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Abstract. Lattice-based cryptography has received signi�cant attention from security
practitioners in the past decade. It exhibits attractive properties, including being a
major post-quantum cryptography candidate, enjoying worst-case to average-case security
reductions, and being supported by e�cient implementations. In this paper, we propose
three practical lattice-based Authenticated Encryption (AE) schemes. These schemes
are provably secure assuming hardness of basic lattice problems. The proposed schemes
have remarkable motivations and advantages over widely-used AEs as follows. These
schemes are alternatives to current conventional and post-quantum AE schemes in the
post-quantum era. Moreover, composing the proposed AEs with a lattice-based asymmetric
key distribution scheme results in a hybrid encryption, which depends only on one (type
of) security assumption. The implementation of such hybrid encryption can make use of
speci�c optimizations regarding, e.g., code size in software, and gate equivalent or FPGA
area usage in hardware. That is because the symmetric and asymmetric algorithms have
some common primitive computations. To evaluate the performance of the proposed AEs,
we implement them on current Intel CPUs and benchmark them to encrypt messages of
various sizes. The most e�cient proposed scheme is only 12% slower than AES-256-GCM
for 40-byte messages on Sandy Bridge, and 34% faster for 1500-byte messages.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Lattice-based cryptography is one of the main can-
didates for post-quantum cryptography [1]. Crypto-
graphic schemes based on hard lattice problems are
conjectured to resist against attacks by a large-scale
quantum computer [2], while the schemes based on
the hardness of integer factorization, integer discrete
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logarithm, and elliptic curve discrete logarithm are
completely vulnerable in this setting [3,4]. Other
advantages of the lattice-based schemes, in comparison
to widely-used ones based on number theory (such as
RSA and ECDSA), are as follows. Most of the state-
of-the-art lattice-based schemes enjoy a worst-case to
average-case security reduction (e.g., [5-7]). Thus,
random instances of these schemes (i.e., with random
keys and/or parameters) are provably as hard as worst-
case instances of basic lattice problems. Finally,
computations in lattice-based schemes usually deal
with simple operations on small integer vectors. In
doing so, engineers can design e�cient implementations
on hardware and software, and take more advantage
from hardware parallelism, processor pipelines, mul-
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tiple cores, and the single-instruction multiple-data
(SIMD) feature. As a result, modern implementations
of the lattice-based schemes are much more e�cient
than the traditional alternatives [7-12].

Another line of research focuses on Authenti-
cated Encryption (AE). AE is a symmetric two-in-
one solution for secure communications. It provides
both con�dentiality and authenticity of the encrypted
message. AE has recently received signi�cant attention
in the academy and industry. The CAESAR compe-
tition [13], �rst started in 2013, is ongoing to select
the most secure, applicable, and robust AEs. AE
has many applications in data and network security.
For instance, AE can provide con�dentiality and data-
origin authentication of network packets. This is also
standardized in the Encapsulating Security Payload
(ESP) protocol of the IPSec standard. RFC 7231 [14]
proposes AES-GCM [15] and AES-CCM [16] as two
AEs suitable for ESP.

A traditional approach to building an AE is to
compose a simple (privacy-only) symmetric encryption
scheme and a Message Authentication Code (MAC).
This approach is called generic composition. For in-
stance, AES-CCM [16] is the composition of AES block
cipher in Counter mode of operation, and CBC-MAC
message authentication code. Another widely-used
generically-composed AE scheme is AES-GCM [15],
which uses GMAC message authentication code in-
stead. Note that composing two encryption and MAC
schemes should be done very carefully, as there are
many subtleties to build a secure composed scheme [17].
MAC schemes that make use of a block cipher as the
building block are good candidates to be employed in
generic composition. For instance, CBC-MAC [16],
TMAC [18], OMAC [19], and PMAC [20] apply the
block cipher encryption on each input block, while
GMAC [15] performs a GF(2128) multiplication on each
input block, and XORs achieve the output of one block-
cipher encryption to mask the multiplications result.
Schemes built by the generic composition technique are
categorized as two-pass AE schemes. This type of AE
processes the input message twice (e.g., invoking the
block cipher encryption twice per input block) in order
to output the ciphertext and authentication tag. The
counterpart AE type is a single-pass AE. IAMP [21],
OCB [22-24], and OTR [25] are some well-known single-
pass AE schemes; however, all of them are protected by
a few patents (or patents pending).

The �nal related work for now is the e�ort on a
lattice-based pseudorandom function (PRF). Banerjee
et al. [26] introduced a PRF with a security proof based
on lattice problems. PRFs are widely used in the design
of symmetric cryptosystems. Subsequently, Banerjee et
al. [27] proposed an e�cient instantiation of this PRF
called SPRING. They used SPRING in the counter
(CTR) mode of operation to build a lattice-based

symmetric encryption. Their report of the SPRING
implementation shows that, using the SIMD feature
in high-end processors, the SPRING performance is
interestingly comparable to the performance of AES.

In this paper, three authenticated encryption
schemes are introduced with security proofs based
on the worst-case hardness of lattice problems. The
security theorems and proofs of these schemes are exact
or concrete. That is, the proved security bound exactly
(not asymptotically) determines the maximum success
probability of the attacker (To be precise, this bound is
usually relative to the security bound of an underlying
primitive construction). This approach in provable se-
curity is called exact or concrete security, in contrast to
the traditional asymptotic security. It is introduced in
[28-30], which is referred to as the paradigm of practice-
oriented provable security. Almost all provably-secure
lattice-based schemes in the literature are supported
by an asymptotic security proof, though.

The proposed schemes, referred to as LAE1,
LAE2, and LAE3, use the lattice-based pseudorandom
function SPRING as the building block. The proposed
AEs based on SPRING have the following particular
advantages over the previous AE constructions.

� Firstly, the proposed schemes are alternatives to the
conventional AE schemes based on a block cipher
(e.g., AES) in the post-quantum era. The best-
known quantum attack to current AE schemes is
a corollary of the work of Grover [31]. In this
attack, any generic symmetric encryption with an
n-bit key can be broken in time O(2n=2) using a
quantum computer. Thus, a traditional AE that
uses AES-256 has 128 bits of post-quantum security.
Furthermore, recent work [32,33] proposes quantum
attacks to some symmetric cryptosystems; however,
they use superposition queries, which assume a very
strong attack model. Instead of traditional AEs,
the proposed lattice-based schemes are supported by
a security proof against quantum attackers, which
may help if a better quantum algorithm is discovered
to break AES or other AEs based on a block-cipher.

� Secondly, in most applications, such as IPSec or
Transport Layer Security (TLS), an AE is utilized
within a form of hybrid encryption. Hybrid en-
cryption makes use of an asymmetric scheme to
distribute a symmetric session key. After that, the
session key is provided to the AE scheme to encrypt
bulk data. The asymmetric schemes used in hybrid
encryption include Public-Key Encryption (PKE),
Key Encapsulation/transport Mechanism (KEM),
and Authenticated Key Exchange (AKE). By using
a traditional number-theoretic asymmetric scheme
(e.g., based on RSA, Di�e-Hellman, or Elliptic
curve Di�e-Hellman { DH and ECDH), the entire
system becomes vulnerable to a quantum attack.
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Thus, for a quantum-resistant hybrid encryption,
a post-quantum variant of the asymmetric part is
required. Integrating the proposed AEs with a
lattice-based PKE, KEM, or AKE (e.g., the ones
proposed in [34]) has an important advantage that
the resulting hybrid encryption depends only on
one (type of) security assumption. Otherwise, the
security of the system is being compromised if there
is a 
aw either in the assumption of the AE part or
in the assumption of the asymmetric scheme used
for the key distribution.

