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Abstract. Imputation of missing data is a critical part of accurate data analysis and
modeling. This paper presents 3D imputation as a new data-driven methodology to
estimate missing values in time series data. The method is based on the assumption that
all the observed data in a time series are related with each other and with data of the some
other series. The available data is placed in a three-dimensional space so that the increasing
or decreasing relationships between the observed data are appropriately represented. For
the estimation of each missing value, the method searches and determines the best possible
group of estimator data within the data space. Di�erent data groups are found and used
for the estimations of each individual group of missing data. The method is validated by
removing and estimating all the observed monthly 
ow data of Sarayk�oy station on B�uy�uk
Menderes River in Turkey. Data of the downstream Burhaniye station constituted the
second data layer in the model. High correlation values were obtained for all years between
observations and estimations and the missing data of Sarayk�oy station was also estimated
by using the proposed method.
© 2016 Sharif University of Technology. All rights reserved.

1. Introduction

\Everything in the environment is connected to every-
thing else" says the �rst informal law of ecology [1].
This interconnectedness and complexity causes di�-
culty in the estimation and modeling of an environmen-
tal variable. Most of the times, the researchers also ex-
perience the problem of incomplete or unobserved data
as it is impossible to completely measure and record
all variables in the environment. The requirement
of data encouraged and forced researchers to develop
numerous models for the estimation of incomplete or
unobserved data. Physically based models and data-
driven models constitute the two approaches used in
river 
ow modeling.

The physically based models require su�cient
understanding, assessment, and modeling of the prop-
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erties and processes in
uencing and generating the

ow. The accuracy of the results largely depends on the
detail level of the descriptions of the in
uential param-
eters which are highly variable within the catchment.
The requirement of increased accuracy causes increased
complexity and demands collection of huge amounts
of various concurrent data ranging in time and space.
Inaccurate and unreliable results might be obtained
from the conventional physically-based models when
these requirements are not met [2].

Data-driven approaches make use of the informa-
tion contained in the observed data mostly without
considering the physical processes. The applicability
of data-driven methods substantially increased with the
increase of available observed data and the rapid devel-
opments in computational power. Of these methods,
autoregressive integrated moving average (ARIMA)
time series model [3-6] and Arti�cial Neural Networks
(ANN) [7-13] are widely used for river 
ow estima-
tions. Support Vector Machines (SVM), proposed by
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Vapnik [14], is also successfully applied in hydrological
studies [15-18].

In most of the existing studies, river 
ows are
regarded as one-dimensional series composed of single
observations. Estimation of 
ow at one location by
using the upstream records is rare in literature [19].
To the best of the author's knowledge, there is no
study linking the observed values in a station with the
data of neighboring stations in a three dimensional data
space.

This paper describes a new data-driven approach
to estimate the missing values in time series. The
main idea behind the model is that each observa-
tion is mostly related with the nearest neighboring
observations in the same station and the neighboring
stations. To generate a three dimensional data space, a
matrix is generated for each station and the matrix of
each station covers a two-dimensional layer in the data
space.

The method tries to �nd the best possible estima-
tion for a missing value by choosing the best estimator
data group in the data space. This is accomplished
by deliberately removing and estimating the nearest
neighbors of a missing value. All rectangular data
groups in the space covering the missing node are
evaluated to �nd the best estimations. The group
giving the best results is then used for the estimation
of the missing value. The process is repeated for
estimating the remaining missing values. Apart from
the existing methods mostly using the same estimator
data group for all estimations, the method determines
di�erent estimator data groups for each missing value.
The method evaluates all existing data without any
smoothing of extreme values or ignoring any observa-
tion. In the testing phase of the method, signi�cant
correlations were obtained between the observed and
the estimated values. Then, the missing 
ow data
of Sarayk�oy station on B�uy�uk Menderes River were
estimated by incorporating the data of the downstream
Burhaniye station.

2. Methodology

2.1. 3D imputation method
It is well known that every river basin has a certain
coherence in that various portions of the basin relate
to each other in a reasonably consistent way [20]. Thus,
all observations of di�erent stations on the same river
basin are interrelated with each other up to a degree.
Based on this assumption, a new method, called 3D
imputation, is developed to estimate missing values in
a time series data. The method assumes that each
observation in a time series data is related with every
other observation in the same series and with the
observations of neighboring stations.

