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Abstract. In this paper, an e�ective meta-heuristic technique called quasi-oppositional
symbiotic organisms search is applied for solving non-convex economic dispatch problems.
Symbiotic organisms search is a soft computing technique, inspired by organisms in the
ecosystem. This technique is implemented for improving the solution quality in minimum
time. In order to improve the convergence rate, quasi-reected numbers are used here
instead of pseudo-random numbers. Di�erent equality and inequality constraints such as
transmission loss, load demand, prohibited operating zone, generator operating limits, and
boundary of ramp rate are considered here. The presence of multiple fuels and valve point
are also considered in some cases. This algorithm is applied to four di�erent test systems.
Simulation results are compared with many recently developed optimization techniques to
show the superiority and consistency of this method. Simulation results also show that
the computational e�ciency of this algorithm is much better than the other meta-heuristic
methods available in the literature.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, the minimization of fuel cost during
electrical power production has become a major chal-
lenge for power engineers. The objective of economic
dispatch is to reduce the price of power generation
while satisfying various constraints.

Classical optimization techniques have been de-
veloped to �nd a solution to ELD problems. However,
they are subject to various limitations. In linear
programming [1] method, generator fuel cost character-
istics are approximated as piecewise linear. This is one
of the major disadvantages of this method, even though
it is fast and reliable. Dynamic programming [2]
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technique was introduced by Wood and Wollenberg [3]
applied this technique for solving the ELD problems.
However, with an increase in system size, its execution
time also increases. These classical methods are mainly
calculus based, and they make use of derivatives.
In some cases, these techniques converge to local
optimal point. Practical ELD considers ramp rate
limit, prohibited operating zone, multiple fuel options,
etc. Therefore, the resultant ELD becomes a non-
convex optimization problem, which is very di�cult
to solve by classical methods. Therefore, in recent
years, numerous meta-heuristic and heuristic processes
have been applied to solve various economic dispatch
problems.

Simulated Annealing (SA) [4] was developed in
1993. This algorithm was inspired by annealing in
metallurgy, a technique that involves heating and
controlled cooling of a material in order to increase
the crystals size and reduce their defects. Panigrahi et
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al. [5] applied this technique to dynamic economic load
dispatch problem for determining the nearly global op-
timal solution. However, it is not easy to set a suitable
value for control parameter, and the convergence speed
of this technique is also very low.

In 1993, Walters and Sheble [6] proposed Genetic
Algorithm (GA) for solving ELD problems. It was
found that the potential of GA for global optimization
was very high. However, the performance of this
method was not good at identifying local optima, and
this algorithm was not e�ective for smooth unimodal
function. Therefore, in order to improve the perfor-
mance of GA, Improved Genetic Algorithm with Multi-
plier Updating (IGA MU) was developed by Chiang [7]
in 2005 for solving power economic dispatch.

Kennedy and Eberhart [8] proposed Particle
Swarm Optimization (PSO) technique, motivated by
ocking of birds and �sh schooling. Gaing [9] applied
this technique to di�erent constrained ELD problems.
However, this method is not always guaranteed to
obtain global best solution. There is a chance to get
stuck in a local optimal point. Therefore, various
modi�cations and hybridization of PSO such as New
PSO with Local Random Search (NPSO LRS) [10],
adaptive PSO [11], improved coordinated aggregation-
based PSO [12], improved PSO [13], and species-based
quantum particle swarm [14] have been presented to
improve the e�ciency of this algorithm.

Storn and Price [15] proposed Di�erential Evo-
lution (DE) based on a population-based stochastic
search technique. This technique gives nearly global
optimal solution by iterative re�ning of the population
through reproduction and selection. Iba et al. [16]
proposed this DE technique in order to solve ELD
problems. However, it was found that the performance
of this technique was not satisfactory in terms of
convergence speed for a large system. Therefore,
various modi�ed and hybridized versions of DE with a
generator of chaos sequences and sequential quadratic
programming [17], DE-PSO-DE [18], and improved
DE [19] have been introduced to get a better quality
solution.

Evolutionary programming [20] is a soft comput-
ing method. This methodology is capable of �nding
a near-optimal solution. However, the major demerit
of this method is that the execution period of this
technique is too long and, also, the application of this
technique is restricted in practical areas. Therefore,
for improving the computational e�ciency of this
technique, an improved fast evolutionary programming
was proposed by Sinha et al. [21] for economic dispatch
problems.

In 2008, bacterial foraging with Nelder-Mead
algorithm [22] was developed in order to solve the
economic dispatch problems. Biogeography-Based Op-
timization (BBO) was proposed by Simon [23]. Bhat-

tacharya and Chattopadhyay [24] applied this tech-
nique to various non-convex ELD problems. Bhat-
tacharya et al. (2010) proposed a hybrid method that
combined DE with BBO (DE/BBO) [25] to solve both
non-convex and convex ELD problems.

Lam and Li [26] developed Chemical Reaction
Optimization (CRO) method. This technique was
applied to continuous benchmark function, and the
performance of this technique was found satisfactory.
Bhattacharjee et al. [27] applied this methodology to
the constrained ELD problem for �nding nearly global
optimal results. Oppositional Real-Coded Chemical
Reaction Optimization (ORCCRO) was introduced by
Bhattacharjee et al. [28] to solve non-convex optimiza-
tion problems.

In 2011, Rao et al. [29] developed Teaching
Learning-Based Optimization (TLBO) method. TLBO
is based on two phases of education and they are
`Teacher phase' and `Learner phase'. It is observed that
the performance of TLBO method is satisfactory when
tested on various benchmark functions. In 2013, TLBO
method was applied by Bhattacharjee et al. [30] to solve
ELD problems. Banerjee et al. [31] proposed TLBO to
�nd the solution of ELD. Chaotic Teaching-Learning
Based Optimization with Levy ight (CTLBO) was
proposed by He et al. [32] in order to solve ELD
problems.

Mirjalili et al. [33] discovered grey wolf optimizer
algorithm in order to solve various mathematical prob-
lems. Kamboj et al. [34] used this technique to solve the
problems of constrained ELD. Self-Adaptive Di�eren-
tial Harmony Search (SADHS) algorithm and Chaotic
Self-Adaptive Di�erential Harmony Search algorithm
(CSADHS) techniques were proposed by Rajagopalan
et al. [35] in 2014. An e�cient Krill herd method was
proposed by Mandal et al. [36] for solving both non-
convex and convex ELD problems. In 2015, Barisal
and Prusty [37] proposed Oppositional Invasive-Weed
Optimization (OIWO) method to solve large-scale ELD
problems. Mirjalili proposed ant lion optimization [38],
which was implemented by Kamboj et al. [39] for
solving various problems of ELD. In 2015, Subathra
et al. [40] developed a hybrid cross-entropy method
and quadratic programming for solving ELD problems.
Al-Betar et al. [41] proposed Tournament-based har-
mony search algorithm for solving non-convex ELD
problems. Ghorbani and Babaei proposed Exchange
Market Algorithm (EMA) [42], motivated by the stock
exchange trading method, for solving ELD problems.
In 2018, Mohammadi et al. introduced Modi�ed Crow
Search Algorithm (MCSA) [43] for solving the non-
convex economic load dispatch problem.

In 2014, Cheng and Prayogo [44] proposed a new
optimization technique called Symbiotic Organisms
Search (SOS) in order to solve various mathemati-
cal and engineering design problems. The proposed
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methodology recreates the intelligent conduct seen
among creatures in nature. The main advantage of this
algorithm is that speci�c algorithm parameters are not
required. In 2016, SOS technique was implemented by
Duman [45] to �nd the solution of optimal power ow.
In 2017, Guvenc et al. [46] proposed SOS method to
solve economic dispatch problems.

