
Scientia Iranica A (2016) 23(1), 133{141

Sharif University of Technology
Scientia Iranica

Transactions A: Civil Engineering
www.scientiairanica.com

A new simpli�ed formula in prediction of the resonance
velocity for multiple masses traversing a thin beam

R. Afghani Khoraskania, M. Mo�db, S. Eftekhar Azamc and
M. Ebrahimzadeh Hassanabadid;�

a. Faculty of Architecture and Urban Planning, Shahid Beheshti University, Tehran, Iran.
b. Department of Civil Engineering, Sharif Univeristy of Technology, Tehran, Iran.
c. Politecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza L. da Vinci 32, 20133 Milano, Italy.
d. Department of Structural Engineering, Road, Housing, and Urban Development Research Center, Tehran, Iran.

Received 29 September 2014; received in revised form 11 June 2015; accepted 25 July 2015

KEYWORDS
Euler-Bernoulli beam;
Dynamic response;
Series of traveling
masses;
Resonance;
Simpli�ed formula.

Abstract. In this article, transverse vibration of an Euler-Bernoulli beam carrying a
series of traveling masses is analyzed. A semi-analytical approach based on eigenfunction
expansion method is employed to achieve the dynamic response of the beam. The inertia
of the traveling masses changes the fundamental period of the base beam. Therefore,
a comprehensive parametric survey is required to reveal the resonance velocity of the
traversing inertial loads. In order to facilitate resonance detection for engineering
practitioners, a new simpli�ed formula is proposed to approximate the resonance velocity.

© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

The investigations on moving load dynamic problems
are said to be initiated early in the 19th century,
ever since the �rst railway bridges were built [1].
Since then, numerous studies have discovered di�erent
aspects of this subject in structural dynamics [2-5].
The term moving load emphasizes the time-varying
position of an applied load on a speci�c structural
member/mechanical device [6-13].

The railways [14-16], bridges [17-25], ground [26],
and pavements [27] could be mentioned as the well-
known cases of civil structures inuenced by traveling
loads. There exists a variety of sources producing
moving loads on the structures such as the pedestri-

*. Corresponding author. Tel.: +98 21 88255942;
Fax: +98 21 88254842
E-mail addresses: r.afghani@sbu.ac.ir (R. Afghani
Khoraskani); mo�d@sharif.edu (M. Mo�d);
s.eftekharazam@stru.polimi.it (S. Eftekhar Azam);
m.ebrahimzadeh@bhrc.ac.ir, and mohsen.eb.h@gmail.com
(M. Ebrahimzadeh Hassanabadi)

ans [19,22,25], trains [14,15], aircrafts [3,4,11], or the
moving vehicles [27].

The numerical explorations of bridges have been
widely accomplished by the researchers assuming a
beam element to establish the governing equations of
motion [1,7,8,12,28-35]. Prediction of the dynamic
performance of a bridge under a moving load would
also be necessary in the health monitoring of the
structure [36,37] or the assessment of design parameters
spectra [8,11,20, 24].

A moving load dynamic problem could be sim-
ulated either by the moving force [3,38-40] or the
moving mass [6,8,11,12,18,20,24,29,41,42] modeling as-
sumptions. The moving force is a highly simpli�ed
model in which the vehicle/bridge interaction force is
limited to the weight of structure. In contrast to the
moving force approach, the moving mass framework
yields valid results for a wider range of parameters
leading to a more realistic assessment of the base
structure dynamics; this is due to the consideration
of inertial interaction of the traveling load and its sub-
structure in the moving mass modeling approach.
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An issue of considerable interest in the bridge
engineering is the detection of bridge resonant states
caused by the multiple traversing loads [20,39-41]. The
resonance leads to the ballast degradation, derailment,
deterioration of passenger ride comfort, and increase
in the maintenance costs [39]. Accordingly, it would
be useful to predict the resonance velocity of a series
of moving loads traversing the bridge; in this regard,
the moving loads traversing the bridge at resonance
velocity lead to resonant vibration of the structure.

Regarding the available literature on the vibration
of bridges under moving vehicles, the prediction of
moving masses resonance velocity is yet an issue open
to discussion in the multiple moving mass problem.
Dealing with the multiple moving forces, the system
matrices are stationary and known. Hence, the exact
resonance velocity could be analytically computed.
However, in the case of the moving mass problem,
matrices of the system continuously vary in time;
therefore, it is not simple to analytically derive an
exact formula for the resonance velocity as that of the
multiple moving forces.

