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Abstract. In this paper, optimal design and assessment of the capability of Tuned
Mass Dampers (TMDs) in improving the seismic behavior of con�ned masonry walls, as
the main element of historical buildings, has been studied. For this purpose, the design
parameters of TMDs have been determined through minimization of wall response using
Genetic Algorithms (GAs). To simulate the behavior of con�ned masonry wall under
earthquake, the triple linear shear beam model has been used. For illustration, the method
has been tested on con�ned masonry walls equipped with linear TMDs. To study the e�ects
of frequency content and Peak Ground Acceleration (PGA) of earthquake records on the
performance of TMDs, the controlled walls have been subjected to di�erent earthquake
records. Results show that the proposed method has been e�ective in designing optimal
TMDs regarding the convergence and simplicity of GA in solving the optimization problem.
It has also been shown that using TMD enhances the seismic behavior of con�ned masonry
walls, which its e�ciency depends on the earthquake characteristics and the mass ratio.
Finally, it can be concluded that the results of this research could be used as guides to
design TMDs for historical and heritage buildings.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

Most of the masonry structures around the world are
considered as historical buildings or national heritage
and need to be protected against environmental loads.
The behavior of these structures is highly nonlinear and
hysteretic and di�erent models have been proposed to
simulate their dynamic behavior. In addition to that
of Moghaddam and Dowling [1] who have extensively
studied the behavior of in�lled frames, di�erent models
have been proposed to predict the dynamic response of
masonry in�lled frames, such as the truss model [2]
or the analytical macro-model based on an equivalent
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strut approach [3]. Tomazevic and Klemenc [4-5]
have proposed a tri-linear model of lateral resistance-
displacement envelope curve for representing the seis-
mic behavior of con�ned masonry walls, where the
resistance is calculated as a combination of the shear
resistance of the plain masonry wall panel and the
dowel e�ect of the tie-column's reinforcement. A tri-
linear shear spring model has also been proposed by
Moroni et al. [6,7] for the dynamic behavior of con�ned
masonry walls and their nonlinear properties.

Since masonry buildings are highly vulnerable to
earthquake ground shakings, their protection against
earthquake excitation is absolutely necessary. One
alternative to protect such buildings is using struc-
tural control systems. Joghataie and Mohebbi [8]
have worked on this subject by studying the e�ect
of application of active control systems on con�ned
masonry walls. They have concluded that active
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controlling of con�ned masonry walls could be e�ective
for keeping the masonry walls from failure under severe
earthquakes. As some advantages of passive control
systems, such as their simplicity and availability of
the required technologies, have made passive control
more attractive and practical, in this paper, it has been
decided to assess if passive control strategies could be
e�ectively applied to mitigate the seismic response of
con�ned masonry walls.

In the area of passive control, much progress
has been accomplished, especially in base isolation
and di�erent types of mechanical energy dissipaters,
such as single Tuned Mass Damper (TMD) [9], dou-
ble TMD [10], and multiple TMD [11-14]. The
optimization of TMD parameters has been studied
in structural control for many years and di�erent
methods have been proposed for optimal design of
TMDs for linear structures, including selecting the
parameters of a TMD for the undamped structure
under sinusoidal excitation [15], minimization of the
Root-Mean-Square (RMS) of the main structure's
displacement or acceleration under white noise ex-
citation [16], maximization of the e�ective damping
of the structure incorporating the TMD [17], and
minimization of the di�erence between the damping
values of the �rst two modes of the structure-TMD
coupled system [18]. Also, in recent research, new
types of TMDs have been investigated for attenuating
oscillations of structures, such as magnetically tuned
mass dampers proposed for vibration control of large
structures [19], the Bidirectional TMD (BTMD) for
vibration control of irregular high rise building [20], and
Tuned Mass Damper-Inerter (TMDI) which generalizes
the classical Tuned Mass Damper (TMD) to reduce
the oscillatory motion of stochastically support excited
structural systems [21]. Since in real underground
shaking many buildings undergo large deformations,
the application of TMD to nonlinear structures has also
been studied in some research. The seismic e�ective-
ness of TMDs for elastic-perfectly plastic single degree
of freedom under earthquake motions [22], the e�ect of
ground motion on e�ectiveness of TMDs on nonlinear
structures [23], and the use of accumulated hysteretic
energy absorption in conjunction with the maximum
displacement of nonlinear structures to assess the
e�ectiveness of TMD [24] have been investigated in
previous research. Also, using Nonlinear Rooftop
Tuned Mass Damper Frames (NRTMDF) to retro�t
structures [25] and Nonlinear Tuned Mass Damper
(NTMD) and an adaptive-length pendulum tuned
mass damper (APTMD) to reduce the response of
hardening D�u�ng oscillator have been suggested [26].
Mohebbi and Joghataie [27] studied the e�ectiveness
of TMD on Multi-Degree Of Freedom (MDOF) frames
with nonlinear and hysteretic behavior and proposed
a method to determine the optimal values of TMD