Opposition-Based Learning (OBL) was proposed
by Tizhoosh [47] in order to improve back propagation
in neural networks. In order to approach the solution,
OBL exploits the opposite numbers. By contrasting
a number to the opposite number, a compact search
space is required to obtain the correct solution. It
was demonstrated that a quasi-opposite number [48]
was likely to be closer to the solution as compared to
a random number. Further to this, a quasi-opposite
number was typically nearer to the solution compared
to an opposite number.

Since the quasi-opposite number is used here
instead of the pseudo-random number, the solution
obtained through the initialization process is nearer to
the optimal solution. Hence, the number of iterations
required to reach the optimal solution is less than
that in other initialization processes. It is observed
that the computational e�ciency of this technique is
better, which is the reason why the present authors
have adopted this methodology in Quasi Oppositional
Symbiotic Organisms Search (QOSOS) for accelerating
the speed of convergence of SOS to a greater extent.
It is seen that QOSOS is performed better than SOS
and other well-known optimization techniques. In this
paper, the QOSOS algorithm is used for solving various
ELD problems, and the results obtained by QOSOS
method are compared to other optimization techniques.
The details of this proposed technique are discussed in
Section 4.

The main contribution of this paper is to imple-
ment the OBL method in SOS algorithm in order to
accelerate the convergence rate of SOS algorithm. It
has already been discussed above that if quasi-random
number is used instead of pseudo-random number, then
the convergence rate improves because the solution ob-
tained through the initialization process is nearer to the
best solution. In 2009, Eegezer et al. [48] proved that
quasi-opposite number was always nearer to the best
solution than random number and opposite number. It
was also observed that, for an original estimated solu-
tion, quasi-reected set (expected probability is 11/16)
had a greater tendency to reach an optimal point as
compared to quasi-opposite set (expected probability
is 9/16). SOS algorithm itself is a strong optimization
technique. This algorithm is validated and tested in
various benchmark functions, and it is found that this
algorithm gives better performance than the other well-
known meta-heuristic based methods. Therefore, the
present authors have adopted OBL in SOS techniques

in order to improve the convergence rate of SOS and
obtain a solution with better quality.

2. Problem formulation

2.1. Objective function
The objective of economic dispatch is to minimize the
total cost of power generation while satisfying various
constraints. The �tness function of the economic
dispatch case can be written as follows:

CT =min
NX
i=1

Ci(Wi)=min
NX
i=1

ai+biWi+ciW 2
i ; (1)

where Ci(Wi) shows the fuel price function of the ith
generator; ai, bi, and ci are the fuel price coe�cients
of the ith unit; N represents the total number of
generating units; Wi is the output power of the ith
unit. From this equation, it is observed that the fuel
cost characteristic is quadratic in nature. However, in
practice, the valve-point loading e�ect is introduced in
the objective function. A sudden increase in losses has
been observed when steam admission valve is opened.
Therefore, a ripple is introduced in the cost function,
which is known as the valve-point loading e�ect.

The overall objective function CT of the economic
dispatch problem with valve-point e�ect [28] can be
expressed as follows:

CT =

 
NX
i=1

Ci(Wi)

!
=

 
NX
i=1

ai + biWi + ciW 2
i

+
��Ei � sin

�
Fi � (Wmin

i �Wi)
	��!; (2)

where Ei and Fi represent the coe�cients of unit i with
the valve-point e�ects.

Practically, multiple fuel sources are used for
dispatching unit, and every unit must be represented
with a piecewise quadratic function. In a network, the
fuel price function of the generator with valve point
and multiple fuel option [27] can be represented by:

CT =
NX
i=1

Cip(Wi); (3)

Eq. (4) is shown in Box I,

where N is the total number of generators; Wip�1 is
the lower limit for fuel option p of the ith generating
unit; aip, bip, cip, Eip, and Fip represent the coe�cients
of fuel price of the ith generator with fuel option p.

2.2. Constraints of ELD
2.2.1. Constraint of real power or demand
The overall generation must be equal to transmission
loss and system demands. This can be represented as
follows:
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Cip(Wi) =

8>>>>>>>><>>>>>>>>:

�
ai1 + bi1Wi + ci1W 2

i + jEi1 � sinfFi1 � (Wimin �Wi)gj� for fuel 1Wimin �Wi < Wi1�
ai2 + bi2Wi + ci2W 2

i + jEi2 � sinfFi2 � (Wi1 �Wi)gj� for fuel 2Wi1 �Wi < Wi2

: : :
: : :�

aip + bipWi + cipW 2
i + jEip � sinfFip � (Wip�1 �Wi)gj� for fuel pWip�1 �Wi �Wimax

(4)

Box I

NX
i=1

Wi � (WD +WL) = 0; (5)

where WL, WD represent the total transmission loss
and total system demand, respectively. The loss due
to power transmission WL can be calculated as follows:

WL =
NX
i=1

NX
j=1

WiBijWj +
NX
i=1

B0iWi +B00: (6)

2.2.2. Operating limits constraint of generator
The generated power by individual generator must vary
within their maximum and minimum limits. Therefore:

Wmin
i �Wi �Wmax

i i = 1; 2; 3 � � �N; (7)

where Wmin
i and Wmax

i represent the lower and upper
limits of the real power output of unit i.

2.2.3. Ramp rate limit
In practical circumstances, the operating range of
all online units may be con�ned by the ramp rate
limit [28]. Depending on up (URi) and down (DRi)
ramp rate limits, the generation can be increased or
decreased.

If generation increases:

Wi �Wi0 � URi: (8)

If generation decreases:

Wi0 �Wi � DRi; (9)

where Wi0 is the power generation of the ith unit at an
earlier hour.

2.2.4. Prohibited zone constraint
The units of the generator might have some zones
where operation is limited because of faults in the
machines, steam valve operation, boilers, vibration in
shafts, etc. [28]. Thus, a discontinuous cost curve
is produced in relation to the prohibited operating
zone. Prohibited operating zone may be formulated
as follows:

Wmin
i �Wi �W l

i;1;

or:

Wu
i;k�1 �Wi �W l

i;k; k = 2; 3; � � � ; ni;
or:

Wu
i;ni �Wi �Wmax

i ; (10)

where k represents total prohibited zone numbers of
the ith unit. Wu

i;k and W l
i;k represent higher and lower

limits of the kth prohibited zone; ni represents the total
number of prohibited zones of the ith unit. During
optimization, if Wu

i;k � Wi � (Wu
i;k + W l

i;k)=2, then
Wi will be �xed to Wu

i;k. Mathematically, this can be
expressed as follows:

Wi=Wu
i;k if Wu

i;k�Wi�(Wu
i;k+W l

i;k)=2;

k = 2; 3; � � � ; ni: (11)

IfW l
i;k < Wi < (Wu

i;k+W l
i;k)=2, thenWi will be �xed to

W l
i;k. Mathematically, this can be expressed as follows:

Wi=W l
i;k if W l

i;k<Wi<(Wu
i;k +W l

i;k)=2;

k = 2; 3; � � � ; ni: (12)

2.3. Calculation of slack generator power
output

Without transmission loss:

WN = WD �
(N�1)X
i=1

Wi: (13)

With transmission loss:

WN = WD +WL �
N�1X
i=1

Wi: (14)

By using Eqs. (6) and (14), the modi�ed equation may
be written as follows:
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BNNW 2
N +WN

 
2
N�1X
i=1

BNiWi +BON � 1

!

+

0@WD +
N�1X
i=1

N�1X
j=1

WiBijWj

+
N�1X
i=1

B0iWi �
N�1X
i=1

Wi +B00

!
= 0: (15)

WN is the same as that mentioned in [25].