� Thirdly, utilizing lattice-based schemes in both the
AE part and the asymmetric part of a hybrid
encryption has e�ciency bene�ts, especially for
hardware level implementations. The Fast Fourier
Transform (FFT) over �nite rings is a major compu-
tation task of the proposed AEs and most asymmet-
ric schemes based on (ideal) lattices. Considerable
amount of silicon area or FPGA slices can be saved
if the common computations are refactored. There-
fore, the proposed AEs should be advantageous in
post-quantum cryptographic (co-)processors.

� Fourthly, as presented in Section 5, the performance
of the proposed AE schemes is comparable with
that of conventional provably-secure AEs. For
instance, one of the proposed schemes, LAE2, has
a competitive performance in IP packet encryption.
Assuming a small packet to be 40 bytes and a large
packet to be 1500 bytes, it is only 12% and 24%
slower than AES-256-GCM for small IP packets on
Sandy Bridge and Haswell CPUs, respectively. On
the other hand, it is 34% and 15% faster than AES-
256-GCM for large IP packets, respectively, on the
targeted microarchitectures.

The proposed schemes have also some drawbacks
over traditional AEs based on block ciphers. These con-
structions are designed over ideal lattices [35]. An ideal
lattice has more algebraic structure than a general one.
This algebraic structure helps design more e�cient
cryptographic schemes, both in terms of speed and
key size. However, the hardness assumption of lattice
problems over ideal lattices is stronger. Speci�cally,
SPRING's security proof relies on the hardness of the
Ring Learning With Errors (Ring-LWE) problem [35],
which is the version of LWE problem over an ideal
lattice. Another issue is the very large sized key of
the proposed schemes. This is detailed below and
in Section 5 along with the implementation results.
One solution to the issue of large keys is to utilize a
pseudorandom number generator (PRNG). The PRNG
is seeded with a short key to generate the larger key of
each lattice-based AE.

The �rst proposed AE scheme is a nonce-based
Encrypt-and-MAC (E&M) composition. On the en-
cryption part, SPRING is used in a nonce-based variant

of CTR mode. The authentication part, which ensures
the authenticity of both nonce and message, is a CBC-
MAC similar to XCBC [36], TMAC [16], and OMAC
[19]. There are some challenges to adopt SPRING to
be used in such cryptographic schemes. Most of these
schemes are designed to use a (strong) pseudorandom
permutation (PRP), which is the formal model of a
block cipher. Some schemes, such as OCB mode of
operation [24], are fundamentally dependent on the
bijection property of PRPs and cannot directly accept
a PRF (Note that a PRP can be built from any PRF
by a Feistel-like construction [37]; however, it makes
performance worse). Another challenge to utilizing
SPRING in cryptosystems is that the SPRING input
and output sizes are not the same. It accepts 128 bits as
input and provides 127 bits as output. That introduces
a number of padding and truncation operations, com-
plicating the security proof. Moreover, the output is
not a multiple of bytes and causes some obstacles in the
implementation (see Section 5). Another challenge af-
fecting the design of a scheme based on SPRING is that
most signi�cant optimizations can be achieved only by
a certain con�guration of SPRINGs (see Section 3.2).

The second proposed AE scheme is an Encrypt-
then-MAC (EtM) composition. The encryption part
of the second scheme is similar to the previous one;
however, the use of SPRING in the authentication part
is minimized. Both of these AEs are two-pass, i.e.,
they are as ine�cient as running encryption and MAC
separately.

The third proposed scheme is designed to be
single-pass. Until recently, all single-pass AEs could
not essentially use a PRF instead of a PRP. For in-
stance, IACBC, IAPM [21], OCB variants [22-24], and
stateful XECB and ECBC [38] cannot accept a PRF.
The design of the third scheme is inspired by OTR [25].
Minematsu [25] proposed two variants of OTR, which
accept both PRF and PRP. However, the third scheme
cannot directly follow the PRF-compatible version of
OTR because it requires a Variable-Input-Length PRF
(VILPRF), while the SPRING's input length is �xed.
In this scheme, a tweakable PRF is created using
SPRING.

The implementation results of the Intel Sandy
Bridge and Haswell microarchitectures show that the
second proposed scheme, LAE2, is e�cient enough
to be used in practice and compete widely-used AEs.
On Sandy Bridge, although this scheme is 12% slower
than AES-256-GCM for encrypting 40-byte messages,
it becomes faster for the messages of length 64 bytes
or longer. Particularly, for a 1500-byte message, this
scheme is 34% faster than AES-256-GCM. A similar
result is also achieved on Haswell. LAE2 is 24%
slower for 40-byte messages in comparison with AES-
256-GCM; however, it becomes faster for 100-byte
messages and longer. Additionally, it is 15% faster
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than AES-256-GCM for 1500-byte messages. The main
comparison is performed with AES-256-GCM because
the security of this scheme is 128 bits in the post-
quantum setting. The performance comparison with
AES-128-GCM is also presented in Section 5. Similar
to most lattice-based cryptographic schemes, the key
size of these schemes is very large. The size of the keys
for LAE2 and LAE3 is around 6 KB, and the key size
of LAE1 is around 12 KB.

For the sake of simplicity, we have not considered
common complementary AE features in the three
proposed AE schemes, such as the support of associated
data (AEADs) [39], nonce misuse-resistance [40], and
online environment requirements.

1.1. Organization
Section 2 introduces the preliminary cryptographic
de�nitions and notations used in this paper. The
proposed two-pass AE schemes and the single-pass one
are described in Sections 3 and 4, respectively. These
sections also include the design rationale, security
theorems, and proofs of the constructions. Section
5 is devoted to the implementation of the proposed
schemes. The e�ciency and performance results are
presented in this section. Finally, Section 6 concludes
the paper.

2. Preliminaries

2.1. Notations
msb`(x) is the string consisting of the ` most signi�cant
bits of x. padn(x) is the n-bit string obtained by
concatenating a 1 and optionally a few 0's to the right
of string x. The notation n � is the operator that splits
the right-hand string into a list of n-bit strings, except
the last one, which may be shorter. The concatenation
of two bit strings a and b is denoted by akb. By
x $ � S, we mean a uniform sampling of x from �nite
set S. Func(n; `) is the set of all functions from n-
bit to `-bit strings. Similarly, Perm(`) is the set of
all permutation functions from `-bit to `-bit strings.
A family of functions F = fFKg is a set of functions
indexed by the key K. AOK(�;�) denotes a machine
A with oracle access to OK . Oracle OK(�; �) has two
inputs under the control of A. However, she cannot
access the the parameter K embedded inside.

Polynomial additions and multiplications in
GF(2128) and GF(2127) are performed modulo x128 +
x127 + x126 + x121 + 1 and x127 + x126 + 1, respec-
tively, which are typical irreducible polynomials. The
elements of GF(2n) may be represented in three ways
and be interchanged frequently. An n-bit string Y =
yn�1:::y1y0 is equivalent to the polynomial yn�1xn�1 +
::: + y1x + y0, and is also equivalent to the number
obtained by base-2 interpretation of Y . For instance,
2Y , 3Y , and 4Y are the multiplication of polynomials

x, x + 1, and x2, respectively, with the polynomial
equivalent to string Y . Multiplication of a small
constant with a �eld element can be performed very
e�ciently using a few shift and XOR operations.

