solution for “a + 6”

Transiant solution for changing in “a” (PCM)

Steady solution for “o

et

(b)

Figure 2. Schematic of how to apply the new method and its performance.

determines the parameter of c. The greater t, is, the
greater the resolution of solution for change from ap;,
t0 max Will be.

In Figure 2, the schematic of this algorithm is
shown. In Figure 2(a), the available steady state
solution for parameter « (blue color) is shown, and the
steady state solution for the varied parameter a+6 (red
color) is desired. The black line in this figure shows
how the available solution for the present parameter of
a asymptotically approaches the steady state solution
for the varied parameter of @ + 6. In Figure 2(b), in
a typical problem such as Lorenz model, the sweeping
of absorbers between the steady state solutions at ami,
and qpax 18 shown.

Basically, in this method, for a sufficiently long
time, the dynamic equation of the system is analyzed
for parameter of a,,;,, and, accordingly, the steady state
solution is obtained. This steady state solution is used
as an initial solution for the parameter continuation
of @ = apin + 6, similar to the natural continuation
procedure described above. In the conventional natural
continuation procedure, the equation of motion is
solved again for the new parameter a = apy;, + 6, and
the steady state solution is obtained again. This is
a time-consuming procedure and inefficient. However,
another methodology is used in this paper. This
methodology is similar to the natural continuation
procedure, yet with some differences.

In the proposed algorithm, after obtaining the
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steady state solution for a,,,, the time parameter is
converted to a parameter (the second step of parameter
conversion) as follows:

Conversion of time with parameter a:
T—t
Qmin + (a111ax - Oénlin)ﬁa

for increase (forward) «
T—t1 (3)

Omax — (amaz - amin)tg_tl )
for decrease (backward) «

where t; < T < t3. Now, if the equation of motion
is solved again while the desired parameter of a varies
according to Eq. (3) and, since the initial solution is in
the steady state, the system will continuously remain in
this state and the steady state solution will be obtained
for variations in parameter a with a sufficiently high
degree of accuracy. This algorithm can be implemented
by software with an ODE solver.

Since the proposed algorithm is similar to the
natural continuation method, it is necessary to give
some additional description of this algorithm. The
conventional natural continuation method is generally
used in conjugation with nonlinear equations without
time derivatives, in which through Taylor expansion
of nonlinear equation around the previously obtained
solution and linearization of equations or determination
of the Jacobians of equations, the solution of the
problem for a new set of parameters is obtained. Now,
a similar procedure is proposed for time-dependent
nonlinear equations, in which Runge-Kutta or method
of solving ODEs is used here. By gradually varying the
parameter of system and obtaining the local maxima
for each of the states of the response, the bifurcation
diagram of the system will be obtained. For this
purpose, in MATLAB software, the findpeaks command
can be used.

The main advantage of this algorithm is that
while ODEs are solved, it is not required to solve
the equations for a sufficiently long amount of time
regardless of the transient response. In fact, in the
previous methods, to check the bifurcation or the
behavior of the system, the transient solution was
first performed with discrete changes in parameters;
then, the steady solution is evaluated. Of course,
some algorithms are proposed to remove the transient
solution. A simple algorithm commonly used to obtain
the steady state response in this conventional method
is shown in Figure 3(a).

Basically, in Parameter Converting Method
(PCM), at an initially assumed parameter, the tran-
sient solution is obtained until the system reaches the
steady state; after that, this steady state solution is
then used to obtain the solution with a minor increase
or decrease in the parameter of the system. In fact,
with this strategy, although the continuous change of

the desired parameter of the system is in process, the
system is always in its steady state.

There is a critical point in ensuring the conver-
gence of the solution in its steady state while the
parameter of the system is continuously changing.
This is for two reasons: The first reason is in the
selection of step size that can be small as much as
possible; for example, in the ODE solver of MATLAB,
a step size up to 1.41 x 10~ can be selected (further,
more stringent control parameters can be applied to
the ODE solver); the second reason is that, in the
case of the Runge-Kutta method of solving ODEs,
the next value is determined by the present value
plus a weighted average of four increments, where
each increment is the product of the step size and an
estimated slope is specified by the right-hand side of the
differential equation. Hence, accordingly, it is similar
to the Newton-Raphson method for solving nonlinear
equations.