3. Symbiotic Organisms Search (SOS)

SOS is developed based on the relationship between
two separate organisms. The word symbiosis represents
the relationship between two speci�c species. Among
the various advantageous relations found in nature,
mutualism, commensalism, and parasitism [44] are the
most widely recognized. Mutualism is a symbiotic rela-
tionship between two separate organisms, wherein both
organisms get the advantage [44]. In commensalism
between two organisms, one is bene�ted by the other
without a�ecting it [44]. Parasitism is the relationship
between two types of organisms in which one gets
bene�tted while harming the other [44]. SOS imitates
the mutualism, commensalism, and parasitism phases
of nature in order to generate a new solution.

3.1. Mutualism phase
The relationship between owers and bees is an exam-
ple of mutualism. Honeybees accumulate nectar ying
from ower to ower and transform it into honey. In
this process, honeybees circulate pollen, which inspirits
fertilization. Thus, both the honeybee and the owers
get bene�tted.

In SOS, Zi stands for an organism related to the
ith individual from the eco-system. From the eco-
system, another organism Zj is then chosen randomly
to interact with Zi. These two organisms are then made
and involved in a mutualistic association, such that
both Zi and Zj get bene�tted. The new candidate
solutions Zinew and Zjnew are computed in light of
the mutually bene�cial interaction between Zi and Zj .
This is presented in Eqs. (16) and (17):

Zinew =Zi + rand (0; 1)

� (Zbest �Mutual vector � bf1) ; (16)

Zjnew =Zj + rand (0; 1)

� (Zbest �Mutual Vector � bf2); (17)

Mutual Vector =
Zi + Zj

2
; (18)

where bf1 and bf2 are the bene�t factors. Zinew
and Zjnew are the new candidate solutions obtained
after modifying the values of Zi and Zj in the mu-
tualism phase. Zbest represents the best organism
obtained so far among all sets in the population matrix
(Ecosystem) based on the �tness value. Sometimes, in
some mutualism connections, one organism may get
bene�tted to a large extent, while the other may have
just satisfactory bene�t. Thus, organism Zi may get
more signi�cant advantage than Zj when interaction
occurs between the two. Here, bene�t elements (bf1
and bf2) are resolved arbitrarily as either 1 or 2.

3.2. Commensalism phase
An example of the commensalism relationship is the
relation between sharks and remora �sh. The remora
eats sustenance remains by attaching itself to the shark
and, thus, gets bene�tted. However, this does not
a�ect the shark. Thus, the shark gets negligible, if
any, bene�t from the relations.

Similar to the mutualism stage, an organism, Zj ,
is chosen arbitrarily from the eco-system to associate
with Zi. Here, organism Zi gets advantage from the
association, while organism Zj neither gets bene�tted
nor hurt from the relation. Candidate solution Zi
is obtained by a commensal advantageous interaction
between organisms Zi and Zj , as given in Eq. (18).
Organism Zi is updated if a new �tness function value
is superior to the pre-interaction �tness function value.

Zinew = Zi + rand (�1; 1) � (Zbest � Zj): (19)

3.3. Parasitism phase
Parasitism is a relationship between two organisms in
which one gets bene�t at the cost of harming the other.
In Parasitism, the parasite gets bene�t, while the host
gets harmful a�ect by the relationship. The tapeworms
are divided atworms, which are found in the inner
parts of the entrails of creatures such as bovines, pigs;
people may be taken as an example of parasitism. Here,
the atworms are the parasites, which eat the host's
partly digested sustenance and, thus, get bene�tted,
whereas the host is a�ected by being deprived of the
supplements. In SOS algorithm, organism Zi acts as
the tapeworm by creating an arti�cial parasite known
as \parasite vector". In the search space, parasite
vector can be obtained by copying organism Zi and,
then, modifying the randomly chosen dimensions with
a random number. From the eco-system organic entity,
Zj is chosen arbitrarily and serves as a parasite host.
If the �tness function value of the parasite vector is
superior, organism Zj will be murdered by it. Thus, the
parasite vector will acquire the place in the eco-system.
If Zj is superior, then Zj will resist the parasite and,
hence, the parasite will never again be able to sustain
in that eco-system.
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4. Oppositional Based Learning (OBL)

Tizhoosh proposed the application of the OBL [47]
technique to enhance computational speed and acceler-
ate the rate of the convergence of various optimization
algorithms.

If y is the real number between [pq; pr], then the
opposite number of y may be expressed as follows:

y0 = pq + pr � y; (20)

where y0 is the opposite number of y.
If y is a real number between [pq; pr], then the

quasi-point, yq0, can be expressed as follows:

yq0 = rand (pc; y0); (21)

where pc represents the midpoint of the interval [pq; pr];
rand (pc; x0) is a random number distributed uniformly
between pc and y0. A similar logic may be applied for
reecting the quasi-opposite point yq0. If y is a real
number between [pq; pr], then the value of yqr can be
de�ned as follows:

yqr = rand (pc; y); (22)

where yqr is the quasi-reected point.
The above-mentioned de�nitions can reach out to

larger dimensions without much of a stretch.

4.1. Implementation of OBL in SOS algorithm
The OBL technique is implemented in SOS algorithm
in order to accelerate the convergence speed of SOS.

4.1.1. Algorithm for the quasi-reection-based
initialization

The steps are given below:

1. Randomly generate initial population U between
maximum and minimum limits of decision vari-
ables and generate a reection weight � between
[0 1];

2. Generate Quasi-Reected Sets (QRSs) for each
initially generated population set, U , using the
following procedure;

3. For e = 1 : A (A = pop set)
4. For f = 1 : B (B = decision variable)
5. If Ue;f < Median
6. QRSe;f = Ue;f + (Median � Ue;f ) � �e%%%%

(Median = Ue;f = (pq + pr)=2)
7. Else
8. QRSe;f = Median + (Ue;f �Median) � �e
9. End

10. End
11. End

12. Evaluate �tness value for QRS and total popula-
tion

13. Sort out best A individuals on the basis of their
�tness

14. Store the best population sets

4.1.2. E�ect of jumping rate
QRSs have been used in SOS algorithm for accelerating
the convergence speed. However, it has been found
that if QRSs are generated in every step, the simulation
time may be prolonged. Therefore, in order to optimize
the computational time, a control parameter called
jumping rate has been used. It is a control parameter
whose value is set by the user in order to skip the
creation of the quasi-reected set in certain generation.
The e�ect of this parameter in QOSOS algorithm is
explained in the ow chart of Section 4.2.

1. For f = 1 : B (B=decision variable);

2. If Ue;f < Median

3. QRSe;f = Ue;f + (Median � Ue;f ) � �e%%%%
(Median = Ue;f = (pq + pr)=2);

4. Else

5. QRSe;f = Median + (Ue;f �Median) � �e
6. End

7. End

8. End

9. Evaluate �tness value for QRS if selected by Jr
10. End

4.2. Application of oppositional symbiotic
organism search algorithm in ELD

The ow chart of QOSOS algorithm is described in
Figure 1, which shows the application of QOSOS
algorithm in ELD problems. The steps of the QOSOS
method applied to economic load dispatch problems are
given below:

Step 1: Initialize the number of generators, ecosize
(n), maximum �tness evaluation (max FE), initial
population counter (num iter = 0), initial number of
�tness evaluations (num �t eval = 0) and maximum
number of iterations (max iter), etc.;

Step 2: Generate output of (N � 1) number of
thermal generators randomly based on ecosize and
dimension of the problem. These are called decision
variables.

Zji = (Zmax
j � Zmin

j )� rand + Zmin
j

for j = 1; 2; 3: � � �N � 1:
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Figure 1. Flow chart of Quasi Oppositional Symbiotic Organisms Search (QOSOS) applied to ELD.
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Figure 1. Flow chart of Quasi Oppositional Symbiotic Organisms Search (QOSOS) applied to ELD (continued).