parameters based on minimizing a speci�ed objective
function. In this paper, the e�ectiveness of TMDs
in mitigating the seismic response of nonlinear and
hysteretic con�ned masonry walls has been studied.
For this purpose, following the method proposed by
Mohebbi and Joghataie [27], an optimization proce-
dure based on using Genetic Algorithm (GA) has
been applied to design optimal TMDs for controlling
the response of con�ned masonry walls with di�erent
numbers of storeys equipped with linear TMDs under
di�erent earthquakes. Moreover, the e�ects of input
ground motion, TMD mass ratio and di�erent design
criteria on the performance of TMDs have been dis-
cussed.

In the following sections, �rstly Moroni's
model [6] for con�ned masonry walls and then the
formulation of optimization problem for the design
of optimal TMDs will be brie
y reviewed. A brief
explanation of the GA will be presented followed by
numerical examples and conclusions.

2. Moroni's model for con�ned masonry walls

For modeling the dynamic behavior of con�ned ma-
sonry walls, di�erent models have been proposed in
literature [3-6]. Among the proposed models, the
one proposed by Moroni et al. [6] has been based
on extensive experimental results on real scale con-
�ned masonry walls. Therefore, using this model
for numerical simulations leads to achieve a close
similarity with the results of existing masonry walls
and thus a more accurate analysis. Also, this model
includes parameters which enable modeling of masonry
wall in di�erent conditions without any complexity in
numerical simulations. Hence, in this paper, it has
been decided to use this model for representing the
nonlinear behavior of con�ned masonry walls under
earthquake excitation. The model has been based on a
tri-linear shear spring model with hysteresis loops, as
shown in Figure 1, wherein the horizontal and vertical
axes represent the shear strain, 
, and lateral force, V ,
respectively. The parameters of this model, shown in
Figure 1, are:

Figure 1. Triple linear shear beam model [8].
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V1 The initial yield point after which the
wall becomes nonlinear corresponding
to shear strain 
 = 1=2400;

V2 Plastic shear capacity;
Ke E�ective initial sti�ness of the shear

spring;

0 Elasto-plastic strain corresponding to

the sti�ness, Ke, and lateral load, V2;

2 The real strain corresponding to the

lateral load, V2;

3 The strain at which the wall fails,

where the failure displacement is
calculated as:
Xfailure = h
3; (1)

where h is the wall height.

The above parameters can be calculated accord-
ing to the following formulae:
V1 = (0:19�m + 0:12�0)Am; (2)

V2 = (0:37�m + 0:43�0)Am; (3)


2 = �1
0; (4)


3 = �2
0; (5)


0 = (V2=ke)=h; (6)

Ae = Am+ 2 (Gc=Gm)Ac: (7)

For artisan brick and hollow concrete blocks, the
e�ective initial sti�ness, Ke, is determined as:

ke = Gm
Ae
3
; (8)

ke = Gm
Ae
6
; (9)

where �0 is the applied vertical load on the wall, �m
is the shear strength of the wall, Am is the area of
the masonry wall cross section, Ac is the total area
of the exterior con�ning columns, Gm and Gc are
shear modulus of the masonry and concrete materials,
respectively, and �1 and �2 are two constants which
are experimentally determined.

The model in Figure 1 assumes that after the
initial yielding point, when the base shear is positive,
unloading follows a straight line which connects the
current point on Figure 1 to point (0;�V1) on the
vertical axis; then, the line breaks at its intersection
point with the horizontal axis and points towards
the previous extremum point of the negative base
shear. The same rules are valid for negative base
shear too, where the reloading from negative towards
positive shear follows a broken line characterized by
point (0;+V1) and the previous extremum point of the
positive base shear.