In this study, the problem of a series of identical
and equally spaced moving masses travelling with the
same speed along a beam-type structure is focused.
This is frequently presumed as a model of a train
passing over a bridge. Eigenfunction expansion method
is exploited to capture the base-beam deections. A
new simpli�ed formula is proposed to predict resonance
velocity of the traversing masses. The formula is es-
sentially based on the assumption that introducing the
inertia of travelling masses into the mass matrix of the
evolution equations will change the fundamental period
of the structure; therefore, it results in a di�erent
resonance velocity than that obtained by neglecting
the inertia of the masses (moving force approximation).
The accuracy of the introduced relation is assessed
through extensive numerical analyses, where the pro-
posed formula shows a very close agreement with the
true resonance.

2. Problem formulation

A uniform, continuous Euler-Bernoulli beam is con-
sidered as shown in Figure 1. It is assumed that
both bending sti�ness of the base beam (EI) and the
mass per unit length (�A) are constant throughout
the beam. Permanent contact condition between the

Figure 1. A beam excited by multiple moving masses.

moving masses and the structure is assumed during the
period of loads movement on the beam. Regarding the
Euler-Bernoulli Beam theory, the constitutive equation
of motion could be written as [43,44]:8>>><>>>:

EI @4

@x4W (x; t) + �A @2

@t2W (x; t)
= �PN

k=1 �kPk� (x�Xk(t)) ;

Pk = Mk

�
g + � d

2

dt2W (Xk(t); t)
�
;

(1)

where W is the beam deection and its positive
direction is assumed to obey the positive direction of
the y axis in Figure 1 (i.e. + "); the horizontal axis x
is assumed to correspond to the beam neutral axis; � is
mass per unit of volume; A is the cross sectional area
of the beam; and t signi�es time. Moreover, Mk, g, and
�() are mass of the kth traveling object, gravitational
acceleration, and Dirac delta, respectively. Xk(t) and
Pk are the location and the contact force of the kth
traveling mass, and N is the number of the moving
loads. The function �k is de�ned as:

�k =

8<:1; 0 � Xk(t) � l
0; Xk(t) < 0 or l < Xk(t)

(2)

The parameter � allows for convenient switching be-
tween moving mass and moving force frameworks. � =
0 corresponds to the simpli�ed moving force simulation
and by assuming � = 1, the full contribution of moving
loads inertial interaction with the base beam could be
considered in the mathematical model (moving mass).
A semi analytical procedure based on eigenfunction
expansion method could be adopted to treat Eq. (1).
To this end, the beam equation of free vibration should
be tackled to extract the eigenfunctions:

EI
@4wj(x)
@x4 = �A!2

jwj(x); (3)

where wj(x) denotes the jth shape function, and !j is
the jth natural frequency. W (x; t) in Eq. (1) could be
replaced by a series expansion as:

W (x; t) =
1X
j=1

aj(t)wj(x) �
nX
j=1

aj(t)wj(x): (4)

Substituting Eq. (4) into Eq. (1) yields:
nX
j=1

��
aj(t)!2

j +
d2

dt2
aj(t)

�
�Awj(x)

�
= �

NX
k=1

�k
�
Mkg + �Mk

nX
j=1

d2=dt2faj(t)wj

(Xk(t))g
�
� (x�Xk(t)) : (5)

By regarding the orthonormal shape functions charac-
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teristic, i.e.:Z l

0
�Awi(x)wj(x)dx = �ij =

(
0; i 6= j
1; i = j;

(6)

in which the shape functions are normalized by mass
per unit length of the beam �A. Multiplying both sides
of Eq. (5) by wi(x), and then integrating over the beam
length yields:�

!2
i ai(t) +

d2

dt2
ai(t)

�
= �

NX
k=1

�k
�
Mkg

+ �Mk

nX
j=1

d2=dt2 [aj(t)wj(Xk(t))]
�

wi (Xk(t)) : (7)

The expanded form of d2

dt2 [aj(t)wj(Xk(t))] is:

d2

dt2
(aj(t)wj(Xk)) = wj(Xk)

d2

dt2
aj(t)

+ 2
��

@wj(x)
@x

�
dXk

dt

�
x=Xk

d
dt
aj(t)

+
��

@2wj(x)
@x2

��
dXk

dt

�2

+
�
@wj(x)
@x

��
d2Xk

dt2

��
x=Xk

aj(t): (8)

By assuming uniform moving masses Mk = M with
constant velocity v as depicted in Figure 1, Eq. (8)
could be simpli�ed to:

wj(Xk)
d2

dt2
aj(t) + 2v

�
@
@x
wj(x)