3104 D. Das et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3096{3117

The initial population matrix (ecosystem) is pre-
sented below:

Ecosystem =

266664
Z11 Z12 Z13 � � � Z1n
Z21 Z22 Z23 � � � Z2n
: : : : :
: : : : :

Zn1 Zn2 Zn3 � � � Znn

377775 :
Step 3: Calculate the real power generation for
slack generator. Verify real power balance constraint
given in Eq. (5) for slack generator. If the output of
slack generator does not meet generation operating
limit constraint and other constraints mentioned in
Eqs. (6) and (12), then go to Step 2; otherwise, go to
Step 4;
Step 4: Calculate the objective function;
Step 5: Generate the quasi-reected set of the
population matrix using Eqs. (20){(22);
Step 6: Check the limit of all constraints using
Eqs. (5) and (12). If the constraints are satis�ed,
then go to Step 7; otherwise, go to Step 5;
Step 7: Calculate the �tness function (�tness 1)
using the quasi-reected set;
Step 8: Based on the �tness value, sort out the best
set of the initial population matrix (ecosystem);
Step 9: Update the set in various phases of SOS
(mutualism, commensalism, and parasitism).
� Mutualism phase

(i) Choose one organism Zj randomly from
ecosystem.(Zj 6= Zi);

(ii) Determine mutual vector using Eq. (18) and
bene�t factor;

(iii) Modify the organisms Zj and Zi (Zi stands
for an organism related to the ith individual
from the eco-system) on the basis of their
mutual relationship in Eqs. (16) and (17);

(iv) Check the limits of modi�ed sets (Zinew and
Zjnew). If any organism violates either upper
or lower limit, then �x it to the respective
limit and calculate the real power generation
for slack generator. If the output of slack
generator does not meet the generator's op-
erating limit constraint, then go to step (i);
otherwise, move on to step (iv);

(v) Calculate the �tness values (f(Zinew) for
Zinew and f(Zjnew) for Zjnew) and check
whether the modi�ed sets are �tter than
the previous set or not. If the modi�ed set
is �tter than the previous set, then accept
it. Otherwise, reject this set and keep the
previous set. The steps are given below:
1. If f(Zinew) < �tness 1;

2. �tness 1 = f(Zinew);
3. Ecosystem = Zinew;
4. End;
5. If f(Zjnew) < �tness 1;
6. �tness 1 = f(Zjnew);
7. Ecosystem = Zjnew;
8. End.

� Commensalism phase
(i) Choose one organism Zj randomly along

with Zi;
(ii) Modify Zi using Eq. (19);
(iii) Check the limit of all constraints. If any

organism violates any constraint limit, then
�x it to the respective limit and calculate the
real power generation for slack generator. If
the output of slack generator does not meet
the generator's operating limit constraint,
then go to step (i); otherwise, proceed to
step (iv);

(iv) Calculate the �tness function value (f(
Zinew));

(v) If the modi�ed set (Zinew) is �tter than the
previous set, then accept the modi�ed set to
replace the previous one. Otherwise, reject
the set and keep the previous one. The steps
are given below:
1. If f(Zinew) < �tness 1;
2. �tness 1 = f(Zinew);
3. Ecosystem = Zinew;
4. End.

� Parasitism phase
(i) Select one organism randomly and generate

parasite vector by mutating Zi. by means
of a random number in between upper and
lower bounds;

(ii) Check the constraints of parasite vector. If
any organism violates either upper or lower
limit, then set it to the respective limit
and calculate the real power generation for
slack generator. If output of slack generator
does not satisfy the generator's operating
limit constraint, then go back to step (i);
otherwise, go to step (iii);

(iii) Calculate the �tness function (�tnessPara-
site);

(iv) If the modi�ed set is �tter than the previous
set, then accept the modi�ed set. Otherwise,
reject the modi�ed set and keep the previous
one. The steps are given below:
1. If �tnessParasite < �tness 1;
2. �tness 1 = �tnessParasite;
3. Ecosystem = parasite vector;
4. End.
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Table 1. Power output for Test system I against minimum fuel price (PD = 2630 MW).

Units DE/BBO
[25]

BBO
[24]

GAAPI
[42]

SOH-PSO
[42]

EMA
[42]

SOS QOSOS

P1 (MW) 425.815607 455.000000 454.70 455.00 455.0000 455.000000 455.000000
P2 (MW) 419.480952 420.000000 380.00 380.00 380.0000 380.000000 380.000000
P3 (MW) 130.000000 130.000000 130.00 130.00 130.0000 130.000000 130.000000
P4 (MW) 127.109310 130.000000 129.53 130.00 130.0000 130.000000 130.000000
P5 (MW) 269.866995 270.000000 170.00 170.00 170.0000 170.000000 170.000000
P6 (MW) 459.155633 460.000000 460.00 459.96 460.0000 460.000000 460.000000
P7 (MW) 429.033732 430.000000 429.71 430.00 430.0000 430.000000 430.000000
P8 (MW) 69.906161 64.978264 75.35 117.53 72.0415 72.097900 71.692830
P9 (MW) 58.752044 47.684519 34.96 77.90 58.6212 58.431100 58.834260
P10 (MW) 80.549854 48.869702 160.00 119.54 160.0000 159.999800 160.000000
P11 (MW) 47.210600 59.049411 79.75 54.50 80.0000 80.000000 80.000000
P12 (MW) 73.165992 55.000000 80.00 80.00 80.0000 80.000000 80.000000
P13 (MW) 27.605892 26.853800 34.21 25.00 25.0000 25.000000 25.000000
P14 (MW) 15.494490 22.765547 21.14 17.86 15.0000 15.000000 15.000000
P15 (MW) 24.922918 36.953999 21.02 15.00 15.0000 15.000010 15.000000
Total power (MW) 2658.07018 2657.155242 2660.36 2662.29 2660.6626 2660.5288 2660.5270
Power loss (MW) 28.0702 27.15524143 30.36 32.28 30.6626 30.5288 30.5270
Fuel cost ($/h) 32707.0296 32712.3959 32732.95 32751.39 32704.4503 32702.9358 32702.9352

Step 10: Save the modi�ed set;

Step 11: Generate random numbers;

Step 12: Check whether the jumping rate is greater
than the random number or not. If it is greater than
the random number, then go to Step 13; otherwise,
go to Step 17;

Step 13: Using the modi�ed set, generate the quasi-
reected set;

Step 14: Check the limit of all constraints. If
all constraints are satis�ed, then go to Step 15;
otherwise, go to Step 13;

Step 15: Calculate the �tness function using the
quasi-reected set;

Step 16: Sort out the best set between the modi�ed
and QRSs;

Step 17: If the quasi-reected set is �tter than the
modi�ed set, then accept this set. Otherwise, reject
the quasi-reected set and keep the modi�ed one;

Step 18: Determine the best �tness and best
organism;

Step 19: Go to Step 9 and repeat until the prede-
�ned max FE is reached.

5. Results and discussions

The QOSOS algorithm is applied to di�erent test cases
of ELD problem, and its performance is compared to

various algorithms available in the literature. This
algorithm has been coded in Matlab 9 with a computer
equipped with 2.40 GHz core i3 to execute the program.

5.1. Description of test systems
5.1.1. Test system I
A 15-generator system with a system demand of
2630 MW is considered here. The transmission loss,
prohibited operating zone, and ramp rate limit con-
straints are included in this case. The input data are
available in [42]. The results obtained by QOSOS,
SOS, DE/BBO [25], BBO [24], GAAPI [42], SOH-
PSO [42], and EMA [42] are displayed in Table 1.
The fuel price convergence curve is presented in Fig-
ure 2. Best, worst, and average fuel costs achieved

Figure 2. Convergence characteristics of the 15-generator
system with loss obtained by Quasi Oppositional
Symbiotic Organisms Search (QOSOS) and Symbiotic
Organisms Search (SOS).
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Table 2. Performance analysis of di�erent methods taken after 50 try-outs.