3. Designing optimal TMDs

Most of the proposed methods [15-18] have been devel-
oped for designing TMDs for linear structures, where
tuning the TMD parameters could be performed based
on the constant properties of the structure. However,
for structures, such as con�ned masonry walls, which
exhibit highly inelastic behavior under moderate and
severe earthquakes, the sti�ness and consequently the
frequency of the structure change during the excitation.
Hence, it causes the TMD, designed by assuming
constant frequency for the structure, to be detuned and
thus decrease in e�ciency. Therefore, in this paper,
designing optimal TMDs has not been directly based
on the frequency tuning, which is commonly used for
linear systems.

Instead, in this paper, following the method
proposed by Mohebbi and Joghataie [27] for optimal
design of TMDs on nonlinear frames, optimal values of
TMD parameters are determined based on minimizing
the maximum value of any desired objective function,
V (t), such as relative displacement (drift), root-mean-
square of response, or accumulated hysteretic energy,
which can be considered as a function of the structural
response under the design earthquake excitation.

De�ning �t = sampling time interval, the prob-
lem can be stated to �nd the constrained minimum of
the maxima as follows:

Find Q = (md; cd; kd); (10a)

Minmax V (t)k; k = 1; 2; :::; kmax; (10b)

subject to:

F =equality constraints on TMD-structure

response, (10c)

G =inequality constraints on TMD-structure

response, (10d)

where Q represents the vector of the TMD parameters
md, cd, and kd, which are the mass, damping, and
sti�ness of the TMD and kmax is the total number of
analysis time steps.

The parameters of TMD in the optimization prob-
lem de�ned in Eqs. (10a) to (10d) can be determined
in such a way that some constraints or criteria on the
response or parameters of TMD are satis�ed.

4. Genetic algorithm

Genetic algorithms, developed by Holland [28], have
proven to be successful direct searching algorithms
for solving nonlinear optimization problems, where
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the derivatives of the objective function and/or con-
straints of the problem are not available or are hard
to compute. In an optimization problem, a design
vector can be considered as a chromosome, its de-
sign components as its genes, and its corresponding
value of the objective function as a measure of the
chromosome �tness. In GAs, chromosomes evolving
under a certain environment are represented by bit
strings or real-valued coding. In the early stages of
string coding, the variables were represented in a binary
format [29,30]. Whilst binary-coded GAs appear to
be more suitable when solving complex problems, they
have some drawbacks in taking continuous problems
and it has been shown that for real-valued numerical
optimization problems, real-valued coding representa-
tions o�er certain advantages [31,32]. In this paper,
the real-valued coding has been used for presenting
the chromosomes. GA starts with a discrete set of
design vectors and changes the current set towards
generating a �tter generation of design points through
three genetic algorithm operators including selection,
crossover, and mutation. In every generation, a set
of chromosomes is selected for mating based on their
relative �tness. The �tters are given more chance of
passing their genes into the next generation. In this
paper, the stochastic universal sampling method [33]
has been used for selecting a number of chromosomes
for mating, based on their �tness values in the current
population, as:

P (xi) =
F (xi)PNind
i=1 F (xi)

; i = 1; 2; :::; Nind; (11)

where F (xi) is the �tness of chromosome, xi, and P (xi)
is the probability of selection of xi, also Nind is the
number of individuals.

Crossover produces new individuals. In this
paper, the method proposed by M�uhlenbein and
Schlierkamp-Voosen [34] has been used for crossover,
where each pair of parents can produce two newborns
and each newborn can get its genes from its parents
with equal probability as follows:

O = P1 + �(P2 � P1); (12)

where P1 and P2 are the parent chromosomes' genes,
O is the newborn gene, and � is a scaling factor
chosen randomly over [�0:25; 1:25] interval, typically.
This method uses a new � for each pair of parent
genes. Mutation, which helps the GA escape from local
minima, is performed at a speci�ed low rate in certain
chromosomes.