In other words, it can be noted that by removing
the transient period of the solution, a significant
increase in the speed of the solution is observed. This
algorithm is shown in the flowchart of Figure 3(b). The
performance of the new algorithm is shown schemati-
cally in Figure 4, which shows high accuracy and resolu-
tion in a short amount of time in the evaluated diagram
in the new algorithm, compared to the last procedure.
For example, if one seeks to look into the behavior of
the system through the conventional methods in four
distinct parameters, in each of these parameters, after
obtaining the steady response of the system, the exact
behavior of the system is achieved regardless of whether
the values of these parameters are near or far away
from each other. Now, if one needs to examine the
problem with the same runtime of the conventional
method in the continuous investigation between the
selected parameters, at less than t3, a less accurate
response in analyzing the behavior of the system is
obtained, although the bifurcation diagram of the
system with higher quality and continuous variation of
the parameter is obtained. From another perspective,
if the distinct and limited analysis of the parameters of
the system is considered, the previous approach is more
appropriate; however, if the continuous analysis of the
parameter and a more complete analysis of the system’s
behavior in a shorter time period are considered, the
new method is much more suitable.

In other words, in the case of using the con-
ventional method, if the steady state of the system
with some different parameters is required, the problem
along with these parameters should be simulated and
solved independent of each other. Fach of these
simulations requires a specific runtime; accordingly, the
total runtime is the sum of them. However, for the
present method, the problem is continuously solved in
the specific region of the parameters, and the solution
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Figure 4. (a) Schematic of the solutions’ accuracy in the new and conventional methods. (b) Schematic of the resolution

diagram in two methods.

with all parameters is continuously obtained with high

precision.

Figure 4(a) shows that
method approach is higher
tional method; the conven

the precision of the new
than that of the conven-
tional method gives the

response of the system only with distinct parameters,
while PCM gives the solution with all parameters.
Figure 4(b) shows that the quality of the bifurcation
diagram obtained by the new method is more than that
of the conventional method.
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3. Bifurcation diagrams and hidden attractors

Now, the proposed algorithm is applied to different
famous nonlinear systems to explore their different
behaviors and show the effectiveness of the proposed
algorithm.

3.1. Chua’s Circuit

The circuit was first presented by Leon O. Chua in
1983; due to the complexity and simplicity of the
equation and chaotic behavior of the circuit, it is known
as “a paradigm for chaos” [46]. Equations of Chua’s
circuit are given as follows:

i=ay—a)—af()
y=z—y+=z
i=-Py—vz

F@) = maz+ 3 (mo —m) (je + 1)~z ~ 1) (4
The behavior of this system with respect to the vari-
ation of parameter « in the range of [amin, @max] =
[7,8.85] is examined here. The goal is to determine the
behavior of the system and bifurcation diagrams and,
also, find its hidden attractors. According to Li et al.
[58], the following parameters and initial conditions are
considered:

3 =12.0732, v = 0.0052,
moy = —017687 my = —114687

2(0) = —6.0468, y(0) = 0.0839, z(0) = 8.7739.

To determine the bifurcation diagrams, in this case, at
first, a reduction in the control parameter is considered,
and the response of system at a; = 8.85 is determined.
This response is shown in Figure 5 and, as is clear, the
system has a complex behavior and chaotic behavior
is exhibited even in a long simulation time. Generally,
the first solution time must be long enough to ensure

Transient solution

:

0 50 100 150 200 250 300
Time (s)

10

[

[es}

'
o

-10

Figure 5. Transient solution in Chua’s equation for
a1 = 8.85.

achieving a steady state response (if existed) with high
accuracy.

Now, the intersection of a response with plane or
section, desired state or final state of the solution is
selected as an arbitrary condition or an initial value for
the next solution, and the parameter o in comparison
to the previous value changes into a small size . Now,
if Eq. (4) is solved again for this new value @ = a; + 6,
the steady-state response under new conditions will be
obtained.