Methods Generation cost ($/h) Time/iteration,
(s)

No of hits to
minimum solutionMax. Min. Average

QOSOS 32705.5912 32702.9352 32703.0414 2.1 48
SOS 32705.5915 32702.9358 32703.0420 3 48
BBO [24] 32713.4991 32712.3959 32712.528284 17.5 44
DE/BBO [25] 32710.2396 32707.0296 32707.2864 12.4 46
MDE [42] 33245.54 32917.87 33066.76 NA NA
PSO [42] 33031 32858 32989 NA NA
ABC [42] 32708.27 32707.85 32707.95 NA NA
PSO-SIF [42] 32709.92 32706.8800 32707.7900 NA NA
�-PSO [42] 32744.0306 32706.6856 32711.4955 NA NA
EMA [42] 32704.4506 32704.4503 32704.4504 NA NA
RCCROa [27] 32698.9950329897 32698.9950329897 32698.99503298 4 50
IA EDPa [49] 32823.7790 32698.2018 32750.2176 NA NA

a: Infeasible Solution.

by QOSOS, SOS, DE/BBO [25], MDE [42], PSO [42],
BBO [24], ABC [42], PSO [42], PSO-SIF [42], �-
PSO [42], EMA [42], RCCRO [27], and IA EDP [49]
over 50 trails are presented in Table 2.

5.1.2. Test system II
A 40-unit system with a load demand of 10500 MW
is considered here. The valve-point e�ect and trans-
mission loss are also considered in this case. The
input data are available in [28]. The B-loss coef-
�cients of the transmission losses are obtained from
the 6-generator system [50] by multiplying rows and
columns up to 40 numbers of units. Simulation
results of QOSOS method are compared to SOS, BBO,
DE/BBO, SDE [51], and GAAPI [52] algorithms. Fuel
price convergence curve for QOSOS and SOS is shown
in Figure 3. The best results of these methods are
displayed in Table 3. Mean, best, and worst fuel costs
are obtained by QOSOS, SOS, and ORCCRO [28].
BBO, DE/BBO over 50 try-outs are displayed in
Table 4.

Figure 3. Convergence characteristics of the 40-generator
system with loss obtained by Quasi Oppositional
Symbiotic Organisms Search (QOSOS) and Symbiotic
Organisms Search (SOS).

5.1.3. Test system III
A-110 unit with a system demand of 15000 MW is
considered here. The fuel price curve is quadratic in
nature. The input data are available in [37]. The
best results obtained by the proposed QOSOS and
SOS methods are presented in Tables 5 and 6, respec-
tively. The fuel price convergence curve is presented in
Figure 4. Mean, average, and worst fuel prices achieved
by QOSOS, SOS, OIWO [37], ORCCRO [28], SAB [37],
SAF [37], SA [37], BBO [28], and DE/BBO [28] over
50 try-outs are shown in Table 7.

5.1.4. Test system IV
Here, a 160-unit system with multiple fuel options
is considered. The input data are available in [37].
The transmission loss has not been considered here.
The system demand is 43200 MW. The best results
achieved by QOSOS and SOS method are shown in
Tables 8 and 9, respectively. The best, average,
and maximum fuel costs obtained by various methods

Figure 4. Convergence characteristics of the
110-generator system obtained by Quasi Oppositional
Symbiotic Organisms Search (QOSOS) and Symbiotic
Organisms Search (SOS).
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Table 3. Power output for Test system II against minimum fuel price (PD = 10500 MW).

Unit
Power outputs (MW)

QOSOS SDE [51] GAAPI [52] BBO DE/BBO

P1 (MW) 113.998208 110.06 114 112.541727 111.040874
P2 (MW) 113.996087 112.41 114 113.215833 113.705080
P3 (MW) 119.999761 120.00 120.00 119.506795 118.639216
P4 (MW) 190.000000 188.72 190 188.371629 189.492251
P5 (MW) 96.996697 85.91 97 90.412530 86.322613
P6 (MW) 140.000000 140.00 140.00 139.048610 139.877472
P7 (MW) 299.999670 250.19 300 294.971421 299.863328
P8 (MW) 300.000000 290.68 300 299.181239 285.420119
P9 (MW) 299.999444 300 300 296.464436 296.289801
P10 (MW) 279.598777 282.01 205.25 279.885675 285.071561
P11 (MW) 168.802970 180.82 226.3 160.149083 164.690461
P12 (MW) 94.001371 168.74 204.72 96.736599 94.000727
P13 (MW) 484.031540 469.96 346.48 484.043477 486.301449
P14 (MW) 484.040927 484.17 434.32 483.316174 480.695779
P15 (MW) 484.056224 487.73 431.34 483.766660 480.657462
P16 (MW) 484.041270 482.30 440.22 483.299544 485.049168
P17 (MW) 489.278603 499.64 500 490.831472 487.942092
P18 (MW) 489.280840 411.32 500 492.185686 491.086680
P19 (MW) 511.288305 510.47 550 511.281207 511.789157
P20 (MW) 511.293735 542.04 550 521.551143 544.886056
P21 (MW) 526.286692 544.81 550 526.424242 528.922979
P22 (MW) 550.000000 550.00 550 538.296144 540.578228
P23 (MW) 523.298180 550.00 550 534.744028 524.982099
P24 (MW) 523.266462 528.16 550 521.195398 524.119592
P25 (MW) 524.774829 524.16 550 526.144729 534.491096
P26 (MW) 523.376904 539.10 550 544.431877 529.147514
P27 (MW) 10.030764 10.00 11.44 11.505008 10.509604
P28 (MW) 10.081928 10.37 11.56 10.209941 10.000000
P29 (MW) 10.002068 10.00 11.42 10.713711 10.000314
P30 (MW) 87.851470 96.10 97 88.275085 90.062133
P31 (MW) 190.000000 185.33 190 189.843396 189.816490
P32 (MW) 189.999971 189.54 190 189.935690 187.686113
P33 (MW) 190.000000 189.96 190 189.128231 189.969857
P34 (MW) 199.999915 199.90 200 198.066854 199.833444
P35 (MW) 199.999994 196.25 200 199.916450 199.926719
P36 (MW) 164.811860 185.85 200 194.351445 163.031804
P37 (MW) 109.999979 109.72 110 109.429796 109.847519
P38 (MW) 109.999982 110.00 110 109.558632 109.263036
P39 (MW) 109.999917 95.71 110 109.621734 109.595638
P40 (MW) 549.999259 532.47 550 527.819702 543.227545
Total power (MW) 11458.484603 11474.43 11545.06 11470 11457.83307
Power loss (MW) 958.484602 974.43 1045.06 970.373 957.8331
Fuel cost ($/hr) 136452.357142 138157.46 139864.96 137026.82324 136950.76699
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Table 4. Performance analysis of di�erent methods taken after 50 try-outs.

Methods Generation cost ($/hr) Time/iteration
(sec)

No. of hits
to min. solutionMax. Min. Average

QOSOS 136452.357142 136452.357142 136452.357142 0.05 50
SOS 136464.264253 136464.264253 136464.264253 0.064 50
ORCCRO [28] 136855.190000 136855.190000 136855.190000 0.07 50

BBO 137587.823244 137026.823244 137116.583244 0.20 41
DE/BBO 137150.766993 136950.766993 136966.766993 0.16 45

Table 5. Power output for Test system III against minimum fuel price using Quasi Oppositional Symbiotic Organisms
Search (QOSOS) algorithm (PD = 15000 MW).