The elitist strategy, which allows the best chro-
mosomes of the current generation to go to the next
generation without modi�cation, has been used in
this research. Nelites of the best chromosomes are
selected as elites of the current generation to go to

the next generation without modi�cation. The rest of
the chromosomes in the population are replaced by the
inserted newborns (Nins). Hence:

Nelites = Nind �Nins: (13)

To make GA more e�ective in solving optimization
problems, improved versions of GA, such as parallel
genetic/neural network learning algorithm [35], bi-
level GA [36], and distributed GAs [37], have been
developed. Also, combination of GA with fuzzy logic
and neural network has shown better performance in
solving optimization problem [38-42].

GA has been used for solving the optimization in
di�erent �elds of civil engineering, such as structure
optimization [43-46], space frames design [47], system
identi�cation [48], and transportation [49,50]. Also in
designing structural control systems as instance, neuro-
genetic algorithm has been used for designing optimal
nonlinear active controller for high rise buildings [39],
designing optimal active controllers for nonlinear struc-
tures [51,52], multiple TMDs [12,13], and MR dampers
for structures [53], and optimization of earthquake
energy dissipation system for high rise buildings [54].
GA has been applied extensively. Results of research
have proven the e�ectiveness of GA in solving linear
and nonlinear optimization problems, even in the cases
with a large number of variables. In this research,
the optimization problem includes two variables, since
for nonlinear optimization problem, using traditional
gradient-based optimization techniques need massive
numerical analysis; hence, GA has been used for the
optimization.

5. Numerical examples

5.1. Example 1
In this paper, the main objective has been to assess
the e�ectiveness of optimal TMDs in mitigating the
response of con�ned masonry buildings subjected to
earthquakes. Since the related research is limited, and
also to focus on the main problem and avoid complexity
at this stage of research, we decided to perform the
analysis on 2D masonry walls. Since 2D masonry walls
are the main element of 3D masonry buildings, the
result and the design procedure of this paper could be
easily extended to real 3D con�ned masonry buildings
in future research. The con�ned masonry wall, shown
in Figure 2, has been modeled according to Moroni et
al. [6] and the mitigation of its vibrations by a single
TMD has been investigated. The dimensions of the
wall are 240 cm � 240 cm � 15 cm, and there is a
uniformly distributed mass of p0 = 66 N.s2/(m.cm)
on top of the wall. The initial and secondary shear
sti�ness values of the wall are 432621 N/cm and
49544 N/cm, respectively, and the elastic and plastic
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Figure 2. Masonry wall-TMD model.

shear strengths are V1 = 34415 N and V2 = 97525 N,
respectively. The damping of the wall is 826.34 N.s/cm
which corresponds to 5% damping ratio as suggested
by Moroni et al. [7]. From Eqs. (1), (4), and (5),
the nonlinear behavior begins at Xnl = 0:08 cm
and the failure occurs when the displacement exceeds
Xfailure = 4:28 cm. Also, according to Eq. (4), after the
displacement exceeds Xyielding = 1:35 cm, it increases
without signi�cant increase in the lateral load.

5.1.1. TMD design earthquake
To assess the e�ect of frequency content and the Peak
Ground Acceleration (PGA) of earthquake on e�ciency
of TMD, earthquakes of di�erent magnitudes, including
a white noise, W (t), with PGA = 100 cm/s2 (� 0.1 g)
as shown in Figure 3, the El Centro (1940, PGA = 0.34
g), and the Tabas (1978, PGA = 0.933 g) earthquakes,
have been �rst scaled and then used for designing

Figure 3. White noise ground acceleration, W (t), with
PGA = 100 cm/s2.

Table 1. Maximum response of uncontrolled wall under
di�erent scaled earthquakes.

Scaled
earthquake

Drift
(cm)

Acc.
(cm/s2)

AHE
(N.m)

Drift
RMS
(cm)

17.5 � W (t) 4.28 1713 50643 1.24
1.5 � El Centro 1.37 943 5016 0.19
2.55 � El Centro 4.28 1231 18579 0.72
2.84 � El Centro 6.4 1365 23238 0.94
1.137 � Tabas 4.28 1624 13091 0.96

TMDs. The PGA of a scaled earthquake, PGAmax,
has been de�ned as:

PGAmax = �:PGA; (14)

where � is the scale factor. For di�erent values of �, the
masonry wall has been analyzed under scaled design
earthquakes and the values of �, for which the wall
has experienced yielding and failure displacement, have
been determined. It has been found that for � � 17.5,
2.55, and 1.137, the maximum relative displacement
(drift) of the masonry wall has exceeded the failure
displacement, Xfailure = 4:28 cm, under the W (t), the
El Centro, and the Tabas earthquakes, respectively.
Also, for � � 2:84, under the El Centro excitation,
the maximum displacement has been Xmax = 6:4 cm,
which is 200% of failure displacement.