However, the noteworthy point to consider here is
that it is not required to solve Eq. (4) for a long period
of time since ¢ is sufficiently small to determine the
steady state response for this new value; in addition,
because the initial conditions are obtained from the
previous steady solution, the steady response of the
system is obtained for fractions of a second while it
has a high degree of accuracy. Hence, with a continuous
change in the control parameter, the solution is always
in steady state. In a nutshell, due to solving ODEs by
methods such as Rung-Kutta, an increase in the control
parameter is synchronized with an increase in time.

Now, in accordance with Eq. (2), if the backward
solution is used, the results shown in Figure 6 are
obtained. This response is steady with respect to
time, while it is transient with the control parameter,
i.e., this response is the steady state summation of
transient responses. In Figure 6(a), the backward
solution of the differential equation with continuous
variation of the control parameter in accordance with
Eqs. (2) and (3) is shown with Cyan plot (transient
solution). In accordance with the mentioned algorithm,
if the peaks of this data are determined, as shown
in the zoomed figure, the bifurcation diagram shown
on the top part of this figure can be obtained. A
similar procedure is applied, as shown in Figure 6(b),
for forward solution. According to Figure 6, the system
shows chaotic behavior when exceeding a; = 8.85, and
it absorbs a strange attractor.

To prove the accuracy of the bifurcation diagram
of Figure 6, the steady state response obtained with
PCM and exact solutions are compared in Figure 7. For
this purpose, in Figure 5, the response of the system
at T € [TE4,7.01E4] is selected. At this pseudo-time,
the control parameter is: « € [8.41913,8.41975]. If
the average of the control parameter at this interval,
i.e. agpe = 8.41944, is selected and the exact solution
is determined by solving the equations of motion, the
comparisons of these solutions are shown in Figure 7.
As seen, there is very good agreement between these
results, showing the high accuracy of the proposed
algorithm.

Hence, if the local maximums in the time response
of Figure 5 in accordance with Eq. (3) and MATLAB
findpeaks command are selected, the blue diagram in
Figure 8 is obtained. Now, the effect of the solution
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Figure 6. Transient solution with a new algorithm for changes in « from 8.85 to 7: (a) Backward solution and (b) forward

solution.
Time response
— PCM
1o Exact solution 1
(-2, shifting in time)
5k
w0
.5 1
-10 , , , , , . ‘ . X
7.00 7.002 7.004 7.006 7.008 7.01

4
Time (s) x10

Figure 7. Comparison of the exact solution and transient
solution minor changes a € [8.41913,8.41975].

10 T T T

@ Hidden attractor 1 Pitchfork bifurcation
L | ® Hidden aftractor 2

@a=7.9

7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8

Figure 8. Bifurcation diagram of “z” for changes in
o € [7,8.85]; in the blue figure, the solution is 3 x 10° and
3 % 10'% 410 in the red figure.

time in this bifurcation diagram should be studied. If
the pseudo-time varies from 3 x 10° to 3 x 10'° +10, the
hidden behaviors of the system, including the hidden
attractor, are obtained. These hidden attractors are
revealed in the transition from the chaotic regions.
With varying solution time, the pseudo-time step is

reduced and, thus, we can exit the chaotic region with
conditions different from those of the previous solution.
Hence, the hidden attractors will be revealed.

These attractors are plotted in Figures 9 and
10. Of course, these attractors in [58] are obtained
by mirroring the initial conditions (however, other
initial conditions can also be used), while the hidden
attractors are identified here with minor changes in the
time required to solve the algorithm.

In Figure 10, different twin absorbers are shown.
There are two absorbers that are symmetrical with
respect to the origin [58].

In [58], Figure 9(b) has not been observed before;
however, in PCM with minor changes in the total
solution time of the system, hidden behaviors of the
system in the vicinity of chaos can be found. In fact,
this algorithm in the transition from chaos achieves the
hidden behavior of the system. In the same study [58],
the hidden attractor was found from this viewpoint
such that, since Chua’s Circuit was invariant under
the transformation (x,y,z) — (—z,—y,—z), the two
attractors must be symmetrical with each other with
respect to the origin. In the conventional methods,
different initial conditions in this hidden attractor can
be achieved; however, in this method, without this
property and with a slight change in the time of
calculation or a change in the direction of the solution,
forward or backward solution, these hidden attractors
were obtained. It is important to note that for a simple
system such as Chua, the properties of the system are
accessible; however, in complex systems with higher
degrees of freedom, there are more complex properties
that may not be achievable. In PCM method, in
transition from chaos, some of the properties of the
system such as hidden attractors are achievable.