�
x=Xk

d
dt
aj(t)

+ v2
�
@2

@x2wj(x)
�
x=Xk

aj(t);

and the matrix from explanation of Eq. (7) could be
written as:

M(t)
d2

dt2
a(t) + C(t)

d
dt

a(t) + K(t)a(t) = F(t); (9)

where:

M(t) = [�ij ]n�n + �
NX
k=1

Mk(t); (10)

Mk(t) =
�
mk
ij(t)

�
n�n = �kM [wi(x)wj(x)]x=Xk ; (11)

C(t) = �
NX
k=1

Ck(t); (12)

Ck(t) =
�
ckij(t)

�
n�n

= �kM
�
2vwi(x)

�
@
@x
wj(x)

��
x=Xk

; (13)

K(t) =
�
!2
i �ij

�
n�n + �

NX
k=1

Kk(t); (14)

Kk(t) =
�
Kk
ij(t)

�
n�n

= �M
�
v2wi(x)

@2

@x2wj(x)
�
x=Xk

; (15)

F(t) =
NX
k=1

Fk(t); (16)

Fk(t) =
�
fki (t)

�
n�1 = ��kMg [wi (Xk(t))] ; (17)

a(t) = [ai(t)]n�1 : (18)

The second order coupled ODEs, set in Eq. (9), can be
reformulated to a reduced �rst order set of equations
as follows:

d
dt

Q(t) = A(t)Q(t) + G(t);

Q(t0) = Q0; (19)

where:

A(t) =
�

0n�n In�n�M�1K �M�1C

�
2n�2n

; (20)

Q(t) =
�

a(t)
d
dta(t)

�
2n�1

; (21)

G(t) =
�

0n�1
M�1F

�
2n�1

: (22)

Eq. (19) can be solved by using matrix exponential [45].
In this study, the �rst three vibration modes are used
in the analysis.

3. The resonance velocity

When a set of sequential moving masses travels along
the beam length, at a certain velocity, the beam is
expected to start to resonate. The most frequent
resonance case is related to the coincidence of frequency
content of excitation with the vibration frequency of
the �rst deection mode of the whole system. In
the case that the inertial e�ects of the masses are
negligible, the �rst natural frequency of the system
can be reasonably assumed as that of the beam alone.
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However, the fundamental frequency of the base beam
will change due to the inertial e�ects of the moving
masses added to the system. To calculate the resonance
velocity, due to the complications introduced by the
inertia of the masses, these variations have usually been
ignored; hence, the equations employed to predict the
resonance velocity, previously, are frequently based on
the moving force presumption.

In this study, the resonance velocity derived via
moving force is modi�ed so as to account for the inertial
e�ects of the moving objects traveling over a beam-type
structure. To accomplish this objective, the possible
changes in the natural frequency of the system due
to the inertial e�ects of the moving masses have been
included in the analyses as well.

The resonance velocity of multiple moving forces
traveling along the beam could be expressed as:

vp =
lm!1

2j�
; (23)

where lm is the spacing between the moving masses
(Figure 1), and !1 denotes the fundamental frequency
of the base beam. Given the load spacing, lm, the
resonance speed for the series of moving forces becomes
proportionate to 1

j , where j = 1; 2; :::; which implies
that resonance will take place at speeds starting from
the primary resonance velocity lm!1

2� in descending
values. To obtain the modi�ed fundamental frequency
of the beam carrying a series of moving inertial loads,
it is assumed that the mass of the system is increased
by an amount equal to k:�:�:A:l, while the sti�ness
of the system remains constant; where � is the mass
ratio of each moving object with respect to the beam
mass, and k is the maximum number of objects that can
be simultaneously placed on the beam and will cause
the maximum static deection in the beam. In other
words, a beam with the same exural sti�ness, EI, but
with an increased uniformly distributed mass should be
considered to approximate the fundamental frequency
of the system. Consequently, assuming a beam with
mass per unit volume of:

�0 = (k:� + 1):�; (24)

and regarding the fact that the �rst natural frequency
of a thin beam is proportional to

q
EI
�A [46], the funda-

mental frequency of the assumed beam with increased
mass density, �0, could be attained by a modi�cation
factor:8><>:!