The success probability or advantage of an ad-
versary A is denoted by AdvG

S[F ](A), where S is the
cryptographic scheme being attacked by A, F is the
(family of the) building block used in S, and G is the
security model or security game in which A is modeled.
$(�) and $(�; �) are oracles that, on each query, return a
fresh random bit string of speci�ed length.

2.2. Pseudorandom functions and message
authentication codes

For the integers n � ` � 1, a family of functions F =�
FK : f0; 1gn ! f0; 1g`	 is a pseudorandom function

(PRF) if for any adversary A, with ordinary number of
queries and resources, the following advantage is small
[41, De�nition 2.1]:

Advprf
F (A) = Pr[K $ K : AFK(:) ) 1]

�Pr[� $ Func(n; `) : A�(:) ) 1]: (1)

A pseudorandom permutation (PRP) is the family
P =

�
PK : f0; 1g` ! f0; 1g`	 of one-to-one and onto

functions, for which the security is de�ned similarly to
the PRF with the following advantage [41, De�nition
2.2]:

Advprp
P (A) = Pr[K $ K : APK(:) ) 1]

�Pr[� $ Perm(`) : A�(:) ) 1]: (2)

A variable-input-length pseudorandom function
(VILPRF) family F =

�
FK : f0; 1g� ! f0; 1g`	 is an

special PRF in which the input can be a string of
arbitrary length [42, Section 3.1].

A message authentication code (MAC) MA =
(K; T ;V) consists of a randomized key generation
algorithm K, and two functions TK(N;M) : f0; 1gw �
f0; 1g� ! f0; 1g� and VK(N;M; T ) : f0; 1gw�f0; 1g��
f0; 1g� ! ftrue; falseg for message tagging and tag
veri�cation, respectively. Unforgeability under chosen
message attack (uf-cma) is the model to de�ne the
security of MA. This scheme is a secure MAC if, for
any adversary A, with ordinary number of queries and
resources, the following advantage is small:

Advuf-cmaMA (A) = Pr[K $ K : ATK(:;:);VK(:;:;:)forges]:
(3)

A forgery is successful when A makes a query to VK
with two conditions. Firstly, inputs N , M , and T given
to VK have not appeared before in any query-response
pair of TK . Secondly, VK does not return false on the
query [41, De�nition 2.6].
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2.3. Authenticated encryption
An authenticated encryption scheme AE = (K; E ;D) is
a tuple of three algorithms. K is the key generation
algorithm. The encryption function E(K;N;M) :
f0; 1gk � f0; 1g! � f0; 1g� ! f0; 1g� � f0; 1g� re-
ceives the key, nonce, and message, and returns the
ciphertext and tag (C; T ). The decryption function
D(K;N;C; T ) : f0; 1gk � f0; 1g! � f0; 1g� � f0; 1g� !
f0; 1g� [ f?g performs the inverse functionality and
returns the plaintext. D may also return ? in the case
of an error. EK(N;M) and DK(N;C; T ) are the same
functions, considering the key as a parameter. The
referred AEs in this paper are nonce-based. Therefore,
an extra parameter N is given to E and D as the nonce.

AE should have two security properties: privacy
and authenticity. Formally, a secure AE should provide
the indistinguishability under chosen plaintext attack
(ind-cpa) and maintain the integrity of the ciphertext
(int-ctxt). No nonce value N should be repeated in
the inputs of encryption function E . Otherwise, the
privacy or authenticity may not be guaranteed. Note
that a repeated nonce in the inputs ofD, or between the
inputs of E andD, is �ne. Without loss of generality, we
can assume that all adversaries are nonce-respecting,
i.e., they never send the same nonce value to E . The
privacy advantage of adversary A is de�ned as follows:

Advind-cpa
AE (A) = Pr[K $ K : AEK(�;�) = 1]

�Pr[A$(�;�) = 1]: (4)

$(�; �) is an oracle which returns a fresh random string
of length jEK(�; �)j. Note that $(�; �) is not queried twice
on an exact input, as A is nonce-respecting.

The authenticity advantage of an adversary A is
de�ned as follows:

Advint- ctxtAE (A) = Pr[K $ K : AEK(�;�);DK(�;�;�)forges]:
(5)

A forgery is successful when A makes a query to DK
with two conditions. Firstly, inputs N , C, and T
given to DK have not appeared before in any query-
response pair of EK . Secondly, DK does not return ?
on the query. If both Advind-cpa

AE (A) and Advint-ctxtAE (A)
are small respecting any adversary A, with ordinary
number of queries and resources, then AE is a secure
authenticated encryption scheme [22, Section 5.1].

2.4. SPRING pseudorandom function
The SPRING pseudorandom function, presented by
SPRK : f0; 1gn ! f0; 1g` in this paper, is the
SPRING-CRT function in the work of Banerjee et al.
[27]. This function is de�ned as follows:

SPRK(x1:::xn) = MSBs

0@a � nY
j=1

sxjj

1A (6)

In this equation, the polynomial a 2 Rnp = Zp[x]=(xn+
1) is a �xed uniformly-random polynomial and is a
parameter of the function. Moreover, K = fs1; :::; sng
is the function key, in which each polynomial sj is in
the Rnp ring. All multiplications are also performed in
Rnp . The function MSBs : Rnp ! f0; 1g` is an encoding
function that concatenates the most signi�cant bit of
each coe�cient to make an n-bit string. Then, by
truncating the last bit, we obtain a pseudorandom
output of length ` = n� 1 bits.

3. Two-pass lattice-based authenticated
encryption

3.1. Using a CBC-MAC variant
The �rst proposed authenticated encryption scheme,
referred to as LAE1, is illustrated in Figure 1. It is
obtained by an Encrypt-and-MAC (E&M) composition
of a nonce-based symmetric encryption scheme and a
Message Authentication Code (MAC). The encryption
part is built using SPRING in the CTR mode, in
which the indices given to the SPRINGs have two
segments. The �rst segment is the nonce N , which
is �xed for all SPRINGs of the encryption part. The
second segment is the block number encoded with a
Gray code. The input and output of SPRING are n and
` bits, respectively. The length of the nonce is �xed to
w bits. The SPRING functions of the encryption part
use K1 as the key. The authentication part is a variant
of CBC-MAC [41]. The concatenation of the nonce
and message will be fed into a CBC-chain of SPRINGs.
The SPRINGs in the authentication part use a di�erent
key K2 in order to ensure a safe composition. In
the processing of the last block, another parameter
is XORed with the input of SPRING, which depends
on the third short key K3. The multiplication of
2 by K3, in the full-last-block case, is performed in
GF(2`) using at most one shift and one XOR. The
encryption procedure of LAE1 is shown in Scheme 1.
The decryption procedure is easily obtained by XORing
the given ciphertext C with X[i] to obtain M� and
computing the expected tag T � from M� in the forward
direction. If T � is the same as the given tag T , then
the successfully decrypted message M� is returned.
Otherwise, only a ? is returned.

Design rationale The authentication part of LAE1
is a stand-alone MAC based on SPRING as the un-
derlying primitive. It is similar to TMAC [18] with a
few di�erences. TMAC uses a block cipher instead of
a PRF. In addition, TMAC does not have a parameter
� to adjust the tag length. The input and output
lengths of the underlying function in TMAC (i.e., the
block cipher) are the same, while the SPRING output
is shorter than its input. There are some alternatives
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Figure 1. The 
ow diagram of LAE1 authenticated encryption procedure; top is the encryption part (LAE1-Enc), and
bottom is the authentication part (LAE1-MAC), which is divided into non-full-last-block and full-last-block modes.