The maximum response of uncontrolled masonry
wall under the di�erent scaled design earthquakes has
been shown in Table 1, where the maximum Root-
Mean-Square (RMS) of drift as well as Accumulated
Hysteretic Energy (AHE) of an n storey wall can be
calculated according to the following equations:

RMS(y(i)) =

 Pkmax
k=1 y(i)2

k
kmax

!1=2

; i = 1; 2; :::; n;
(15)

RMSmax(y)=max jRMS(y(i))j ; i = 1; 2; :::; n; (16)

where y(i) is relative displacement (drift) of ith storey.
Also, for a nonlinear structure with hysteresis loops,
AHE of each storey is de�ned as:

AHE(i+ 1; j) =AHE(i; j) +
fs(i) + fs(i+ 1)

2

[yi+1(j)� yi(j)] ;
i = 1; 2; :::; kmax and j = 1; 2; :::; n; (17)

where AHE(i; j), fs(i), and yi(j) are accumulated hys-
teretic energy, shear force, and relative displacement
(drift) at time i�t of the storey j.
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5.1.2. E�ect of earthquake frequency content on the
performance of TMD

For assessing the e�ect of earthquake frequency content
on the performance of TMDs, the W (t), the El Centro,
and the Tabas earthquakes have been scaled with
scale factors � = 17:5, 2.55, and 1.137, respectively,
and then used to design optimal TMDs, where the
maximum displacement of uncontrolled masonry wall
under theses scaled records has been Xmax = Xfailure =
4:28 cm.

5.1.3. Finding TMD parameters based on minimizing
the maximum drift

For nonlinear structures, especially for con�ned ma-
sonry walls where the nonlinear behavior begins at
low level of displacement, the sti�ness and, as the
result, the frequency of structures varies during the
excitation. Hence, unlike designing TMDs for linear
structures where the parameters of TMD are usually
determined based on tuning TMD frequency to that
of the structure, in nonlinear structures as soon as
the structure experiences nonlinearity, detuning occurs.
For this reason, designing optimal TMDs has not been
directly according to frequency tuning in this paper.
Alternatively, as previously mentioned, optimal values
of TMD parameters are determined based on solving an
optimization problem which includes minimization of a
speci�ed objective function. The most commonly used
criterion to measure the e�ectiveness of a TMD on a
structure is the amount of reduction in the maximum
relative displacement (drift) of the structure. Hence,
in the �rst section, the optimization problem herein is
de�ned so as to minimize the maximum relative dis-
placement, Xmax, of the wall as the objective function
while being subjected to some constraints on the TMD
response and its parameters. For a speci�ed value of
TMD mass ratio, � = md=mtot, where mtot denotes the
total mass of the structure, the optimization problem
for a one-storey wall can then be de�ned as:

Find Q(cd; kd); (18a)

Minimize Xmax =max(jXkj; k=1; 2; :::; kmax) : (18b)

Subject to:

Xmax(TMD) � XL; (18c)

0 < cd < cdmax; 0 < kd < kdmax; (18d)

where XL is the maximum stroke length of TMD,
Xmax(TMD) is the maximum displacement of TMD,
and cdmax and kdmax represent the maximum possible
sti�ness and damping of TMD, which should be con-
sidered by the designer.

To solve the optimization problem de�ned in
Eqs. (18a)-(18d), Genetic Algorithm (GA) has been

used. To this end, �rst, the optimization problem has
been changed to unconstraint problem by considering
the constraints as penalty function as follows:

Find Q(cd; kd); (19a)

Minimize F (Q) = �Xmax + �maxb0; g1c; (19b)

g1 =
Xmax(TMD)

XL
� 1; (19c)

where � and � are penalty parameters which are
speci�ed through parametric study or by trial and
error [8]. These parameters have no signi�cant e�ect
on the �nal answer while a�ect the convergence speed
of the optimization problem. For this study, the values
of �, �, and XL have been selected as:

� = 100; � =
1

Xmax(uncon.)
=

1
4:28cm ; XL = 50 cm:

(20)

For di�erent values of the TMD mass ratio, the optimal
parameters of TMDs have been determined by solving
the optimization problem de�ned in Eqs. (19a)-(19c)
using GA.