0
1 = �!1;

� =
q

1
1+k� :

(25)

By applying this modi�cation factor to Eq. (23), the
resonance velocity for multiple moving masses could be

approximately simpli�ed as follows:

vres =
r

1
1 + k�

vp: (26)

Considering a simply supported single span beam !i =� i�
l

�2qEI
�A , for the largest resonance velocity (primary

resonance velocity), Eq. (26) reads:

vres =
r

1
1 + k�

 s
EI
�A

�lm
2l2

!
: (27)

4. Numerical examples

A single span simply-supported Euler-Bernoulli beam
is considered for the numerical examples. The bound-
ary conditions of the beam are W (0; t) = @2

@x2W (0; t) =
0 and W (l; t) = @2

@x2W (l; t) = 0. Therefore, normalized
eigenfunctions of the beam, considering Eq. (6), could
be given by wi(x) =

q
2
�Al sin

� i�x
l

�
. The coupled dy-

namic system of beam and moving masses are supposed
to be at rest at the beginning moment of analysis t = 0;
therefore, zero initial condition is considered for Eq. (1)
i.e. W (x; 0) = 0 and @

@tW (x; t)jt=0 = 0. A customary
standard normalization scheme [4,5,8] is adopted in
the representation of results by which the outputs are
described with non-dimensional relative parameters.
The deection of the beam at its midspan is selected as
representative for the quantities of the beam response;
moreover, throughout the article, the maximum static
deection caused by a single load in the set of the
relevant travelling masses, Wstat = �Mgl3

48EI , is used to
present normalized deection, WN = W (0:5l; t)=Wstat.
Such normalization provides a better understanding of
the dynamic ampli�cation factor, DAF= max(WN ),
which is the maximum value of beam normalized
deection, WN , during the forced vibration of the
beam.

To numerically determine the critical velocity, a
range of values of vp has been considered, and the
dynamic ampli�cation factors are obtained for each
velocity at which the series of masses pass over the
beam. The spectral analyses are presented in Figure 2,
wherein the abscissa denotes normalized velocity v=vp
and the vertical axis represents the associated Dynamic
Ampli�cation Factor (DAF). In Figure 2, the results
of the aforementioned analyses are confronted for the
two cases of moving forces and moving masses. The
resonance velocity in this manner is the velocity at
which the peaks of DAF take place. For the series
of moving forces, the maximum of DAF peak appears
at the primary resonance velocity, i.e. v = vp which
elucidates Eq. (23). As mentioned before, resonance
will take place at speeds starting from a primary
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Figure 2. Dynamic ampli�cation factor at the midspan
of the beam at various travelling velocities. Moving force
versus moving mass, N = 15, lm = 0:3l.

resonance velocity, then, repeating in descending values
proportional to 1

j of the primary resonance, where
j = 1; 2; :::. The spike which appears at v = 0:5vp
is associated with the secondary resonance velocity.
A shifting trend of the spectral curves towards lower
resonance frequency components could be observed
as the mass of the moving objects increases. This
would strictly justify the fact that the loads inertia can
notably dominate either the primary or the secondary
resonance velocities.

In case the ratio of the mass is not small as
compared to the beam mass, the resonance velocity
obtained for moving forces will be of poor accuracy
for the multiple moving mass problem; for instance, in
case the ratio of the mass of travelling objects and the
beam mass � = M

�Al are equal to 0.15, the resonance
velocity turns out to be 0:83 lvp or, equivalently, � =
0:831. Therefore, as the mass ratio of the travelling
masses increases, the modi�cation in the moving forces
resonance velocity becomes increasingly signi�cant.

Without any loss of generality, let place our focus
on the resonance speed at which the maximum peak of

Figure 3. Dynamic ampli�cation factor at the midspan
of the beam at various travelling velocities. Moving force
versus moving mass, N = 15, lm = 0:3l.

DAF, or, in other words, the so-called herein primary
resonance velocity is produced. In Figure 3, the
later DAF spectral analysis is inspected for a series of
moving masses, but instead, with small mass ratio with
concentration on the primary resonance. It could be
observed that even for relatively light moving masses,
namely � = 0:02, the discrepancy of the moving force
and moving mass at resonant states is not negligible.

To allow an assessment of the proposed formula
for the resonance velocity with the numerical analyses,
in a series of examples, the modi�cation factors resulted
from the numerical simulations are compared with the
proposed simpli�ed formula in Eq. (26), and the results
of the comparison are presented in Table 1. It could
be observed that the resonance velocities obtained
from Eq. (26) are in reasonable agreement with the
resonance velocity attained by the spectral peaks in
numerical analyses.

When there are 15 and 25 loads spaced by lm =
0:3l, for the mass ratio � = 0:2, the di�erence between
the two resonance velocities is 1.3%. It could be
perceived that the change in the number of moving

Table 1. Modi�cation factors obtained by Eq. (26) and the spectra.