Scheme 1. LAE1.

to be used as a base to construct a SPRING-based
MAC. A structure similar to OMAC [19] may seem
to be advantageous as it requires only one key for the
authentication (LAE1 uses two keys K2; and K3 for
this purpose); however, it needs an extra invocation
of SPRING which is relatively heavy. Moreover, the
length of extra key K3 is n bits, which is much
smaller than the size of SPRING keys K1 and K2 (see
Section 5 for the e�ciency results). Similar to [27],
to achieve a better performance, the SPRING input
in the encryption part is designed to be a Gray-code
counter, consisting of a �xed part N and the Gray-code
encoding of the block number.

A SPRING-based parallel MAC can be built using
a structure similar to PMAC [20]. This makes the au-
thenticated encryption scheme parallel (the encryption
part is already parallel). However, the overall perfor-
mance is not so di�erent from LAE1, as the SPRING
inputs are again non-Gray-code. As mentioned before,
the type of the composition used in LAE1 is Encrypt-
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and-MAC (E&M). Instead of the Encrypt-then-MAC
(EtM) technique in which the ciphertext is given to
the MAC algorithm, E&M allows parallel processing
of the ciphertext and tag. To build an AE using the
EtM generic composition, Bellare and Namprempre
[43] claimed that performing a MAC only on the
ciphertext was su�cient. However, Namprempre et
al. [17] showed that their results could not be applied
directly to the once-based authenticated encryption.
Thus, we cannot save one SPRING invocation using
the EtM technique.

Namprempre et al. [17] proposed secure E&M
generic compositions. LAE1 has some di�erences with
the proposed constructions in [17]. Mainly, the authors
of this paper insisted on the use of a single key and
derived subsequent keys via a PRF. However, LAE1
has three di�erent keys for the sake of running time
e�ciency.

3.1.1. Security of LAE1
Theorems 1 and 2 show the security of LAE1.

Theorem 1 (privacy of LAE1)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be
a family of functions. For any adversary A to attack
the privacy of LAE1[F ], who runs in time t and asks
q oracle queries with a maximum length of m blocks
for each query, there exists an adversary P against the
pseudorandomness of F , and we have:

Advind-cpa
LAE1[F ](A) � 2Advprf

F (P)

+
(4m2 + 1)q2

2`+1 +
q2

2n+1 : (7)

Moreover, adversary P asks q0 = 2� + q oracle queries
and runs in time t0 = 2t+�tF +�n(�+ q), where tF is
the time to compute F and � is a constant depending
on the model of the computation.

Theorem 2 (authenticity of LAE1)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be a
family of functions. For any adversary A to attack the
authenticity of LAE1[F ], who runs in time t and asks
qe encryption and qd decryption queries, there exists an
adversary P against the pseudorandomness of F , and
we have:

Advint-ctxt
LAE1[F ](A) � Advprf

F (P) +
(4m2 + 1)q2 + 2

2`+1

+
q2

2n+1 +
qd
2�
; (8)

where q = qe+qd. Moreover, adversary P asks q0 = �+
q oracle queries and runs in time t0 = t+�tF+�n(�+q),
where tF is the time to compute F and � is a constant
depending on the model of the computation.

The proofs of Theorems 1 and 2 are presented in
Section 3.1.2.

3.1.2. Security proofs
To prove Theorem 1, the following lemmas are required.

Lemma 1 (privacy of LAE1-Enc)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be a
family of functions. For any adversary B to attack the
privacy of LAE1-Enc[F ], who asks q queries with total
message length of � blocks, there exists an adversary
P1 against the pseudorandomness of F , and we have:

Advind-cpa
LAE1�Enc[F ](B) � Advprf

F (P1): (9)

Moreover, adversary P1 asks q0 = �q oracle queries,
and runs in time t0 = t + �n(� + q), where � is a
constant depending on the model of the computation.

The proof of Lemma 1 is derived from the security
proof of [44, Theorem 13].

Lemma 2 (ideal LAE1-MAC is pseudorandom)

Let R = Func(n; `). For any adversary A asking q
queries, each with at most m blocks, we have:

Advvilprf
LAE1�MAC[R](A) � (4m2 + 1)q2

2`+1 +
q2

2n+1 : (10)

Note that this result is independent of the computa-
tional resources of A.

Proof of Lemma 2
Suppose that T is the MAC part of the LAE1 scheme.
We introduce fFCBC as a variant of FCBC [36], which
uses pseudorandom functions. fFCBC[F1; F2; F3] is a
CBC-MAC which calls F1 on the intermediate blocks
and calls either F2 or F3 on the last block, depending
on being a full or partial block. By the de�nition of
the VILPRF advantage, we have:

Advvilprf
LAE1�MAC[R](A)=Pr[� $ �Func(n; `);K3

$ �f0; 1gn:

AT [�;K3](�) = 1]� Pr[�1; �2; �3
$ � Func(n; `) :

AfFCBC[�1;�2;�3](�) =1]+Pr[�1; �2; �3
$ �Func(n; `) :

AfFCBC[�1;�2;�3](�) = 1]� Pr[� $ � Func(�; `) :

A�(�) = 1]: (11)

We now consider each of these two pairs of proba-
bilities. The second pair is the information-theoretic
security of fFCBC, which is analyzed in Section 3.1.3
and bounded as follows:
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Advvilprf
fFCBC[�1;�2;�3](A) � (4m2 + 1)q2

2`+1 : (12)

Note that T [�;K3](�) is equivalent to fFCBC[�(�); �(��
K3); �(� � 2K3)]. Thus, the �rst pair of probabilities
can be written as follows:

Pr[� $ � Func(n; `);K3
$ � f0; 1gn : B�(�);�(��K3);

�(��2K3) = 1]

�Pr[�1; �2; �3
$ � Func(n; `) : B�1(�);�2(�);�3(�) = 1];

(13)

where B simply simulates A to distinguish the two sets
of oracles. Computing the advantage of such adversary
is straightforward and is bounded by q2=2n+1.�

Lemma 3 (LAE1-MAC is a VILPRF)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be
a family of functions. For any adversary D to attack
the pseudorandomness of LAE1-MAC[F ], there exists
an adversary P2 against pseudorandomness of F , and
we have:

Advvilprf
LAE1�MAC[F ](D) � Advprf

F (P2)

+
(4m2 + 1)q2

2`+1 +
q2

2n+1 : (14)

Moreover, adversary P2 asks q0 = (�+q)q oracle queries
and runs in time t0 = t+�n(�+q), where � is a constant
depending on the model of the computation.

Lemma 3 is the complexity-theoretic counterpart
of Lemma 2, which can be proven in a standard way
(for example, see [41, section 3.2]).