However, some questions still remain to be an-
swered: Are these hidden attractors limited in number?
How much is this minor change in solution time to
identify all behaviors of the system? In this analysis,
these hidden attractors are obtained with a minor
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Figure 9. (a) A twin hidden attractor presented in [58]. (b) The new hidden attractor.
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Figure 10. (a) Limit cycle with period 1. (b) Twin limit cycle with period 1. (¢) Twin limit cycle with period 2, (d) Twin

attractor. (e) Limit cycle with period 5. (f) Attractor.

change in the solution time; however, other parameters
exist that may reveal other unknown behaviors of the
system.

In accordance with Eq. (2), If the equation of mo-
tion is solved with an increase in the control parameter,
there is a zero equilibrium point at o < 7; however,
with regard to Figure 2(b), the solution stops and,
thus, it is necessary to change the starting point. The
equilibrium point at o = 7.01 becomes unstable and,
thus, a limit cycle occurs, which is a suitable solution
to start and continue the algorithm.

Forward and backward solutions are shown in

Figure 11; however, which of them is more accurate?
In accordance with the exact solution and Figure 12
the solution obtained with backward solution is more
accurate; however, both solutions have an acceptable
degree of accuracy.

Generally, if backward sequence is used instead of
forward sequence, the obtained solution has a higher
degree of accuracy, except the chaos. In Figure 13,
although the simulation time for Chua’s equations is
reduced, the proposed algorithm enjoys good accuracy.

Bifurcation points in Figures 8 and 13 in a« = 7.9
are a pitchfork bifurcation and period doubling in
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Figure 11. Comparison of increasing and decreasing
solutions in Chua’s equation.

a = 8.34; in other words, there are two absorbers in
two different regions, and each of these absorbers is
presented at a = 8.34. For example, in Figure 10(b),
in a« = 8.234, two attractors have period one and,
accordingly, a pitchfork bifurcation occurs at a = 7.9.

The effect of simulation time on the convergence
analysis of the first period 2 is examined in Figure 14.
As observed earlier, with an increase in the simulation
time, the accuracy of predicting this behavior increases
and high accuracy is achieved even in the short time
analysis. Moreover, the backward solution converges
more rapidly.

In the numerical solution of ordinary differential
equations, methods such as Euler, Taylor series, linear
multistep, and Runge-Kutta’s are used. In all of
these methods, the parameter of time step is used to
integrate the differential equation in the considered
domain through several steps. In these algorithms,
to increase the accuracy and reduce the variation of
solution, adaptive step-size selection techniques are
used, meaning that if the time step becomes smaller,
the accuracy of the solver increases, and vice versa [59].

Among the existing software applications, MAT-

(2)

Convergency analysis, ODE time is 1.5E5 (s)

10 .

«
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Figure 13. Investigating the effect of simulation time on
the convergence of solution in forward and backward
analysis.

LAB is an appropriate choice due to its convenience of
interface. Using the ode45 command in MATLAB is
a simple way to solve ordinary differential equations.
This command is based on Explicit Runge-Kutta (4,5)

(b) ()

Figure 12. Comparison of the accuracy of forward and backward solutions at the first point bifurcation point with

period 2.
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Figure 14. Comparison of the effect of an increase or a
decrease in simulation time on the prediction point of the
first period 2 behavior.

formula; in this method, the next step of the solution
only requires one previous step. Generally, in most
cases, ode45 is the best choice for the first analysis and
solution [60].