In this section, details of the methodology are

Figure 1. Locations of the observation stations.

presented by explaining its application on the monthly
mean 
ows of Sarayk�oy station (#07-81) on B�uy�uk
Menderes River (Figure 1). The observations cover the
years from 1981 to 2000. All the values in 1993 and
2000 are missing (24/240; 10%). The observations of
the downstream Burhaniye station (#712) have been
included in the process as the second data layer and it
has no missing values.

The 
owchart in Figure 2 shows the main steps of
the proposed method. The software code of the method
was written by making use of the interoperability
feature of Microsoft Visual Basic and Microsoft Excel.
This feature enables practical data acquisition and
analysis and allows for reading data from running Excel
spreadsheets, making computations and writing results
back. Visual Basic was preferred to VBA to have the
ability of compiling the program into an executable �le.

The term 3D represents the three-dimensional
data space generated by layers of data before the
imputation process. For monthly river 
ow data, a
layer consists of a station's observations located on
a matrix with months in columns and years in rows
(Figure 3). Each matrix is extended by locating the
values of the last �ve months of the previous water year
to the left (the blue region) and the next six months of
the following water year to the right (the brown region).
The years on the left are valid for the gray region.
This enlargement is not compulsory, but it signi�cantly
simpli�es software coding of the methodology.

2.2. The formulation
After the generation of the data space, the estimation
process starts. First, the number of observed nearest
neighbors for each cell is determined. Each cell has
up to 8 nearest neighbors. The missing node with the
highest number of nearest neighbors is estimated �rst.
For the current sample, the missing node in October
1993 has 6 nearest neighbors as shown in Figure 3.



F. Dikba�s/Scientia Iranica, Transactions A: Civil Engineering 23 (2016) 45{53 47

Figure 2. Flowchart of the 3D imputation method.

From this point, this node will be called the missing
node.

The solution range for each cell covers �ve months
before and after the cell in all years in all stations. The
fundamental idea of the method is that the data group
giving the best estimates for the nearest neighbors
of a missing node will give the best estimation for
the missing node itself. The search for the best
estimator group is done within the solution range
shown with a green frame in Figure 3. All possible
rectangular data groups covering the missing node
and its nearest neighbors are tested. The red frame
in Figure 4 is the �rst data group to be tested
for estimating the nearest neighbors of the missing
node. The process of nearest neighbor estimation
is repeated for all possible estimator groups. The
video of the selection of estimator groups and the
estimation of the �rst two missing values is provided
at: http://youtu.be/wPZhfAWUPwo. Estimation of
the �rst two missing values normally takes about 10
seconds on an average computer and the video is

slowed down for increasing the understandability of the
selection process.

Eq. (1) is used for all the estimations in the
method. The equation is inspired by the �rst law
of ecology stating that everything in the environment
is connected to everything else. Consequently, if the

ow values in a period are lower (or higher) than the
anticipated values, then the missing values in that
period will most probably be lower (or higher) than
the other periods. The nearest observations have the
highest impact on an observation and the relationship
between the observations decreases with increase in the
di�erence between observation times and locations.

Q =

Pn
i=1

Q�iwi
D2
iPn

i=1
wi
D2
i

: (1)

In this equation, Q is the value to be estimated; n is the
total number of existing observations in the assigned
estimator data group in all stations; Qi is the ith
observed value in the estimator data group; wi is the
weight of the ith data; and Di is the spatial distance of
the ith data in the data space from the missing node.

For the current sample, the n value for the
assigned estimator data group (shown with the red
frame) is 179 (86 values from the Sarayk�oy station and
93 values from the Burhaniye station).

The weight value assigned to a cell is a measure
of the contribution degree of the cell in the estimation
of the missing value. The weight value for each cell
is determined according to the neighborhood degree
of a cell and the maximum neighborhood degree in
the assigned data group. Consequently, each cell will
have di�erent weight values according to the position
of the missing data and the width (or height) of the
assigned data group. Figure 4(a) shows the neighbor-
hood degrees of each cell in the solution range of the
missing value. While the nearest neighbors are the 1st
degree neighbors, the most distant neighbors are the
12th degree neighbors. The maximum neighborhood
degree in the assigned data group is 12, which is the
neighborhood degree of October and November 1981.