Proof of Theorem 1
Suppose that E and T are the Enc and MAC parts
of LAE1, respectively. We derive two adversaries B
and D from A. Both simulate an ind-cpa game for
A. Meanwhile, B tries to break the privacy of LAE1-
Enc, and D attempts to distinguish LAE1-MAC from
a random function. B forwards A's request to its own
oracle to obtain C. Then, it generates a fresh random
T and outputs (C; T ). Furthermore, D generates a
random keyK1. Then, D itself computes C and invokes
its oracle to obtain T . Thus, we have:

Advind-cpa
LAE1[F ](A) == Pr[AE(�;�);T (�;�) ) 1]

�Pr[A$(�;�);T (�;�) ) 1] + Pr[A$(�;�);T (�;�) ) 1]

�Pr[A$(�;�);$(�;�) ) 1] = Advind-cpa
LAE1�Enc[F ](B)

+Advvilprf
LAE1�MAC[F ](D) �

2Advprf
F (P) +

(4m2 + 1)q2

2`+1 +
q2

2n+1 ; (15)

where P can be either P1 or P2 which has more
advantage. Additionally, the last inequality is provided
by Lemmas 1 and 3.�
Proof of Theorem 2
Based on the pseudorandomness of LAE1-MAC
(Lemma 3), it is standard to prove the following
equation about the unforgeability of LAE1-MAC under
chosen message attack:

Advuf-cma
LAE1�MAC[F ](B) � Advprf

F (P)

+
(4m2 + 1)q2 + 2

2`+1 +
q2

2n+1 : (16)

Now, adversary A can be utilized to build adversary
B. This adversary acts as follows. For any encryption
queries A makes, B uses its oracle to obtain T .
Then, it generates a random key K1 to compute C.
Moreover, upon a decryption query from A, it decrypts
C to obtain M� and sends (N;M�; T ) to its forgery
(decryption) oracle. As a result, we simply have:

Advint-ctxt
LAE1[F ](A) � Advuf-cma

LAE1�MAC[F ](B); (17)

and the theorem is proved.�
3.1.3. Security of fFCBC
In this section, the information-theoretic security of
fFCBC is presented. At �rst, suppose that fCBC is the
plain CBC mode, instantiated with a PRF function.
The collision probability of fCBC is de�ned as follows:

Coln;`(m;m0) = max
M 6=M 0

n
Pr
�
� $ Func(n; `) :

fCBC�(M) = fCBC�(M
0)
�o
; (18)

where messages M;M 0 are chosen from f0; 1gm` and
f0; 1gm0`, respectively.

Lemma 4 (collision resistance of fCBC)

Fixm;m0 � 1. The following bound holds for the fCBC
collision probability:

Coln;`(m;m0) � (m+m0)2 + 1
2`

: (19)

Proof of Lemma 4
Fix two messages M;M 0, where jM j = m`, jM 0j = m0`,
and M 6= M 0. Moreover, assume that the �rst k blocks
of M and M 0 are equal (k may be zero). Now, Game 1
presents the computation of two fCBC functions. The
collision occurs when Ym = Y 0m0 .

Consider the case that the bad 
ag is never set to
true. Then, all Yi and Y 0i variables in lines 13 and 19
of Game 1 are set to uniform and independent values.
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Game 1. The game of fCBC collision.

Thus, if k < m and k < m0, or if either k = m or
k = m0 (but not both, because M 6= M 0), then Ym and
Y 0m0 are uniformly distributed and independent. Thus,
we have:

Pr[Ym = Y 0m0 j bad = false] =
1
2`
; (20)

where the probability is taken over random function �.
Moreover, the following equations hold:

Coln;`(m;m0) = Pr[Ym = Y 0m0 ]

= Pr[Ym = Y 0m0 ^ bad = false]

+Pr[Ym = Y 0m0 ^ bad = true]; (21)

Pr[Ym = Y 0m0 ^ bad = false]

� Pr[Ym = Y 0m0 ^ bad = false]
Pr[bad = false]

= Pr[Ym = Y 0m0 j bad = false] =
1
2`
; (22)

Pr[Ym = Y 0m0 ^ bad = true] � Pr[bad = true]: (23)

Thus, we have:

Coln;`(m;m0) � Pr[bad = true] +
1
2`
: (24)

Now, to bound the probability of setting the bad 
ag,
note that it is set to true in lines 5, 11, and 17 of
Game 1. Just before these lines Xi or X 0i are assigned
and if it is in the domain of �, the bad 
ag is set. For
the case in which the bad 
ag has not been yet set
to true, the value assigned to Xi or X 0i is uniformly-
random and independent. That is because the value

of Yi�1 or Y 0i�1 is uniformly-random and independent,
and it is XORed with the message to form Xi or X 0i. If
there are i�1 values in the domain of �, the probability
of a collision for the �rst time for a new random value
is (i� 1)=2`. Thus, the following equation holds:

Pr[bad = true] �
m+m0X
i=1

i� 1
2`
� (m+m0)2

2`
: (25)

Finally, we have:

Coln;`(m;m0) � (m+m0)2 + 1
2`

:� (26)

Theorem 3 (security of fFCBC)

For any adversary A that asks q oracle queries, each
with a maximum length of m blocks, we have:

Pr[�1; �2; �3
$ Func(n; `) : AfFCBC[�1;�2;�3](�) ) 1]

�Pr[� $ Func(�; `) : A�(�) ) 1] � (4m2 + 1)q2

2`+1 :
(27)

Proof of Theorem 3
Let us de�ne Col as the event of the occurrence of a
collision in the outputs of �2 or in the outputs of �3
(yet not between them). Thus, we can break the left
side of the theorem equation to:

Pr[�1; �2; �3
$ Func(n; `) : AfFCBC[�1;�2;�3](�)

) 1 j Col]Pr[Col] + Pr[�1; �2; �3
$ Func(n; `) :

AfFCBC[�1;�2;�3](�) ) 1 j Col]Pr[Col]

�Pr[� $ Func(�; `) : A�(�) ) 1]: (28)

Using the following simple equations:

Pr[�1; �2; �3
$ Func(n; `) : AfFCBC[�1;�2;�3](�)

) 1 j Col] � 1; (29)

Pr[Col] � 1: (30)

We can bound the left-hand side of the theorem
equation as follows:

Pr[Col] + Pr[�1; �2; �3
$ Func(n; `) : AfFCBC[�1;�2;�3](�)

) 1 j Col]� Pr[� $ Func(�; `) : A�(�) ) 1]:
(31)

If there is no collision, it is apparent that:
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Pr[�1; �2; �3
$ Func(n; `) :

AfFCBC[�1;�2;�3](�) ) 1 j Col]

= Pr[� $ Func(�; `) : A�(�) ) 1]; (32)

and, therefore, we have:

Pr[�1; �2; �3
$ Func(n; `) : AfFCBC[�1;�2;�3](�) ) 1]

�Pr[� $ Func(�; `) : A�(�) ) 1] � Pr[Col]: (33)

Moreover, using the union bound:

Pr[Col] � Pr[PadCol] + Pr[UnpadCol]; (34)

where UnpadCol is the event of a collision in the
outputs of �3 for unpadded messages, and PadCol is
the event of a collision in the outputs of �2 for padded
messages.

Now, we can break the probability of PadCol as
follows:

Pr[PadCol] �
qpadX
i=1

Pr[PadColi]; (35)

where Pr[PadColi] is the probability that the collision
occurs for the �rst time after the i-th padded query,
and qpad is the total number of padded queries. Note
that PadColi's are disjoint. Because there is no
collision in the �rst i�1 queries, the responses of these
queries, sent to the adversary, are uniformly random
and independent. Thus, any adaptive strategy of A
can be changed to a nonadaptive strategy without loss
of advantage.

Using the result of Lemma 4, we have:

Pr[PadColi] � (i� 1)Coln;`(m;m); (36)

and the �nal bound on the probability of PadCol is:

Pr[PadCol] �
qpadX
i=1

(i� 1)Coln;`(m;m)

� (4m2 + 1)q2
pad

2`+1 : (37)

The same bound is also applied for UnpadCol. Finally,
the theorem result is obtained:

Pr[Col] � (4m2 + 1)q2
pad

2`+1 +
(4m2 + 1)q2

unpad

2`+1

� (4m2 + 1)q2

2`+1 :� (38)

3.2. Using a Carter-Wegman MAC
LAE1 calls SPRING twice per message block. More-
over, the performance results presented in Section 5
show that SPRING computation is the most time-
consuming part of the execution. The idea of designing
a more e�cient scheme is to reduce the number of
SPRING invocations in the authentication part. We
have used the technique of Wegman and Carter [45] to
build a MAC using a universal class of hash functions
and the lattice-based PRF SPRING. In order to apply
this technique, the ciphertext is given to a secret
function from an XOR-universal class of hash functions
[46], and the output is masked with the PRF output
on a fresh and unique input.