Number of
moving

masses (N)

load
spacing

(lm)
k �

� resulted
from

Eq. (25)

� resulted
from

spectra

15 lm = 0:3l 3
0.10 0.877 0.884
0.15 0.830 0.831
0.20 0.791 0.785

15 lm = 0:6l 2
0.10 0.913 0.921
0.15 0.877 0.889
0.20 0.845 0.851

25 lm = 0:3l 3
0.10 0.877 0.874
0.15 0.830 0.824
0.20 0.791 0.775
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Figure 4. Time histories of the dynamic ampli�cation
factor at the midspan of a beam subjected to N = 25
travelling masses at the true resonance velocity, the
predicted resonance velocity, and the resonance velocity
obtained from the moving force assumptions; lm = 0:3l,
� = 0:2.

masses from N = 15 to N = 25 is inuential in the
computation of the true resonance velocities through
the numerical method; the reason for this can be
understood from Figure 4, wherein the time history
of the structural dynamic response for a moving mass
traveling at its true resonance velocity is depicted. At
t = 0, the �rst mass is at the left end of the beam,
i.e. x = 0. The beam experiences steady state loading
scheme due to the stream of dynamic moving objects
acting on the beam as long as the third mass enters
the beam. This steady state dynamic loading continues
until the Nth load reaches the left end of the beam. In
this regard, by increasing the total number of moving
masses N , the steady state part of the response would
dominate the numerically computed true resonance
velocity for which the predicted true resonance would
tend towards its asymptotic state for N = 1. The
simpli�ed formula is not sensitive to the total number
of masses. It predicts the same value independent of
this number, as does the original formula for resonance
velocity of the set of moving forces.

In Figure 4, it can also be observed that although
the behavior of the system at the resonance velocity
predicted by the Eq. (26) does not exactly match
the behavior of the system at the resonance velocity,
it is far closer than the behavior of the system at
the resonance velocity predicted without including the
inertia of the masses in analysis (vp).

In Figure 5, the same time histories of Figure 4
are re-plotted assuming di�erent weights of the moving
masses, i.e. � = 0:1. It could be seen that the values
of the time histories and the maximum response for
the case of true resonance velocity and the predicted
resonance velocity via Eq. (26) are in close agreement,
while the moving force is noticeably error-prone (T1
denotes the fundamental period of the beam).

According to Table 1, the precision of the simpli-
�ed formula could be a�ected by the maximum number
of masses which can be simultaneously placed on the

Figure 5. Time histories of the beam dynamic response
subject to N = 25 travelling masses at the true resonance
velocity, the predicted resonance velocity, and the
resonance velocity obtained from the moving force
assumptions; lm = 0:3l, � = 0:1.

beam and the mass of the moving objects, i.e. k, which
itself is dependent on spacing of the loads. With large
spacing of the loads, k reduces and it is important to
mention that the stream of moving masses should travel
at higher velocities to reach the primary resonance
velocity. Therefore, the impact of the convective
terms of the moving masses transverse acceleration (as
mentioned in Eq. (8)) signi�cantly increases. On the
other hand, larger masses could amplify these e�ects.
Accordingly, the simpli�ed formula would feature small
discrepancies with true resonance velocity.

In some analytical investigations, it has been em-
phasized that the moving mass and moving oscillator
could be in close agreement for some real cases of
vehicle bridge coupled systems [9]. A comparison of the
present method provided by moving mass model with
the corresponding moving oscillator problem (Figure 6)
is depicted in Figure 7. The method of investigation
employed is that proposed by Yang et al. [47]. It
can be concluded that the present technique is of good
engineering level of agreement for suspension systems

having 
 =
p
K=M
!1

� 2:0.

5. Conclusion

In this paper, the constitutive equation of an Euler-
Bernoulli beam acted upon by multiple moving masses
is studied. A critical velocity is proposed in terms
of the modi�ed fundamental period of the structure,
span length, and spacing of the moving masses. The

Figure 6. A beam traversed by sequential traveling
oscillators.
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Figure 7. Dynamic ampli�cation factor of the beam at
various travelling velocities. Moving mass versus moving
oscillator, N = 15, c = 0, lm = 0:3l, � = 0:20.

proposed resonance velocity is based on the resonance
velocity of a beam subjected to a series of moving
forces, which is recti�ed by a relevant modi�cation
factor. The results for approximate modi�cation factor
appear to be in reasonable agreement with the true
ones obtained from numerical assessments. Moreover,
regarding the vehicle suspension with 
 � 2:0, a close
agreement could be observed with the present method.
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