3.2. Lorenz system

Ed Lorenz from MIT University in 1963 tried to
improve weather forecasting and discovered the first
chaotic attractor. Lorenz [44] reduced the Navier-
Stokes equations for convective L'enard fluid flow into
the three first orders of coupled nonlinear differen-
tial equations and demonstrated the idea of sensitive
dependence upon initial conditions and chaos. The
Lorenz equations are as follows:

x:p(y—x)7
y::p(r_z)_yv
2 =xy — bz, (5)

where x is the rate of convective overturning, ¥y is
the horizontal temperature overturning, and z is the
vertical temperature overturning; the parameter p = P
is proportional to the Prandtl number, r = R is
proportional to the Rayleigh number, and b = K is
a number proportional to the physical proportions of
the region under consideration [57].

In Figures 15 and 16, the bifurcation diagram of
the Lorenz system for the 50 < r < 250 is shown. At
first, the forward solution with an initial parameter of
r = 50 and the initial condition of [z,y, 2] = [0,1,0]
until £¢; = 50 is obtained. This time is selected such
that the transient solution is diminished. Now, by
applying the PCM and solving again the equations of
motion until ¢, = 6 x 10° and using forward solutions,
the complete bifurcation diagrams of the system are
obtained.

The bifurcation diagram shows that the system

® For increasing the “r”

e For decreasing the “r”

60
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-20 . . . . . . .
50 75 100 125 150 175 200 225 250

r

Figure 15. Bifurcation diagram for the state of = in the
Lorenz system at 50 < r < 250.
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Figure 16. Bifurcation diagram for the state of y in the
Lorenz system at 50 < r < 250.

shows chaotic behavior in 50 < r < 91.5, period 5 for
z, and period 7 for y in r = 92, periods 2 and 6 for z
and y in 218.4 < r < 229.7, and finally periods 1 and
3 for x and y in 229.7 < r < 250. Figure 17 validates
the bifurcation diagram around the bifurcation point,
and shows that forward solution has a higher degree
of accuracy. Moreover, some of the periodic solutions
shown in bifurcation diagrams of Figure 15 are given
in Figure 18, which are obtained from direct solutions
of the Lorenz equations such as r = 100.3.

The bifurcation diagram showed that at » = 100
and in transition toward chaos, two modes of response
can be observed. If the solution time of backward
solution is different from forward solution, then several
twin attractors can be obtained, some of which are
shown in Figure 19.

The twin attractor in the Lorenz system can
be justified, because this system has the following
properties:

i. Symmetry (z,y,z) — (—z, —y, —z) for all values of
the parameters;
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Figure 17. Validation of the bifurcation diagram with direct simulation of the Lorenz equation in the zoomed region
shown in the bifurcation diagram: (a) r = 228, period 2, (b) r = 229, period 2, (c) r = 230.5, period 1, (d) r = 228,
period 6, (e) r = 229, period 6, and (f) r = 230.5, period 3.
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Figure 18. Validation of the bifurcation diagram with direct simulation of the Lorenz equation in some specific point: (a)
r = 100.3, period 2, (b) r = 155, period 3, (c¢) » = 193, chaos, (d) r = 240, period 1, (e) » = 100.3, period 4 (f) r = 155,
period 5, (g) 7 = 193, chaos, and (h) r = 240, period 3.

ii. The z-axis (z = y =

0) is invariant (i.e., all

trajectories that start on it also end on it) [57].

property. This means that if the system contains an

unknown behavior, this algorithm can reveal them.

As a result, in accordance with the first property with
changes in initial conditions of the solution, all twin
attractors can be found. However, this algorithm
achieved the hidden attractors without the use of this

3.3. Rossler model

The system is credited to O. Rossler and is used for
modeling chemical kinetics [57,61].
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where z, y, and z are the dynamic variables, and a,
b, and ¢ are the system parameters. In Figure 20, the
bifurcation diagram of Rossler model for 0.2 < a <
0.55 is shown. For this purpose, at first, the governing
equations of the system for ¢ = 0.2 and with the initial
conditions [z,¥, z] = [0,0,0] until ¢; = 300 s are solved
such that the steady state solution is achieved.

Now, in accordance with PCM, if the governing
equations are solved through Eq. (2) from the end
state of the available solution until ¢, = 3 x 10° sec,
such that a linearly changes from 0.2 to 0.55, then the
bifurcation diagram of Figure 20 with good accuracy is
achieved. If ¢ = 0.55 is selected, the diagram can be
obtained recursively. By selecting a = 0.55, this figure
can be obtained at backward solution.