Table 1 shows the weight values to be assigned
to each cell. These values are calculated according to
Eq. (2):

wi =
100

n�ddmax
: (2)

The numbers in the left column (nd) of Table 1 are the
highest possible numbers of cells that can be present
in the 1st to the 14th neighborhood degrees. (There
can be 8 1st degree neighbors and 112 14th degree
neighbors.) The number of neighborhood degrees (d)
is not limited to 14 and can increase according to the
available number of observation years. The numbers
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Figure 3. The extended data matrix; data from the Sarayk�oy station.

Figure 4. The neighborhood structure of a missing node (a) and the weights of its neighbors (b).

in the top row of Table 1 are the highest neighborhood
degree values (dmax) in the assigned data groups. (This
value is 12 for the current example as stated above.)
The total value of the weight distributed among the
cells of an assigned range can be 100 if all cells of
all neighborhood degrees are present in the assigned
group. For each column, the total value of the weights
multiplied with the number of elements in the �rst
column equals to 100. For the current sample, the

weights of the cells are taken from the 12th column
of Table 1. The weights of the 1st degree neighbors
are therefore 1.042, and 12th degree neighbors take the
weight of 0.087 (Figure 4(b)).

2.3. The estimation process
First, the nearest neighbors of the missing node are
removed from the set one by one and the data group
giving the best estimations for them is determined.
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Table 1. The weights distributed to each neighbor according to the degrees of neighborhood.

Number of maximum neighborhood degree (dmax)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u
m

b
er

of
el

em
en

ts
in

th
e

d
eg

re
e

(n
d
) 8 12.500 6.250 4.167 3.125 2.500 2.083 1.786 1.563 1.389 1.250 1.136 1.042 0.962 0.893

16 3.125 2.083 1.563 1.250 1.042 0.893 0.781 0.694 0.625 0.568 0.521 0.481 0.446
24 1.389 1.042 0.833 0.694 0.595 0.521 0.463 0.417 0.379 0.347 0.321 0.298
32 0.781 0.625 0.521 0.446 0.391 0.347 0.313 0.284 0.260 0.240 0.223
40 0.500 0.417 0.357 0.313 0.278 0.250 0.227 0.208 0.192 0.179
48 0.347 0.298 0.260 0.231 0.208 0.189 0.174 0.160 0.149
56 0.255 0.223 0.198 0.179 0.162 0.149 0.137 0.128
64 0.195 0.174 0.156 0.142 0.130 0.120 0.112
72 0.154 0.139 0.126 0.116 0.107 0.099
80 0.125 0.114 0.104 0.096 0.089
88 0.103 0.095 0.087 0.081
96 0.087 0.080 0.074
104 0.074 0.069
112 0.064

All possible rectangular data groups within the green
solution range are tested for estimating the neighbors
of the missing data. The groups which do not include
the missing node should not be included in the evalu-
ation.

The maximum horizontal range of an estimator
data group includes 5 columns before and after the
missing value and the maximum vertical range covers
all the rows of the data matrix (all the years in the set
are taken into account). The smallest estimator group
is the �rst degree neighbors of the missing node. For
the current data set, the number of possible estimator
data groups varies between 500 and 2750 according to
the location of the missing node in the data matrix.
2600 di�erent estimator data groups were evaluated for
estimation of the �rst degree neighbors of the missing
node in October 1993.

The red frame in Figure 4 shows the �rst assigned
estimator group among the tested 2600 data groups.
The neighborhood degrees and weights of each cell in
the estimator group are assigned as in Figure 4. For
each missing node, the neighborhood degrees and the
values of weights in the estimator groups vary according
to the location of the missing node and the size of the
estimator group.