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

1 2.400260 21 68.900000 41 157.397800 61 45.013730 81 10.000000 101 10.044440
2 2.400033 22 68.901740 42 220.000000 62 45.000000 82 12.443040 102 10.000010
3 2.401600 23 68.900000 43 439.991800 63 184.977100 83 20.001990 103 20.007920
4 2.400001 24 349.998700 44 559.997200 64 184.980500 84 199.895100 104 20.000000
5 2.400000 25 400.000000 45 660.000000 65 184.968200 85 324.936800 105 40.000030
6 4.000099 26 399.999400 46 615.200800 66 184.892900 86 439.984800 106 40.000000
7 4.006499 27 499.999900 47 5.40001605 67 70.403840 87 21.870970 107 50.001010
8 4.001311 28 499.996400 48 5.4014250 68 70.003120 88 20.892530 108 30.000060
9 4.003657 29 199.989700 49 8.400334 69 70.000000 89 77.273580 109 40.000250
10 64.251800 30 99.975330 50 8.400000 70 359.999800 90 83.322540 110 20.001640
11 60.19975 31 10.001320 51 8.401234 71 399.992100 91 58.117670 Fuel cost ($/h)
12 35.768520 32 19.999500 52 12.000350 72 399.9983001 92 96.862830 197939.7436
13 54.903420 33 79.994530 53 12.000130 73 103.980400 93 439.998800
14 25.008950 34 249.978000 54 12.000000 74 190.713000 94 500.000000
15 25.001280 35 359.973400 55 12.000050 75 89.816370 95 599.997800
16 25.000960 36 399.994100 56 25.446850 76 49.933960 96 471.403500
17 154.999600 37 40.000000 57 25.450350 77 160.005700 97 3.600000
18 154.997600 38 69.920000 58 35.008050 78 289.383700 98 3.600013
19 154.996400 39 99.992710 59 39.172200 79 172.673200 99 4.400455
20 154.968600 40 119.994100 60 45.000000 80 118.916100 100 4.402490

such as ORCCRO [28], BBO [28], DE/BBO [37], ED-
DE [37], IGA-MU [37], CGA-MU [37], OIWO [37],
SOS, and proposed QOSOS method are presented in
Table 10. The fuel price convergence curve for the 160-
generator system is shown in Figure 5.

5.2. Parameter tuning
To check the impact of jumping rate on QOSOS
algorithm, four test systems are taken and the program
is executed for 50 individual trails for each system.
The value of jumping rate varied from 0.1{0.9. The
results obtained by QOSOS algorithm are shown in

Table 11. From this table, it is found that when the
value of jumping rate is 0.4, then the cost obtained
by QOSOS algorithm is minimum for all systems. No
changes are found when the value of jumping rate is
above or below 0.4.

5.3. Comparative study
5.3.1. Quality of solution
In this paper, four test systems have been considered
in order to investigate the solution quality of this
proposed method. The best result achieved by QOSOS
method is presented in Tables 1, 3, 5, and 8. The best
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Table 6. Power output for Test system III against minimum fuel price using Symbiotic Organisms Search (SOS)
algorithm (PD = 15000 MW).

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

1 2.404854 21 68.900240 41 150.077500 61 45.001110 81 10.000000 101 10.000000

2 2.400938 22 68.938320 42 219.997000 62 45.004710 82 12.000000 102 10.000650

3 2.400479 23 68.900420 43 439.995900 63 184.999400 83 20.000000 103 20.000160

4 2.400021 24 349.999300 44 559.998700 64 184.999800 84 199.984000 104 20.000000

5 2.400092 25 399.999900 45 660.000000 65 184.993800 85 319.204400 105 40.000090

6 4.000000 26 399.999300 46 618.452400 66 184.999900 86 439.969600 106 40.000190

7 4.000059 27 499.998400 47 5.400133 67 70.000020 87 10.026810 107 50.012490

8 4.000000 28 500.000000 48 5.400237 68 70.000000 88 54.874640 108 30.000020

9 4.000130 29 199.946900 49 8.400040 69 70.000020 89 87.245410 109 40.000010

10 66.101960 30 99.997130 50 8.400116 70 359.196700 90 79.516720 110 20.000040

11 58.838280 31 10.000010 51 8.468224 71 399.993500 91 51.425710 Fuel cost ($/h)

12 31.860850 32 19.989380 52 12.000000 72 399.999800 92 89.335660 197939.7893

13 50.054410 33 78.049890 53 12.000070 73 107.233000 93 439.981600

14 25.001380 34 249.997800 54 12.000000 74 184.549600 94 499.997100

15 25.000290 35 359.982400 55 12.000690 75 89.961320 95 599.998700

16 25.000380 36 399.966000 56 25.692140 76 50.000000 96 465.698500

17 154.983900 37 39.999320 57 25.209730 77 160.017300 97 3.600011

18 155.000000 38 69.999360 58 35.063660 78 302.931700 98 3.600000

19 154.994000 39 99.908330 59 35.000600 79 180.131500 99 4.404215

20 154.937100 40 117.832200 60 45.003020 80 119.966400 100 4.400107

Table 7. Performance analysis of di�erent methods taken after 50 try-outs.

Methods Generation cost ($/h) Time (s) No of hits to
minimum solutionMax. Min. Average

QOSOS 197939.7436 197939.7436 197939.7436 24 50
SOS 197944.835 197939.7893 197939.9912 27 48
OIWO [37] 197989.93 197989.14 197989.14 31 46
ORCCRO [28] 198016.89 198016.29 198016.32 45 48
SAB [37] NA 206912.9057 207764.73 NA NA
SAF [37] NA 207380.5164 207813.37 NA NA
SA [37] NA 198352.6413 201595.19 NA NA
BBO [28] 199102.59 198241.166 198413.45 115 41
DE/BBO [28] 198828.57 198231.06 198326.66 132 43

fuel costs obtained by QOSOS and other optimization
techniques are shown in Figure 6. Minimum, worst,
and mean values of di�erent algorithms are presented
in Tables 2, 4, 7, and 10. From these tables, it is found
that the cost obtained by QOSOS technique is better
than that by other well-known optimization methods

such as RCCRO, BBO, DE/BBO, SOS, OIWO, and
so on. For example, in a 160-unit system, the fuel
cost obtained by QOSOS method is less (9964.7743
$/h) than that by other well-known algorithms like
SOS (9965.1983 $/h), DE/BBO (10007.05 $/h), BBO
(10008.71 $/h), CGA-MU (10143.73 $/h), ED-DE
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Table 8. Power output for Test system IV against minimum fuel price using Quasi Oppositional Symbiotic Organisms
Search (QOSOS) algorithm (PD = 43200 MW).

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

1 215.4707 31 214.5395 61 214.4882 91 216.5361 121 213.4613 151 214.4689

2 208.2421 32 212.9581 62 213.1896 92 213.6980 122 212.9507 152 211.9704

3 270.5703 33 270.5191 63 270.5373 93 273.5828 123 274.5690 153 271.5826

4 242.8673 34 240.7176 64 240.9827 94 243.6695 124 242.8669 154 241.6553

5 269.5572 35 269.8329 65 269.6497 95 272.6426 125 272.5652 155 272.2529

6 241.7894 36 239.6364 66 239.2367 96 241.1156 126 242.5966 156 243.6717

7 290.1276 37 290.0534 67 294.7046 97 289.9545 127 295.4940 157 292.4722

8 243.2671 38 239.9100 68 242.1926 98 243.1335 128 240.8492 158 240.9797

9 435.7920 39 438.4512 69 436.4554 99 437.9711 129 438.9170 159 439.9245

10 279.0626 40 276.4841 70 275.8674 100 280.1669 130 279.0697 160 278.8568

11 213.4607 41 214.8151 71 216.5635 101 214.5162 131 212.4382 Fuel cost ($/h):