Bifurcation diagram for varying “a”, b=2, ¢ =4

T T T T T

-3

® For increasing the “a”

5 || ® For decreasing the “a”

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Figure 20. The bifurcation diagram for Rossler model for
0.2 < a <0.55.

This bifurcation diagram shows that the equation
shows period one behavior in 0.2 < o < 0.333 and
period two behavior in 0.333 < a < 0.374. With
the increasing parameter, period doubling continues
and chaotic behavior is created. Then, the periodic
windows disappear, and chaotic behavior is diminished
and the behavior with three periods at a = 0.41 is
revealed. Finally, the chaotic behavior is shown again.

In Figure 21, the accuracy of PCM is evaluated
through the comparison of the values shown in the
bifurcation diagram and the results obtained with a
direct solution to the governing equation of motion.

Figure 22 shows the validation of the bifurcation
diagram for other values of the control parameter,
which indicates very good adaptability and high ac-
curacy of this algorithm at sensitive locations such as
a =0.41, 0.4582, and 0.5031.

In Figure 23, the bifurcation diagram of Rossler
model for 0.1 < b < 2 is shown. For this purpose, at
first, the governing equations of the system for b = 0.1
with the initial conditions [z,y, 2] = [0,0,0] until t; =
300 s are solved to achieve the steady state solution.
Hence, by considering the steady state of this solution,
applying the mentioned algorithm, solving the equation
of motion until £, = 3x 10, and varying b linearly from
0.1 to 2, then Figure 23 with good accuracy is achieved.
For backward solution, this procedure is applied from
b=2.

The resulting bifurcation diagram shows that,
for backward solution, the system has periodic one
behavior in 1.44 < b < 2, period two behavior in
0.857 < b < 1.44, period doubling, periodic windows,
chaotic behavior, and chaos disappearance.

In Figure 24, the bifurcation diagram of Rossler
model for 1 < ¢ < 45 is shown. For determining this
diagram, at first, the governing equation of motion for



H. Asghari and M. Dardel/Scientia Iranica, Transactions B: Mechanical Engineering 27 (2020) 310-329 323

4 4 4
w2 w2 w2
0 0 0
5 5 5
5 5 5
0 0 0 0 0 0
Y 5.5 & v -5 7.5 T ¥ =575 &
(a) (b) ()

Figure 21. Validation of the bifurcation diagram for different values of the control parameter of Rossler model (in the
zoom range): (a) a = 0.33, period 1, (b) a = 0.335, period 2, and (c) a = 0.34, period 2.
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Figure 22. Validation of the bifurcation diagram at different values of the control parameter of Rossler model: (a)
a = 0.3547, period 2, (b) a = 0.398, chaos, (c) a = 0.41, period 3, (d) a = 0.4582, period 3, (e) a = 0.5031, period 2, and
(f) @ = 0.55, chaos.
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Figure 23. Bifurcation diagram for variation of the variation of the control parameter of ¢ in the domain of
control parameter in Rossler model for 0.1 < b < 2. 1 <e<A45.
with initial conditions [x,y, z] = [0,0, 0] until ¢; = 300 s control parameter linearly changes until #, = 3 x 105,
is solved such that the transient response is diminished the bifurcation diagram can be determined. For the
and the steady state response is achieved. Now, in backward solution, ¢ = 45 is selected.
accordance with the presented algorithm, from the end It should be mentioned that by increasing the

response of the previous solution at ¢ = 1, if this control parameter, if the period of response varies
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Figure 25. Frequency response curve of the Duffing equation in forward and backward solution of exciting frequency for
different values of the system and exciting parameters: (a), (b) and (c) frequency responses of the Duffing equation, and

(d) the validation of the solution.

from one to two, the backward solution becomes very
close to the accurate solution (even is agreement with
it), and vice versa. As a result, if the system is
examined in a short amount of time after determining
the overall behavior of the system, for increasing the
accuracy of solution, forward or backward solutions can
be used. However, if the system undergoes a sequence
of two-to-one and one-to-two bifurcations, it is better
to discretize the solution interval. For example, in
Figure 23, for 0.1 < b < 0.2, the backward solution is
of good accuracy; for 0.2 < b < 2, the forward solution
has good accuracy; in addition to these, in Figure 24,
for 1 < ¢ < 25 and 25 < ¢ < 45, the backward solution
and forward solutions have good accuracy, respectively.
However, finding these intervals can be obtained by
solving the equations in a short amount of time, and
it is not necessary to accurately determine them. Even
if we do not use this method, generally, forward or
backward solution has enough accuracy.