The following parameters have been selected for
GA:

Number of individuals = 80;
Number of elites = 8;
Number of the newborns = 80;
Insertion rate = 0.9;
Mutation rate = 0.04.

To solve the optimization problem for a given
TMD mass ratio, an initial population consisted of 80
randomly generated vectors of TMD parameters, Q =
(cd; kd), was generated. The maximum storey drift and
the maximum TMD displacement were recorded. The
objective function F (Q) in Eq. (19b) was calculated
for each Q. Iteratively, the population was modi�ed
following GA algorithm so that new generations were
built until convergence was achieved. By monitoring
the controlled response of the masonry wall correspond-
ing to all the individual Qs in every generation, the
�ttest individual of that generation was identi�ed. To
guarantee the accuracy of the obtained optimum value
of Q = (cd; kd), di�erent runs have been done in GA
for each value of �.

For � = 5% under the scaled El Centro record,
when � = 2:55, Figure 4 shows the best �tness value
of the optimization problem through generations for
di�erent runs. Also, TMD sti�ness and damping
variations for four runs have been shown in Figure 5
where for the optimal TMD the optimum value of TMD
parameters, maximum drift of the controlled masonry
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Figure 4. Convergence behavior of GA for four di�erent
runs.

Figure 5. Variations of (a) TMD sti�ness, and (b) TMD
damping for four di�erent runs.

wall, and TMD displacement have been as:

Q = (cd; kd) = (0; 62595N/CM);

Xmax = 3:35 cm; Xmax(tmd) = 35 cm: (21)

Results show that all runs have approximately the
same optimum answer including maximum drift, TMD
sti�ness, and damping, but with di�erent convergence
speeds. Hence, it can be concluded that the proposed
method has been e�ective in designing optimal TMD
for controlling the seismic response of con�ned ma-
sonry walls regarding the simplicity and convergence
behaviour of the method.

The same procedure was followed for other values
of � and the optimal TMDs have been designed when
the masonry wall was subjected to other scaled earth-
quake records. The maximum response of the structure
obtained for di�erent TMD mass ratios (� = 1:5% to
� = 12:5%) has �rst been normalized by dividing by
the maximum uncontrolled values reported in Table 1
and then has been shown in Figure 6.

Figure 6. Normalized response of controlled wall versus
TMD mass ratio for (a) 17.5 � W (t), (b) 2.55 � El
Centro, and (c) 1.137 � Tabas.

According to results, it can be concluded that
the performance of the designed TMDs in reducing
the maximum response of the con�ned masonry wall
and keeping the wall from failure depends on the
earthquake frequency content where, for this case
study, the maximum reduction in the maximum drift
has been obtained under the scaled Tabas record. Also,
the mass ratio of the TMD a�ects the e�ciency of the
TMD in reducing the maximum response where for
most of the values of �, increasing the value of mass
ratio leads to increase in the e�ectiveness of TMD.

From the results it can be concluded that since
the earthquake frequency content a�ects the TMD
performance, to design TMD for masonry walls in a
particular area, it is needed to consider the historical
earthquake database in that area and to determine
the range of intensity of the earthquakes occurred in
the past for the purpose of tuning the passive TMD
accordingly.

5.1.4. E�ect of earthquake intensity on TMD
performance

To assess the e�ect of the intensity of an earthquake
on the TMD performance, the masonry wall has been
subjected to three di�erent magnitudes of the El Cen-
tro earthquake with scale factors of � = 1.5, 2.55, and
2.84. Referring to Table 1, for the uncontrolled wall,
the maximum drifts have been Xmax = Xyielding =
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Figure 7. Normalized drift of controlled wall versus TMD
mass ratio for di�erent magnitudes of El Centro
earthquake.

1:35 cm, Xmax = Xfailure = 4:28 cm, and Xmax =
150%Xfailure = 6:41 cm for � = 1:5, 2.55, and 2.84,
respectively. Figure 7 shows the normalized maximum
drift of the controlled wall for the considered range of
TMD mass ratios � = 1:5% to � = 12:5%.