12 210.2358 42 213.7012 72 209.7291 102 208.7377 132 210.7201 9964.7743

13 274.6187 43 270.5741 73 274.6109 103 270.5600 133 274.6145

14 240.3118 44 238.5647 74 239.6399 104 239.3716 134 242.0576

15 272.9514 45 269.5641 75 272.6561 105 269.1597 135 269.4461

16 239.6383 46 242.4611 76 243.8048 106 238.6986 136 238.5637

17 292.4608 47 294.8516 77 292.4516 107 292.4488 137 287.6749

18 240.4462 48 240.5824 78 241.9238 108 242.4625 138 241.7909

19 437.4157 49 435.6231 79 438.7262 109 436.2056 139 431.9449

20 275.8047 50 278.8602 80 275.4191 110 278.7097 140 280.4117

21 215.4967 51 213.4739 81 215.5277 111 216.6034 141 214.4785

22 209.4840 52 208.4938 82 212.2087 112 210.4831 142 209.7288

23 277.6109 53 270.5902 83 270.6099 113 271.5742 143 274.6101

24 241.5208 54 242.8655 84 238.0290 114 240.1773 144 243.1320

25 269.1498 55 272.6260 85 269.5430 115 269.8243 145 272.1808

26 239.7741 56 241.5204 86 239.2385 116 240.7154 146 240.8490

27 290.4996 57 292.4338 87 292.3779 117 289.6335 147 292.5119

28 239.7753 58 242.0573 88 241.6545 118 242.0599 148 241.1172

29 438.6057 59 438.2665 89 438.9649 119 436.8218 149 439.8503

30 276.0220 60 277.0527 90 279.0049 120 275.8644 150 279.5116

(10012.68 $/h), IGA-MU (10042.47 $/h), ORCCRO
(10004.20 $/h), and OIWO (9981.9834 $/h). The same
results are found in other test systems. Therefore, it
may be concluded that the performance of this QOSOS
algorithm is better in terms of solution quality.

5.3.2. Robustness
The performance of QOSOS algorithm is judged after
running the program for 50 numbers of trials. Out

of 50 trails, QOSOS hits the minimum solution 48
times for Test system I, 50 times for Test system II,
50 times for Test system III, and 48 times for Test
system IV. Therefore, the success rate of QOSOS is
96%, 100%, 100%, and 96%, respectively. However, in
the case of other techniques like BBO, the success rate
is 88% for Test system I, 82% for Test system 2, 82%
for Test system III, and 80% for Test system IV. In the
case of DE/BBO, out of 50 trails, DE/BBO hits the
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Table 9. Power output for Test system IV against minimum fuel price using Symbiotic Organisms Search (SOS)
algorithm (PD = 43200 MW).

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

Units
Power

outputs
(MW)

1 213.4391 31 214.5546 61 213.4332 91 214.3808 121 215.1922 151 215.3906
2 210.4746 32 210.7216 62 210.9736 92 212.2070 122 212.4539 152 211.9597
3 277.5943 33 272.5008 63 274.6178 93 269.5789 123 275.6178 153 275.5265
4 242.0593 34 241.9270 64 238.5639 94 238.9687 124 241.7895 154 239.5041
5 272.4628 35 265.4339 65 272.5994 95 273.0647 125 272.1735 155 274.8823
6 242.7277 36 239.7738 66 241.2541 96 242.1924 126 241.5203 156 240.1766
7 289.8278 37 290.1660 67 285.3304 97 290.1447 127 295.1800 157 295.165
8 240.3105 38 240.9832 68 241.3873 98 241.1176 128 238.8334 158 240.4421
9 439.9740 39 433.5012 69 433.0181 99 436.5588 129 439.7279 159 435.7264
10 269.8171 40 277.6055 70 278.8895 100 276.4531 130 277.2311 160 277.8750
11 214.5256 41 212.6042 71 211.4103 101 212.3253 131 216.1747 Fuel cost ($/h):
12 209.4848 42 215.4263 72 211.9581 102 213.6914 132 210.2269 9965.1983
13 277.6397 43 273.7193 73 275.6242 103 272.7214 133 272.5977
14 242.3276 44 241.7895 74 239.7738 104 242.1933 134 241.3866
15 268.3343 45 271.6897 75 276.4731 105 271.2958 135 276.6546
16 241.3871 46 240.5786 76 241.5218 106 239.9127 136 243.0005
17 290.0881 47 296.6654 77 292.6219 107 290.2505 137 295.0211
18 240.9811 48 239.9084 78 241.7884 108 240.5734 138 237.7596
19 437.0648 49 435.8193 79 436.6464 109 433.5166 139 436.1278
20 277.9264 50 273.0427 80 279.0826 110 282.1131 140 276.5405
21 213.1619 51 214.4037 81 215.5236 111 214.4996 141 213.4624
22 211.9596 52 210.2307 82 214.4346 112 210.4817 142 212.7071
23 271.6030 53 275.6084 83 273.5992 113 271.5884 143 273.528
24 241.7849 54 238.8384 84 242.3259 114 241.6547 144 240.3115
25 272.4845 55 272.7626 85 272.6467 115 273.1699 145 272.5002
26 240.7138 56 241.2563 86 242.4612 116 240.8523 146 240.8490
27 290.5941 57 293.8994 87 292.5437 117 288.3130 147 287.6947
28 238.1615 58 240.4532 88 241.5187 118 239.3691 148 239.3738
29 437.7040 59 434.6733 89 436.6298 119 437.9882 149 439.3068
30 278.8737 60 279.1716 90 279.0592 120 277.8026 150 276.5218

Table 10. Performance analysis of di�erent methods taken after 50 try-outs.

Methods
Generation cost ($/h)

Time (s) No of hits to
minimum solutionMax. Min. Average

QOSOS 9965.4929 9964.7743 9964.8030 12.8 48

SOS 9967.2648 9965.1983 9965.2809 14.3 48

DE/BBO [28] 10010.26 10007.05 10007.56 35 42

BBO [28] 10010.59 10008.71 10009.16 44 40

CGA-MU [37] NA 10143.73 NA NA NA

ED-DE [37] NA 10012.68 NA NA NA

IGA-MU [37] NA 10042.47 NA NA NA

ORCCRO [28] 1004.45 10004.20 10004.21 19 48

OIWO [37] 9983.998 9981.9834 9982.991 17.3 46



3112 D. Das et al./Scientia Iranica, Transactions D: Computer Science & ... 27 (2020) 3096{3117

Table 11. Impact of jumping rate on Quasi Oppositional Symbiotic Organisms Search (QOSOS) after 50 trials.

Jumping rate Min cost ($/h)

Test system I Test system II Test system III Test system IV
0.1 32711.3247 136498.114781 197942.9963 9971.2547
0.2 32715.3217 136501.331856 1979345.9613 9975.3398
0.3 32705.6698 136461.201478 197940.1236 9968.6540
0.4 32702.9352 136452.357142 197939.7436 9964.7743
0.5 32708.7741 136475.249650 197945.0213 9966.2739
0.6 32710.4796 136498.123587 197941.3982 9969.8802
0.7 32708.2200 136474.123652 197942.0147 9971.5014
0.8 32712.3382 136465.417895 197944.0596 9965.9871
0.9 32705.2020 136502.214789 197942.3987 9968.1182

Figure 5. Convergence characteristics of the
160-generator system obtained by Quasi Oppositional
Symbiotic Organisms Search (QOSOS) and Sumbiotic
Organisms Search (SOS).

minimum solution 46 times for Test system I, 45 times
for Test system II, 43 times for Test system III, and 42
times for Test system IV. Therefore, the success rates
of DE/BBO are 92%, 90%, 86%, and 84%, respectively.
Therefore, consistency of QOSOS method is found
to be more than that of many other well-known soft
computing methods.