3.4. Frequency-amplitude diagram: Duffing
oscillator

Now, the frequency-amplitude curve of the Duffing os-

cillator [62] is investigated by the presented algorithm.

The Duffing oscillator is one of the most known models

for studying different nonlinear behaviors of structural

systems. The equation of this oscillator is as follows:

# 463 + Bx + ar® = ycos (wqt). (7)

In Eq. (7), x and % are the dynamical variables; 6, 3,
a, v, and wy are the parameters of the system; ~ and
wy are the amplitude and frequency of the excitation
force. This oscillator for 3 > 0 has non-linear spring
force; for a > 0, the spring is called hardening and that
for o < 0 is softening [63].

To analyze the Duffing equation, the equation of
motion from the initial condition of [z, %] = [0,0] for
the transient time of £; = 1000 s at its first parameter
and t, = 10° s for the solution time of the algorithm is
solved, and the obtained bifurcation diagram is shown
in Figure 25. By eliminating the non-linear term in
Eq. (7), the linear frequency response of the system
is shown in Figure 25(a). According to the equation
of motion, the linear natural frequency of the system is
w = 1. For the parameters selected in Figure 25(b) and
(c), the system has softening and hardening behaviors,
respectively. Moreover, in Figure 25(c), the secondary
resonance frequency is at wy ~ 0.333. In Figure 25(d),
the validation of hardening behavior at wy = 1.6 is
conducted, which shows very good agreement between
the exact solution and the solution of the proposed
algorithm in Figure 25(c).

For systems with two double-well potentials, the
initial conditions or the range of frequency analysis are
very important due to their considerable effect on the
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Figure 26. Frequency response of the Duffing equation with two potential wells.

system’s behavior. In Eq. (7) and for 8 < 0, the
Duffing oscillator indicates the dynamism of the two
potential wells. If @ > 0, then two equilibrium points
at x = +4/—0/a are located; as a result, the system
can oscillate around each of these equilibrium points, or
jump from them and pass over them continuously [63].

These types of Duffing oscillators with more than
one potential well are applicable to many bi-stable,
tri-stable, other energy harvesters. This is due to
their high performance of such systems with respect
to linear systems. In fact, in these systems, power can
be harvested in greater frequency ranges with higher
efficiencies [64—74].

Finding a frequency range in which the system
has a high-energy orbit is very important, and the ana-
lytical determination of this range for complex systems
is complicated. Here, with PCM, the sensitivity of the
multi-stable systems to initial conditions is analyzed,
and a simple strategy to find a range of high-energy
orbits and initial conditions is expressed.

The parameters of v = 0.2, § = 0.05, o = 1,
and 8 = —1 are selected. By considering these
parameters, equilibrium points are located at x = +1.
By selecting zero initial conditions and starting low
excitation frequency for forward at w = 0 and backward
solutions at w = 2, the amplitude-frequency solution
shown in Figure 26 is obtained. According to this time
response, it is clear that the system oscillates in both
wells and can swing between them.

However, this system can exhibit more hidden
behaviors, which may be revealed. In Figure 27, the
above simulation is repeated; however, in this case,
instead of the simulation of the problem from w = 0
to w = 2, in Figure 27(a) and (b), the frequency range
of w = 0 to w = 1 is selected and, then, the solution
stops. As expected, these figures are similar to Figure
26. However, if the frequency interval of w = 1 to
w = 2 ig selected and the initial condition is zero, the
steady state response according to Figure 27(c) and
(d) is completely different; moreover, if the frequency
increases or decreases again, the frequency response

curve is different from the previous case. In this case,
the system switches to its higher orbits. These high-
energy orbits are very important in computational and
physical terms. According to Figure 27(b) and (c), this
range is within 0.52 < wy < 1.73.