The results show that the e�ectiveness of TMD
on masonry wall with nonlinear behavior strongly
depends on the PGA of the design earthquake while
for linear structures subjected to a speci�c excitation,
the performance and optimum parameters of TMD
are independent from excitation PGA. Therefore, it is
noteworthy that in designing TMDs for masonry walls,
in order to increase the e�ciency of TMDs, the PGA
of the design earthquake should be selected properly
based on earthquake database.

5.1.5. Designing optimal TMDs based on other
criteria

Another criterion which could be used when designing
TMDs for nonlinear structures is minimization of the
maximum root-mean-square of the relative displace-
ment (drift) of the structure. Hence, in this paper, the
optimal values of the TMD sti�ness and its damping
for a speci�ed mass ratio have also been determined by
solving the optimization problem de�ned as follows:

Find Q(cd; kd); (22a)

Minimize F (Q) = 
RMSmax(y) + �g1; (22b)

where:

g1 =
Xmax(TMD)

XL
� 1: (22c)


 and � are penalty parameters and XL has been
de�ned before.

Designing TMDs based on minimization of the
maximum relative displacement of nonlinear structures
has been the most commonly used index in the most
works of research. Since this index cannot account
for the e�ect of accumulation of damage that occurs
in nonlinear structures under earthquake excitation,
the Accumulated Hysteretic Energy (AHE), which
is related to the cumulative damage, has also been

Figure 8. Normalized response of controlled wall when
using (a) drift, (b) AHE, and (c) RMS of drift as design
criterion in TMD designing procedure.

proposed to be used in assessing the performance of
TMD on nonlinear structures [24,55].

In this paper, too, the minimization of the maxi-
mum accumulated hysteretic energy has been selected
as another criterion for determining the optimal values
of TMD parameters where the same procedure as that
for drift and RMS of drift has been followed.

Figure 8 shows the normalized maximum drift,
RMS of drift, AHE, and acceleration of the controlled
masonry wall subjected to the scaled El Centro earth-
quake by � = 1:5 for the TMD mass ratios of � = 1:5%
to � = 12:5% where TMDs have been designed based
on minimizing the maximum drift, drift RMS, and
Accumulated Hysteretic Energy (AHE). According to
the results obtained from designing optimal TMDs
based on di�erent criteria, it can be said that, as
expected, to achieve the maximum reduction in a
speci�ed response of masonry wall, it is needed to
consider minimization of that particular response as the
objective function. Also, the results show that there is
no signi�cant di�erence in the e�ectiveness of TMDs
designed according to di�erent performance indices in
minimizing the maximum drift, RMS of drift, and
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AHE, which are safety indices of masonry walls, while
for this case, the maximum reduction in the maximum
acceleration has been achieved when the minimization
of drift has been considered as the objective function.
This mitigation of the acceleration can be important
from the viewpoint of serviceability and convenience of
the residents.

In designing TMDs, an important issue, which
should be considered, is the instability of the structure
equipped with TMD. The mass ratio in designing
TMDs is usually a small value and does not generally
cause instability in the structure. For the case study
of this paper, the added mass has not caused any
instability issues to the wall in the range considered
for the mass ratio, i.e. � = 1:5% to � = 12:5%. For a
large value of mass ratio, however, it is possible to have
instability in the structure and these values should not
be used.

5.2. Example 2
As the second example to assess the e�ect of TMD in
mitigating the seismic response of multi-storey con�ned
masonry walls, a �ve-storey con�ned masonry wall
equipped with a linear TMD on its top storey has been
studied. Only as an example to illustrate the design
procedure, the same property has been assumed for all
stories of the wall, while in real masonry walls, the
characteristics of each storey will be di�erent. Since
the same wall has been used for both examples, the
failure displacement Xfailure = 4:28 has been the same
for both walls. In this paper, the scale factor of the
excitation has been selected, so that the maximum
displacement has been Xmax = Xfailure = 4:28 cm. In
Example 1, for the one-storey wall, another scale factor
has been used to obtain the maximum displacement
Xmax = Xfailure = 4:28 cm. It is worth mentioning
that only to focus on the main issue of the paper
and avoid complexity in numerical simulations, in this
step of the research, the characteristics of the wall
for each storey have been assumed to be the same
as those for the con�ned masonry wall in Example
1. It is clear that using the same properties for
all stories as those of one-storey masonry wall is
only to simplify the modeling in numerical analysis;
while, in real masonry walls, the characteristics of
each storey will be di�erent. The �ve-storey ma-
sonry wall has been modeled according to Moroni et
al. [6].