5.3.3. Computational e�ciency
The main objective of OBL is to accelerate the conver-
gence rate. It has been observed that a quasi-opposite
number [48] is likely to be nearer to the solution than a
random number. Therefore, the authors have applied
this in SOS in order to improve the convergence rate.
In Test system I, it is found that the time/iteration of
QOSOS technique is only 2.1 sec, which is less than
other techniques like SOS (3 sec), BBO (17.5 sec),
DE/BBO (12.4 sec), and RCCRO (4 sec). There-
fore, by using QOSOS method, the computational
e�ciency is improved by 30%, 88%, 83.06%, and 47.5%,
respectively. In Test system II, the time taken by
QOSOS algorithm to complete one iteration is 0.05 sec.
However, the time taken by SOS, ORCCRO, BBO,
and DE/BBO algorithms for the same test system is
0.064 sec, 0.07sec, 0.2 sec, and 0.16 sec, respectively. In

Test system II, the improvement rates of computational
e�ciency by using QOSOS technique are 21.87%,
28.57%, 75%, and 68.75%, respectively. The similar
performance is observed when it is applied to large-
scale power systems such as 110-unit (the improvement
rates of computational e�ciency by using QOSOS
methods as compared to SOS, OIWO, ORCCRO,
BBO, and DE/BBO algorithms are 11.11%, 22.58%,
46.66%, 79.13%, and 81.81%, respectively) and 160-
unit systems (the improvement of computational e�-
ciency by using QOSOS methods as compared to SOS,
DE/BBO, BBO, ORCCRO, and OIWO algorithms
are 10.48%, 63.42%, 70.90%, 32.63%, and 26.01%,
respectively). The simulation times for all test systems
are described in Tables 2, 4, 7, and 10, respectively.
From these tables, it is found that the computational
e�ciency of QOSOS is better than that of the recently
developed optimization techniques.

It is also seen that when OBL is applied in SOS
algorithm, then the convergence rate becomes faster
than other techniques such as SOS, BBO, DE/BBO,
RCCRO, EMA, and so on. For example, in Test
system I, the number of iterations required to reach
minimum value is lower in the case of QOSOS (shown
in Figure 2) as compared to other methods such as
RCCRO, DE/BBO, and BBO [27]. From Figure 2,
it is found that by applying QOSOS algorithm, the
number of iterations required to reach the best solution
is only 6, whereas, from Ref. [27], it is observed
that the number of iterations required to reach the
minimum solution is approximately 158 for RCCRO,
174 for DE/BBO, and 190 for BBO. The same results
are observed in Test system II. Here, it is observed
that the total iteration required to reach minimum
solution is 8 in the case of QOSOS method (shown
in Figure 3), which is much less than other well-known
techniques such as ORCCRO, BBO, and DE/BBO [28].
From [28], it is found that the number of iterations
required to reach the best solution is approximately
191 for ORCCRO, 193 for DE/BBO, and 196 for BBO.
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Figure 6. Best cost obtained by Quasi Oppositional Symbiotic Organisms Search (QOSOS) and other well-known
optimization techniques for Test systems I, II, III, and IV.

Table 12. Ranks achieved by Friedman and Quade tests in Test systems I, II, III, and IV. The statistic computed and
related p-values are also shown.

Friedman test Quade test
Test systems QOSOS SOS DE/BBO BBO Test systems QOSOS SOS DE/BBO BBO
Test system I 1 2 3 4 Test system I {1.5 {0.5 0.5 1.5
Test system II 1 2 3 4 Test system II {6 {2 2 6
Test system III 1 2 3 4 Test system III {4.5 {1.5 1.5 4.5
Test system IV 1 2 3 4 Test system IV {3 {1 3 1

Statistic 11.1000 Statistic 10.6364
p-value 0.0112 p-value 0.0026

Therefore, it is clear that by using the OBL technique
in SOS, the convergence rate becomes much faster than
other well-known optimization methods.

5.4. Statistical analysis
In recent years, various statistical methods [53,54]
have been used for performing comparisons between
di�erent algorithms. In this paper, Friedman test and
Quade test are chosen to assess the performance of
QOSOS algorithm statistically as compared to SOS
and other well-known optimization methods. A null
hypothesis (H0) and an alternative hypothesis (H1) are
required to be de�ned in order to perform Friedman
test and Quade test. H0 denotes that there is no

di�erence in the performance of the methods under
comparison, and H1 denotes that there is a di�erence
in performance of the methods. A signi�cance level of
5% is chosen. Table 12 describes the statistical analysis
of the results obtained by QOSOS, SOS, DE/BBO, and
BBO algorithms, and Table 13 describes the statistical
analysis of the results obtained using QOSOS, SOS,
and ORCCRO algorithms. Table 12 shows that F-
statistic (chi-square) value is 11.1000, and Q-statistic
value is 6. From Table 13, the F-statistic and Q-
statistic values are found to be 6 and 12, respectively.
Thus, in both of the cases, F-statistic value is greater
than its corresponding critical chi-square value (7.82 for
case 1 and 5.99 for case 2) and Q-statistic value is also
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Table 13. Ranks achieved by Friedman and Quade tests in Test systems II, III, and IV. The statistic computed and
related p-values are also shown.

Friedman test Quade test
Test systems QOSOS SOS ORCCRO Test systems QOSOS SOS ORCCRO

Test system II 1 2 3 Test system II {3 0 3
Test system III 1 2 3 Test system III {2 0 2
Test system IV 1 2 3 Test system IV {1 0 1

Statistic 6 Statistic 12
p-value 0.0498 p-value 0.0204

Table 14. Average errors obtained in test case in Test system I, Test system II, Test system III, and Test system IV.

Test systems QOSOS SOS DE/BBO BBO

Test system I 0.1062 0.1068 4.3512 9.593084

Test system II 0 11.907111 514.4098 664.226102

Test system III 0 0.2476 386.9164 473.7064

Test system IV 0.0287 0.5066 42.7857 44.3857

Table 15. Average errors obtained in test case in Test
systems II, III, and IV.

Test systems QOSOS SOS ORCCRO

Test system II 0 11.907111 402.832858
Test system III 0 0.2476 76.5764
Test system IV 0.0287 0.5066 39.4357

greater than its critical value (3.86 for case 1 and 10.92
for case 2). It is also found that p-values obtained by
Friedman test and Quade test are less than that at a 5%
signi�cance level. This proves that the null hypothesis
can be rejected, which signi�es a considerable di�erence
in performance between the algorithms. The average
errors of various techniques are shown in Tables 14 and
15. The average errors have been calculated as follows:

1. The minimum value among all algorithms for each
test system has been chosen;

2. The minimum value has been subtracted from the
mean value obtained by each algorithm;

3. All algorithms (rank-wise) have been arranged
based on the value of average error.

Thus, based on the average errors evaluated for di�er-
ent cases, the algorithms are ranked, and the results are
presented in Tables 12 and 13. From these tables, it
is found that the rank acquired by QOSOS algorithm
is the lowest, which indicates better performance of
QOSOS. Therefore, it may be concluded that, in terms
of quality solution, the QOSOS algorithm gives better
results than other recently developed optimization
techniques.

6. Conclusion

In this paper, Quasi Oppositional Symbiotic Organ-
isms Search (QOSOS) was applied to �nd the solu-
tion to various complex economic dispatch problems.
To investigate the computational e�ciency, feasibil-
ity, and consistency of this method, four di�erent
tests were used here. The simulation results of
QOSOS method were compared with results of other
optimization techniques such as Symbiotic Organ-
isms Search (SOS), Biogeography-Based Optimization
(BBO), DE/BBO, Oppositional Real-Coded Chem-
ical Reaction Optimization (ORCCRO), Teaching-
Learning Based Optimization (TLBO), Exchange Mar-
ket Algorithm (EMA), and so on. From these analyses,
it was found that the consistency, convergence rate,
and solution quality of QOSOS algorithm were better.
Therefore, it may be used to �nd a solution to various
complex optimization problems.
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