Scheme 2 and Figure 2 show the second proposed
lattice-based AE, referred to as LAE2, using the
Carter-Wegman method [45]. Multiplications in this
scheme are performed in GF(2n). The encryption part
is the same as before in LAE1. The universal class of
hash functions utilized in LAE2 is de�ned as follows:

Ha(C)=C[1]am+1+C[2]am+:::+C[m]a2+len(C)a:

Here, m = jCj` and the polynomial a 2 GF(2n) is the
function index. All the operations are performed in
GF(2n).

Using an XOR-universal hash function built by
iterative multiplications of a secret polynomial a 2
GF(2n) is similar to the NIST-recommended GCM
mode of operation [15]. However, GCM encrypts a
constant block (zero block) to derive the second key
for authentication, while LAE2 uses another key K2
to save one SPRING invocation (see the more detailed
discussion in Section 3.1 on a similar case). Moreover,
there are many pad and msb functions involved because
of asymmetry between the input and output length
of SPRING, which should be handled carefully in the
security proof.

Scheme 2. LAE2.
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Figure 2. The 
ow diagram of LAE2 authenticated encryption procedure. Top is the encryption part (LAE2-Enc), and
bottom is the authentication part (LAE2-MAC).

Although LAE2 is considered as a two-pass au-
thenticated encryption scheme, the multiplications in
GF(2n) can be computed very e�ciently. Thus, the
authentication part is much more e�cient than LAE1.
Typical high-end processors have instruction set exten-
sions to perform this operation in a few clock cycles
(see Section 5 for more details on the ones used in our
benchmarks). Moreover, when an old or constrained
processor is required, or in the case of hardware imple-
mentations, this multiplication can also be performed
e�ciently using a moderate-sized precomputed lookup
table. Nevertheless, both LAE1 and LAE2 are not
fully parallel, and their authentication part should be
computed sequentially.

It is worth mentioning that replacing the majority
of SPRING functions with polynomial multiplications
in GF(2n) does not introduce any new security assump-
tion in LAE2. The hardness of lattice problems is still
the only supporting assumption. Thus, many SPRING
invocations in the authentication part of LAE1 are
reduced to only one in LAE2, without any loss in the
security level.

3.2.1. Security of LAE2
Theorems 4 and 5 show the security of LAE2.

Theorem 4 (privacy of LAE2). Fix n � ` � 1.
Let F = fF : f0; 1gn ! f0; 1g`g be a family of

functions. For any adversary A to attack the privacy of
LAE2[F ], who runs in time t and asks q oracle queries,
each of which has at most m < 2n�w blocks; there
exists an adversary P against the pseudorandomness
of F , and we have:

Advind-cpa
LAE2[F ](A) � Advprf

F (P): (39)

Moreover, adversary P asks q0 = � + q oracle queries
and runs in time t0 = t+ (� + q)t
 + �n(�+ q), where
t
 is the time to compute a GF(2n) multiplication,
and � is a constant depending on the model of the
computation.

Theorem 5 (authenticity of LAE2). Fix n �
` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be a
family of functions. For any adversary A to attack the
authenticity of LAE2[F ], who runs in time t and asks
qe encryption and qd decryption queries, each of which
with a total length of �e and �d blocks, there exists an
adversary P against the pseudorandomness of F , and
we have:

Advint-ctxt
LAE2[F ](A) � Advprf

F (P) +
q

2` � q2`�� +
qd
2�
;
(40)

where q = qe + qd. Moreover, adversary P asks q0 =
�eqe + qd oracle queries and runs in time t0 = t+ (� +



A. Boorghany et al./Scientia Iranica, Transactions D: Computer Science & ... 25 (2018) 3442{3460 3453

q)t
 + �n(�+ q), where � = �e + �d, t
 is the time to
compute a GF(2n) multiplication, and � is a constant
depending on the model of the computation.

The proofs of Theorems 4 and 5 are presented in
Section 3.2.2.

3.2.2. Security proofs
The proof sketch of Theorem 4 is as follows. The
problem in the information-theoretic setting, i.e., when
F $ � Func(n; `), is simple. Both ciphertext C and
tag T are XORed with the output of F . In addition,
a nonce-respecting adversary A always queries with a
fresh nonce N . Thus, the distribution of (C; T ) is per-
fectly uniform. Transition from information-theoretic
to complexity-theoretic setting is also standard.�

Theorem 5 can be proven in a standard way from
Lemma 5.

Lemma 5 (authenticity of ideal LAE2). Fix n �
` � 1. Let R = Func(n; `). For any adversary A asking
qe encryption and qd decryption queries, we have:

Advint-ctxt
LAE2[R](A) � q

2` � q2`�� +
qd
2�
; (41)

where q = qe + qd.

Proof of Lemma 5
The technique of sequences of games [47] is used
to prove this result. Game 2 (G0) simulates the
environment of Lemma 5 for adversary A. There is
an exception whose AuthDecrypt procedure in G0
returns true instead of the message in the case that
the forgery is successful. However, this di�erence can
be ignored because the following equation always holds.

Advint-ctxt
LAE2[R](A) = Pr[GA0 ) wins]: (42)

Note that, without loss of generality, we can assume
that adversary A is deterministic. Therefore, the
probability is taken only over the random function
sampled from R.

G0 models random function � using the lazy
sampling technique. Games G1 and G2 are speci�ed in
Game 3. The underlined statements exist only in game
G1 and are removed in G2. From A's point of view, G0
and G1 are identical. Thus, the winning probability of
A remains unchanged from G0 to G1. On the other
hand, G1 and G2 are identical until bad. That is, as
long as no bad 
ags (bad1 or bad2) are set to true, these
two games are identical for A. Thus, according to the
fundamental lemma of game playing [48], we have:

Pr[GA1 ) wins]� Pr[GA2 ) wins]

� Pr[GA2 sets bad1or bad2]: (43)

However, as the AuthDecrypt procedure of G2

Game 2. G0 for LAE2.

always returns ?, we have Pr[GA2 ) wins] = 0. Thus,
we can conclude:

Advint-ctxt
LAE2[R](A) � Pr[GA2 sets bad1 or bad2]

� Pr[GA2 sets bad1]

+Pr[GA2 sets bad2]: (44)

Note that bad1 never occurs because A is nonce-
respecting and never provides repeated nonces to the
AuthEncrypt oracle. This is true even if the nonce
value N , given to AuthEncrypt, has been repeatedly
used in previous AuthDecrypt queries. We de�ne
Pr[GA2 sets bad2 on qi] as the probability that bad2 is
set to true on the i-th query for the �rst time. As these
probabilities are disjoint, we have:

Pr[GA2 sets bad2] =
qX
i=1

Pr[GA2 sets bad2 on qi]: (45)

Now, we bound Pr[GA2 sets bad2 on qi].
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Game 3. G1; G2 for LAE2.

Let Ni, Ci, Ti, and T �i be the values appeared
in the AuthEncrypt or AuthDecrypt procedure of
the i-th query in G2 (not all of them may be de�ned
for each i). The probability of setting bad2 is zero for
the encryption queries because A is nonce-respecting.
For the decryption queries, we have:

Pr[GA2 sets bad2 on qi] = Pr[Ti = T �i ]: (46)

We claim that the event Ti = T �i is independent of all
the previous queries qj (j < i) with Nj 6= Ni. If qj is an
encryption query, the returned Cj is uniformly random
and independent, and Tj is deterministically calculated
from Cj . If qj is a decryption query, the returned ?
only reveals that Tj 6= T �j , where T �j is independent of
the event Ti = T �i .