Generally, a downstream increase is observed
in the river 
ow rates. To eliminate the negative
impacts of the rate di�erences between the stations,
a normalization procedure is applied. Each layer
in the estimator data group should be normalized
separately. First, the maximum value in each layer of
the selected estimator data group is determined. (The
values outside the range of the estimator group should
not be considered.) Then, each layer is separately
normalized by using Eq. (3):

Qnew =
Q

Qmax
: (3)

In the above equation, Q is the data to be normalized,
Qmax is the maximum value in the estimator group
in the current layer, and Qnew is the normalized value
between 0 and 1. After the application of Eq. (3) on all
elements of the estimator group, the maximum value
in each layer becomes 1.

Eq. (1) is used for estimating the nearest neigh-
bors of the missing node and all the observed values
of all stations within the estimator group are included
in the calculation. The estimation success of each
estimator group is assessed by determining the sum
of the absolute di�erences between the estimated and
observed values. The group giving the least total
di�erence is selected as the best estimator group.

The data group giving the best estimates for the
neighbors of October 1993 covers the range between
July 1982 and March 1994 on the extended data
matrix. This best estimator group is then used in
Eq. (1) to estimate the missing node in October 1993.

After estimation of the �rst node, the estimation
process is repeated for each group of remaining missing
data. In the current example, the solution range moves
to the right together with the missing node until all
missing data in 1993 is estimated. Then, the 
ow rates
in 2000 are estimated.

As each estimator group might have di�erent
maximum values, the normalized data should be de-
normalized before the assignment of a new estimator
group. De-normalization turns the normalized values
back to original observed values. The normalization
and de-normalization steps are not required if there is
one observation series.
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3. Results and discussion

3.1. Evaluation of the model performance
The accuracy and reliability of the proposed method
are tested by making estimations for all of the observed

ow rates in Sarayk�oy station. The observed data
for each year is deliberately removed and estimated
separately. The estimated values are compared with
the observed data. This yearly comparison enables
the assessment of estimation success of the model
throughout the series instead of evaluating the series
with a single statistic for the whole series.

The 3D imputation method was successful in
estimating the observed values throughout the whole
period, though the 
ow rates of the river show a down-
ward trend (Figure 5). The statistical evaluation of the
obtained results is made by calculating the coe�cient
of correlation (R), Nash-Sutcli�e e�ciency coe�cient
(E), normalized root mean square error (NMRSE),
and Mean Absolute Percentage Error (MAPE) for each
modeled year and for the whole series (Table 2). The
estimations of the missing values in 1993 and 2000
are not included in the statistical evaluation of the
estimation performance.

The obtained correlation coe�cient for the whole
series is 0.973, while the maximum annual correlation
is 0.998 in 1991 and 1995, and the minimum is 0.846 in
1998. Of all the 18 annual correlations, 6 (33%) were
over 0.99, 12 (67%) were over 0.95, and 16 (89%) were
over 0.91.

The Nash-Sutcli�e e�ciency coe�cient (E) is a
normalized statistic that shows how well the plot of
observed versus estimated data �ts the y = x line. E =
0 indicates that the estimations are as accurate as the
mean of the observed data and if E < 0, then the
observed mean is a better predictor than the model. If
E = 1, then the estimated data perfectly matches the
observed data. The Nash-Sutcli�e e�ciency coe�cient
obtained for the estimations of the developed model in
this study was 0.938. In the yearly evaluations, the
maximum E value was obtained for 1991 (0.979) and
the minimum was for 1998 (0.135). All E values were
over 0 and 6 (33%) out of the 18 annual E values were
over 0.9, while 13 (72%) of them were over 0.8.

Normalized Root Mean Square Error (NRMSE)
is a normalized measure of the average magnitude of
the estimation errors. It ranges from 0 to in�nity,
with 0 being a perfect score. The data in this study
has higher 
ow values in the earlier years and the
decreasing trend causes scale di�erences between years.
Thus, NRMSE is preferred to RMSE which would give
deceptive values for the data set in this study. The
minimum (0.035) and the maximum (0.155) NRMSE
values were obtained for the data of 1981 and 1998,
respectively. NRMSE for the whole series was 0.042.
Of the annual NRMSE values, 15 (83%) were under
0.1.

The Mean Absolute Percentage Error (MAPE) is
an unbiased measure of the accuracy of a method for
estimating �tted time series data. The lowest possible

Figure 5. The observed and estimated 
ow rates of Sarayk�oy station (07-81).