To assess e�ectiveness of the proposed method,
W (t) excitation scaled by � = 6:60 has been used,
where the maximum drift of the uncontrolled masonry
wall has been shown in Table 2. The maximum drift
of uncontrolled wall has been Xmax = Xfailure =
4:28 cm which shows the beginning of failure on
the uncontrolled wall. To assess the capabilities of
TMD in keeping the masonry wall from failure, it

Table 2. Maximum drift of uncontrolled wall under
scaled white noise excitation.

Storey Uncontrolled
wall drift (cm)

Controlled
wall drift (cm)

1 4.28 3.72
2 2.28 2.15
3 1.45 1.42
4 1 0.89
5 0.22 0.20

Figure 9. Maximum drifts of uncontrolled and controlled
walls under scaled white noise excitation.

has been decided to design optimal TMDs based on
minimization of the maximum drift.

Following the same procedure applied to Example
1 for � = 2:5% as a sample, the optimal TMD has been
designed and the maximum drift of the controlled wall
has been reported in Table 2.

Figure 9 compares the maximum drift of the
uncontrolled and controlled walls which shows about
13% reduction in the maximum drift for � = 2:5%. As
it has been concluded in Example 1, the reduction in
the maximum response of the structure depends on the
TMD mass ratio; hence, by increasing the mass ratio,
it is possible to have more reduction in the maximum
response.

According to the results, it can be said that
the proposed method can also be used for designing
optimal TMDs for multi-storey con�ned masonry walls.
In applying TMDs on multi-storey con�ned masonry
walls, the e�ect of TMD mass ratio and its location
as well as design earthquake characteristics on TMD
performance are some important issues which should
be studied in future research. Also, to make the
results applicable to real existing multi-storey con�ned
masonry walls, it is needed to consider real properties
for di�erent storeys.

6. Conclusions

In this paper, the optimal design of Tuned Mass
Dampers (TMDs) has been studied and its e�ectiveness
in reducing the seismic response of con�ned masonry
walls has been assessed. The optimal parameters of a
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TMD, including its sti�ness and damping, have been
determined by solving an optimization problem de�ned
as minimization of the maximum drift, accumulated
hysteretic energy or Root-Mean-Square (RMS) of drift
using Genetic Algorithm (GA). To assess the e�ect
of frequency content and Peak Ground Acceleration
(PGA) of earthquake on TMD performance on con�ned
masonry walls, di�erent earthquakes scaled to di�erent
PGAs have been considered for designing optimal
TMDs. To illustration, the method has been used
to design TMD on one- and �ve-storey masonry walls
which have been modeled by a tri-linear shear beam.
Results show that the method has been e�ective in
determining the optimal parameters of TMD regarding
its simplicity and convergence behavior in solving the
optimization problem using GA. It has also been found
that application of TMD on con�ned masonry wall
improves its seismic response and could prevent it
from failure. Results of the numerical simulations
have shown that Peak Ground Acceleration (PGA) and
frequency content of earthquake a�ect the e�ciency
of TMD on masonry walls; hence, to design TMD
in a particular area, the design earthquake of that
area with a proper PGA should be considered as the
external excitation. Parametric study on the e�ect
of TMD mass ratio has shown that the reduction in
maximum response of uncontrolled wall depends on
the value of mass ratio. The results have shown that
generally increasing the mass ratio leads to increasing
the reduction in maximum response. Designing TMDs
based on di�erent criteria has shown that in order to
achieve the most reduction in a speci�ed response, it is
necessary to consider minimization of that particular
response as the performance index in the optimization
problem. Preliminary study on application of TMD
on multi-storey walls shows that the method can also
be used for designing optimal TMDs on multi-storey
masonry walls, while the e�ects of TMD mass ratio and
its location as well as design earthquake characteristics
should be considered as e�ective factors.
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