Now, we assume that adversary A uses the same
nonce N for all the queries prior and include qi, to

maximize the probability of setting bad2 on qi. There
are two cases in this setting:

- Case 1: All the previous queries are AuthDe-
crypt, and are responded by a ?. In this
case, for j < i, it is revealed to A that
Tj 6= T �j = msb�

�
HK2(Cj)

� � N�, where N� =
msb� (� (Nk gray(0))) and is common between all
the queries. Thus, at most 2`�� choices of K2
become invalid after each query. On the other hand,
only one of the choices makes Ti = T �i . Therefore,
the following equation holds:

Pr[Ti = T �i ] =
1

2` � (i� 1)2`�� : (47)

- Case 2: Exactly one of the previous queries is
AuthEncrypt. Assume that qk (1 � k < i)
is the encryption query. The other queries are
all AuthDecrypt and are responded by a ?.
Thus, A has a tuple (Mk; Ck; Tk) for which Tk =
msb�

�
HK2(Ck)

� � N� holds. Due to the fact that
N� is an independent and uniformly-random value
(random function F evaluated on fresh nonce N),
Tk has also this property. Hence, the pair (Ck; Tk)
causing at most 2`�� choices of K2 becomes invalid;
similar to Case 1, Eq. (47) holds.

Moreover, another strategy is to perform exhaus-
tive search on the correct tag with an advantage of
qd=2� . Finally, we can conclude as follows:

Advint-ctxt
LAE2[R](A) �

qX
i=1

1
2` � (i� 1)2`�� +

qd
2�

� q
2` � q2`�� +

qd
2�
:� (48)

4. Single-pass lattice-based authenticated
encryption

LAE1 and LAE2 perform the encryption and authen-
tication processes separately, running the underlying
primitive twice per message block. A single-pass AE
performs these tasks in a single processing. To be more
speci�c, it calls the primitive function or permutation
once per input block, in addition to a few constant
number of calls. Firstly, Jutla [21] introduced the
�rst secure single-pass authenticated encryption IAPM.
Rogaway et al. [22] extended this idea to build OCB,
which is a fast and well-featured AE [23,24].

Scheme 3 is the third proposed AE scheme,
referred to as LAE3. It is derived from a recent AE
from Minematsu [25] called OTR. OTR is an extension
to OCB, which uses a Feistel structure to replace each
pair of block ciphers in OCB with a pair of PRFs.
Figure 3 shows the structure and data 
ow of LAE3.
In this scheme, similar to the last block of LAE1, a
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Figure 3. The 
ow diagram of LAE3 authenticated encryption procedure. For the description of L� and
P

, refer to
Scheme 3. Note that, in LAE3, the input of SPRING is reduced to ` bits.

Scheme 3. LAE3.

whitening value is XORed with the input of SPRING
to obtain a tweakable PRF. The polynomial operations
in this scheme are performed in GF(2`). Note that the
multiplication of small constants, for instance in 4� and
2L, are easily computed by some shifts and XORs. For
the sake of simplicity, the input of SPRING is reduced
to ` bits in LAE3. Thus, both input and output of
SPRING are ` bits in this scheme. The remaining
least signi�cant (n � `) bits are padded with zero.
Note that, in Scheme 3 and Figure 3, this padding
is considered inside the SPRING function and is not
applied explicitly.

There are two di�erences between LAE3 and

OTR. Firstly, the block cipher is replaced with a PRF.
Although [25] introduced a PRF-capable version of
OTR; however, there were technical issues about the
integration of SPRING in this scheme. The proposed
scheme does not use the OTR technique to obtain a
tweakable PRF from SPRING. Instead, some whiten-
ing value is XORed with the input of SPRING. The
other di�erence is that the input and output lengths of
SPRING are not equal. We use only ` bits of SPRING
input (padding it with zeroes) to make the input and
output lengths the same.

There are few proposals for single-pass non-
lattice-based authenticated encryption in the litera-
ture. The methods of IAPM [21] and OCB [22-24]
cannot be followed in the case of SPRING. In these
schemes, the plaintext is directly fed into the underly-
ing primitive function, and the output becomes a part
of the ciphertext. PRFs are not useful in this setting
because a PRF is not necessarily a bijection; hence,
it has data loss. Only a pseudorandom permutation
(e.g., a block cipher) can be used in such designs.
Minematsu [25] introduced OTR as a PRF-capable
single-pass AE. OTR utilizes the tweak-prepending
technique to construct a tweakable PRF from a normal
one. Unfortunately, this technique cannot be applied
to SPRING. That is because SPRING has a �xed
and short input length n, while tweak-prepending
requires a variable-input-length PRF or one with a
large-enough input length. Alternatively, the input
whitening technique is used in LAE3. In this case, the
outputs of some functions of an XOR-universal class
are XORed with the input of SPRINGs to make a
tweakable PRF. As a �nal note, LAE3 requires a fresh
� for each nonce N . Thus, we cannot save a SPRING
invocation, similar to LAE1, by introducing the second
key.

4.1. Security of LAE3
Theorems 6 and 7 show the security of LAE3.
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Theorem 6 (privacy of LAE3)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be
a family of functions. For any adversary A to attack
the privacy of LAE3[F ], who runs in time t and asks
q encryption queries, with a maximum total length
of � blocks, there exists an adversary P against the
pseudorandomness of F , and we have:

Advind-cpa
LAE3[F ](A) � Advprf

F (P) +
6(q + �)2

2`
: (49)

Moreover, adversary P asks q0 = �+ 2q oracle queries,
and runs in time t0 = t+�`(�+q), where � is a constant
depending on the model of the computation.

Theorem 7 (authenticity of LAE3)

Fix n � ` � 1. Let F = fF : f0; 1gn ! f0; 1g`g be a
family of functions. For any adversary A to attack the
authenticity of LAE3[F ], who runs in time t and asks qe
encryption and qd decryption queries, with a maximum
total length of �e and �d blocks, respectively, there
exists an adversary P against the pseudorandomness
of F , and we have:

Advint-ctxt
LAE3[F ](A) � Advprf

F (P)

+
6(qe + qd + �e + �d)2

2`
+
qd
2�
: (50)

Moreover, adversary P asks q0 = qe + qd + �e + �d
number of oracle queries, and runs in time t0 = t +
�`(�e+�d+2qe+2qd), where � is a constant depending
on the model of the computation.

Proofs of Theorems 6 and 7
We skip the proofs of Theorems 6 and 7 as they are
similar to the privacy and authenticity proofs of OTR
[25, Theorems 1 and 2]. The main di�erence is that the
associated data are not involved in the proof because
LAE3 does not support it.