To prove the validity of the obtained solution,
Figure 28 shows the time response of the equation
of motion in frequencies of wy = 0.55 and 1.7. The
obtained result shows that the exact solution and
algorithm’s solutions are completely similar.

In fact, different behaviors similar to those shown
in Figures 26 and 27 exist, and they can be identified
through variations in the initial condition and by
breaking the frequency range.

4. Conclusion

This study presented an algorithm in the time domain
to simply obtain the bifurcation diagram and reveal
the hidden behavior of the system. This algorithm ba-
sically ensures that, after the initial steady solution and
at the minimum value of the parameter, if the solution
time of the system increases and the gradual change of
the control parameter of the system is applied, then the
system is continuously in its steady state; in addition,
by obtaining the peaks of the system’s response, the
bifurcation diagram for that the control parameter is
determined.

With this concept applied, bifurcation diagrams
of the chaotic systems such as Chua, Lorenz, and
Rossler are analyzed. Moreover, the validation results
demonstrate the high accuracy and proper functioning
of the algorithm. By applying this algorithm, a hidden
attractor in Chua’s circuit and the Lorenz system were
investigated. Then, in the same case, amplitude-
frequency diagrams of the Duffing equation for the
linear, hardening, and softening cases were assessed,
indicating the good performance of this algorithm.
Finally, the Duffing equation with two potential wells
was investigated, and the sensitivity of the Duffing
equation in this case was investigated by the pro-
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Figure 27. High and low energy orbits of the Duffing equation with two potential wells obtained by this new algorithm.
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Figure 28. Validation of high energy orbits obtained by
the proposed algorithm with the equation’s numerical
solution.

posed new approach. According to the literature,
the prediction of the hidden behavior of this system
with available analytical, semi-analytical, or numerical
solutions was not simple. Due to the simplicity of the
algorithm, this algorithm can be simply implemented
by software applications that have the ability to solve
ODE problems. This method can be added easily
to available continuation software applications such as
MANLAB, AUTO, and MATCONT.

In a typical system with a dual-core processor and
2.9 GH frequency, the amplitude-frequency diagrams

of the Duffing equation can be found in the fraction
of a second, and the bifurcation diagrams of Chua’s
circuit, Lorenz, and Rossler systems can be obtained
with very high accuracy in about one to eight minutes.
The key point here is that with a negligible error and
in the fraction of a second, the amplitude-frequency
or bifurcation diagram of the complex systems can
be obtained; in addition, after a glance view of this
initially obtained bifurcation diagram, each area of
diagram can be carefully investigated again. Of course,
this second investigation can be achieved in a shorter
amount of time.

By applying the proposed algorithm in different
case studies, it is clear that this method is of high
accuracy. At bifurcation points with an increase in
periods of response, it is better to use backward
solution. Further, at bifurcation points with a decrease
in periods of solution, forward solution is preferable.

Briefly, the main advantage of the PCM method
is its low computation time and the greater resolution
of the bifurcation diagram; the forward and backward
solutions in transition from chaos lead to the acquisi-
tion of the hidden attractor, which in fact implies the
application of different initial conditions in the conven-
tional methods. However, for example, a problem like
obtaining a nonlinear frequency-amplitude response in
the Duffing equation is considered; now, the question
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is: is it easy to find appropriate initial conditions to
reach different oscillation regions?

In the conventional method, finding the hidden
attractor is probabilistic to some extent. However, in
the proposed method, based on the continuous nature
of the proposed solution method, in the transition from
chaos, in forward and backward solutions, the present
state will determine the future state. In a nutshell,
compared to the random selection of initial condition in
the conventional method, the past state of the system
is used to find the hidden attractor in PCM.

Future works

This algorithm is written in its simplest form with the
aim of easy implementation. Further improvement can
be made in this method; for example, with the non-
linear change of the control parameter, the accuracy
of bifurcation points can be improved. This study
did not address the type of bifurcation, existence and
the location of unstable behavior, stability analysis,
isolated curve, etc., which can be the subject of future
works.
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