Table 2. Annual and whole estimation performance metrics for the 3D imputation method.

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

R 0.993 0.926 0.949 0.977 0.941 0.981 0.916 0.977 0.995 0.994
E 0.977 0.858 0.747 0.853 0.705 0.858 0.547 0.915 0.949 0.882

NRMSE 0.035 0.072 0.079 0.097 0.114 0.078 0.127 0.058 0.055 0.081
MAPE 5.8 7.7 10.0 15.0 13.7 9.7 14.1 6.6 11.0 10.3

1991 1992 1994 1995 1996 1997 1998 1999 Whole

R 0.998 0.995 0.983 0.998 0.957 0.986 0.846 0.867 0.973
E 0.979 0.847 0.826 0.933 0.891 0.951 0.135 0.658 0.938

NRMSE 0.036 0.099 0.090 0.057 0.063 0.042 0.155 0.133 0.042
MAPE 7.9 13.0 27.8 16.4 11.3 6.6 21.2 13.3 12.3
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Figure 6. The scatter graphs of observed (horizontal axis) versus estimated (vertical axis) 
ow rates of Sarayk�oy station.

value of MAPE is 0, indicating a perfect �t, and it
has no upper limit. The lowest annual MAPE value
was in 1981 (5.8%), while the highest was in 1994
(27.8%). Throughout the whole series, the lowest 17
(7.9%) monthly MAPEs were below 1% and the lowest
57 (26.4%) were below 5%. The calculated MAPE
values for the 133 months (62%) out of the existing 216

months were below the MAPE value (12.3%) calculated
for the whole series.

It appears that the method can produce reliable
results, but it is noticed that though satisfactory, three
of the four measures have their worst values for the
estimations of observed values in 1998 (Figure 6).
Investigation of the data reveals that the cause for this
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Figure 7. Observed and estimated values for stations 712 and 07-81.

situation might be that the lowest observed 
ow values
are in 1998.

It is believed that the estimation power of the
method might be increased by making developments
on the following subjects:

� Non-rectangular estimator data group shapes might
be used to increase the number of tested estimator
data groups;

� The criteria for the selection of the best estimator
group might be modi�ed to decrease the di�erence
between the observed and estimated values;

� The logic for distribution of weights to the neigh-
boring data might be improved;

� This paper only makes use of the data of two
stations, but in further studies, a higher number
of stations and other related variables might be
included in the research.

3.2. Estimation of missing data
The 24 missing values of the years 1993 and 2000
were estimated by using the 3D Imputation method.
Figure 7 shows the observed data of both stations
between 1992 and 2000 together with the estimated
data. Naturally, the 
ow rates of the downstream
Burhaniye station (712) are higher than the 
ows of
Sarayk�oy station (07-81). The imputed values are
shown with circles and have a good �t to the general

ow pattern.

The obtained results show that the proposed
3D imputation model accurately estimates both the
observed and the missing river 
ow records. As
mentioned in the Introduction, so far no one appears
to have applied the approach of 3D imputation method
to the �eld of missing value analysis. It is believed that
the method might also be applied in a wide range of
disciplines other than hydrology.

4. Conclusions

This study provides the framework of 3D imputation
method, proposing it as a new way to estimate missing
values in time series data. The essential advantages of
the method are:

� It has the ability to select the best estimator group

among all existing data without ignoring any values,
including the extremes;

� A simple formulation is used for both the selection
of the best estimator group and the estimation of
missing data;

� No personal intervention or decision making is re-
quired during the whole process;

� A short computation time is required;
� The method is successful in estimating the observed

river 
ow data of Sarayk�oy station.

The high correlations obtained between the ob-
served and estimated river 
ow data are very promising
and future work will concentrate on the development of
additional features for the software, such as inclusion
of a higher number of estimator groups, assigning vari-
able weights to the neighbors, and other possibilities
for improving the performance of the model. Some
areas of future work will be to apply the model on
hydrologic variables like precipitation, temperature,
sediment transport, etc. and on other disciplines like
economy and medicine (especially public health and
biostatistics). We believe that the proposed 3D impu-
tation method may improve knowledge about missing
data analysis.
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