5. Comparison and performance results

In this section, the e�ciency and performance results
of the proposed schemes are reported. These schemes
are implemented with moderate optimizations. The
target of the implementations are high-end processors
because single-instruction multiple-data (SIMD) is uti-
lized to speed up polynomial operations of the lattice-
based AEs. The source codes of the implementations
are integrated into the OpenSSL framework to be
benchmarked along with the optimized implementation
of AES-128-GCM and AES-256-GCM in OpenSSL.
GCM [15] is an e�cient and widely-used authenticated
encryption mode of operation. AES-128-GCM and
AES-256-GCM are two instantiations of GCM using

128-bit and 256-bit AES, respectively. The imple-
mented lattice-based schemes are parameterized with
n = 128, ` = 127, p = 514, and w = 96 to
claim 128-bit security in the pre- and post-quantum
settings. Consequently, AES-256-GCM is also included
in the comparison, which is 128-bit secure in the
post-quantum setting. The three proposed schemes
LAE1, LAE2, and LAE3 are implemented based on the
SPRING implementation provided by its designers [27].
The implementation of the SPRING function in LAE3
and in the authentication part of LAE1 cannot make
use of the optimizations introduced in [27, Section 3]
regarding the Gray-code input.

The proposed schemes are implemented in C++
and integrated with the benchmark of OpenSSL version
1.0.1i. The OpenSSL benchmark is modi�ed to feed
more variable sizes of input, and use the \rdtsc" in-
struction to count the processor clocks. The instruction
set of the Intel Carry-Less Multiplication (CLMUL)
is used to multiply polynomials in GF(2128). The
benchmarking process is executed on one CPU core.
The source code is compiled using GCC version 4.8.2.
Two compiler options \O3" and \march=native" are
speci�ed in order to con�gure the compiler to generate
optimized codes according to the targeted processors.
Thus, the source code is recompiled on each targeted
machine. The Intel SSE2 instruction set is utilized
indirectly by using vector processing features of GCC.
OpenSSL, and the integrated new schemes were built
into a 64-bit binary executable. The benchmark is run
on a 64-bit Linux machine with kernel version 3.13.30.
Two Intel CPUs are used in the experiments. The
�rst one is Intel Core i3-2120 running at 3.3GHz with
Sandy Bridge microarchitecture, and the second one
is Intel Core i7-4770 running at 3.4GHz with Haswell
microarchitecture.

Table 1 presents the processor clock cycles on Intel
Sandy Bridge and Haswell microarchitectures, running
the encryption procedures of LAE1, LAE2, and LAE3.
Figure 4 also shows these results in a form of graph.
The lengths chosen for the plaintexts are powers of
2 and 10 bytes in order to cover both complete and
incomplete last blocks, as well as common IP packet
sizes 40, 576, 1300, and 1500 bytes. Note that OpenSSL
is con�gured not to use AES-NI instruction set of Intel
CPUs for AES-128-GCM and AES-256-GCM.

Although LAE3 is of single-pass, it is not more ef-
�cient than the two-pass LAE2 due to the optimization
techniques applied to the lattice-based PRF SPRING.
SPRING is very e�cient if it runs multiple times given
the values of a Gray-code counter. In this environ-
ment, the aggregated computation of each SPRING is
reduced signi�cantly. In the case of LAE1, only the
encryption part enjoys the optimization for the Gray-
code input. As an improvement, the authentication
part of LAE2 utilizes GF(2128) multiplications instead
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Table 1. Number of clock cycles per byte to run the
encryption procedure of the proposed schemes LAE1,
LAE2, and LAE3, compared to AES-128-GCM and
AES-256-GCM. The top represents the results on one core
of an Intel Core i3-2120 CPU with Sandy bridge
microarchitecture, and the bottom represents the results
on one core of an Intel Core i7-4770 CPU with Haswell
microarchitecture. Green highlights are faster than
AES-256-GCM, and pink highlights are twice slower.

of a chain of SPRINGs. There is only one SPRING
invocation in the authentication part, which is also
in the sequence of the encryption Gray-code counter.
Therefore, SPRING computation is highly optimized
in LAE2. The authentication pass is removed in
LAE3, though the SPRING's inputs are no longer
from a Gray-code counter, resulting in a less e�cient
scheme than LAE2. All the three proposed schemes

Table 2. Key size of the proposed schemes LAE1, LAE2,
and LAE3 in comparison with AES-128-GCM and
AES-256-GCM. Note that the issue of large keys for the
proposed AEs can be managed in practice using a PRNG.
More details are provided in Section 5.

Scheme Key size (bits)
LAE1 98431 (2� 49152 + 127)
LAE2 49280 (49152 + 128)
LAE3 49152
AES-128-GCM 128
AES-256-GCM 256

are computationally heavy for very short plaintexts
(e.g., less than 40 bytes). Only LAE2 becomes good
for larger inputs. This phenomenon is common in
symmetric encryption schemes; however, it is a more
considerable issue in the case of the proposed lattice-
based schemes because the saving in the aggregated
computation of SPRINGs is substantial.

If a small IP packet to be 40 bytes and a large
IP packet to be 1500 bytes are considered, LAE1 is
the least e�cient scheme of all the other proposed
schemes to be used for IP packet encryption. It is
around twice slower than AES-256-GCM for both small
and large packet sizes on Haswell and Sandy Bridge
microarchitectures. LAE3 has a better performance;
as for small IP packets, it is 146% and 151% slower
than AES-256-GCM on Sandy Bridge and Haswell, re-
spectively. However, for large IP packets, this scheme is
28% and 36% slower than AES-256-GCM, respectively.
LAE2 has the best performance among the proposed
AE schemes. It is only 12% and 24% slower than AES-
256-GCM for small IP packets on Sandy Bridge and
Haswell, respectively. Finally, it is 34% and 15% faster
than AES-256-GCM for large IP packets, respectively,
on the targeted microarchitectures.

Table 2 also shows the comparison of the key sizes
between the proposed schemes and the two references
AES-128-GCM and AES-256-GCM. Similar to most
lattice-based cryptographic schemes, the key sizes of
the proposed AEs are very large. These sizes are for the
key before applying the Fast Fourier Transform (FFT).
The issue of large keys can be managed in practice by
utilizing a pseudorandom number generator (PRNG).
The PRNG is seeded with a short key to generate
the larger key of each lattice-based AE. Note that the
PRNG is executed only once in the key setup phase. It
is similar to the key expansion process in block cipher-
based AEs, which is usually not a performance critical
task.

6. Conclusion

In this paper, three Authenticated Encryption (AE)
schemes LAE1, LAE2, and LAE3, which enjoy a
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Figure 4. Performance results of the proposed schemes LAE1, LAE2, and LAE3 (encryption procedure), compared with
AES-128-GCM and AES-256-GCM. The implementations are executed on one core of Intel Core i3-2120 with Sandy
Bridge microarchitecture, and on one core of Intel Core i7-4770 with Haswell microarchitecture. The vertical axis is
re-scaled by of the message length of 128 bytes.

security proof based on hard lattice problems, were
presented. In addition, the exact security of these
schemes in the paradigm of practice-oriented provable
security was analyzed and proved. The proposed
schemes have the following motivations and advan-
tages over the previous AE constructions: (1) These
schemes are alternatives to conventional AEs based
on a block cipher, which may help if a quantum
algorithm is discovered to break, e.g., AES; (2) If
they are combined with a lattice-based asymmetric
scheme for key distribution; then, the resulting hybrid
encryption depends only on one (type of) security
assumption. Otherwise, if a block-cipher-based AE
(e.g., AES-GCM) is combined with an entirely di�erent
asymmetric key distribution (e.g., an RSA-based one),
then a 
aw or a new attack to the assumption of
each part (AES-GCM, or RSA) breaks the whole
security; (3) Computational resources can be saved
in the case of a hybrid encryption which uses the
proposed AEs as well as a lattice-based asymmetric
scheme, due to the fact that some primitive com-
putations are in common; (4) Our implementation
results of the Intel Sandy Bridge and Haswell mi-
croarchitectures show that LAE2 is e�cient enough to
be used in practice and to compete with widely-used
AEs.
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