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Abstract. In the present article, lattice Boltzmann method is utilized to simulate two-
dimensional incompressible viscous 
ow in open and closed microchannels (vessels). The
main focus of the present research is to study the physical parameters of blood 
ow in
vessels. The presented computational results are reasonably in agreement with the available
data in the literature. In addition, the accuracy of Poiseuille law is investigated for blood

ow in the open vessel, too. For this purpose, the e�ect of the vessel diameter and blood
viscosity on blood 
ow is studied numerically. The obtained results showed that pressure
tended to increase the 
ow, while resistance tends to decrease it. Based on additional
results, the e�ect of blood injection into coronary bifurcation with two closed ends is
studied. The blood pressure drop is high at the beginning of the vessel (pressure variation
is high between the adjacent points along the vessel); however, after the path along the
vessel, the speed of dropping pressure decreases and the pressure di�erence between the
adjoining points decreases along the vessel. Finally, the present results have been compared
with the available numerical results that show good agreement.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

In this article, a mesoscopic method under the title
of lattice Boltzmann is used. In Lattice Boltzmann
Method (LBM), 
uid is considered as a cluster of
particles, which can collide with each other. This
cluster is described in terms of distribution function
that can be determined by considering the local av-
erage of the microscopic velocities of 
ow, the local
position, and local macroscopic velocity. One of the
advantages of this method is its relative simplicity

*. Corresponding author.
E-mail addresses: aktari1362hamed@gmail.com (H. Akhtari
Shishavan); i.mirzaee@urmia.ac.ir (I. Mirzaee);
n.pormahmod@urmia.ac.ir (N. Pourmahmoud)

doi: 10.24200/sci.2018.50751.1851

in implementation and compatibility with the desired
geometries.

The study of the issues concerning blood 
ow is
one of the most attractive phenomena of physiology.
Since blood is considered a non-Newtonian 
uid, most
of these problems do not have an analytical solution.
As a result, numerical simulation can be considered
as a useful tool for obtaining a deep and thorough
understanding of such phenomena [1]. Blood is a
complex 
uid made up of di�erent living cells and
immersed proteins in plasma 
uid. The informa-
tion related to the velocity pro�le of blood 
ow and
distribution of shearing stress on small walls of the
vessels is quite important for preventing cardiovascular
diseases such as atherogenesis and thrombosis [2].
Since red blood cells are small semi-solid particles, they
increase blood viscosity and a�ect the behavior of the

uid. The viscosity of blood is about three times the
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viscosity of water. Besides, blood does not present
a constant viscosity at all shearing rates. Blood is
usually considered as a Newtonian and homogeneous

uid; however, when red blood cells accumulate and
make up larger particles, blood exhibits completely
non-Newtonian behavior. In addition, the wall pressure
and the shear stress of the wall have signi�cant e�ects
on hemodynamics. High levels of shear stress may lead
to vascular obstruction and damaging the inner parts of
the arteries. Therefore, to understand the physiology of
arterial diseases, the study of the hemodynamic factors
is important. The most important rheological feature
of blood, which has a direct e�ect on blood movement,
is its local viscosity. If the shearing rate is small (lower
than 100 s�1), the red cells accumulate and lead to
rouleaux. The accumulation of the rouleaux in blood
plasma leads to shear-thinning behavior of the blood,
which is one of the main reasons for the non-Newtonian
behavior of blood 
ow [3].

Vessel visualization demands a global smooth
surface model, which is accurate enough to visually
preserve structures of interest [4]. Blood vessel analysis
plays a fundamental role in di�erent clinical �elds, such
as laryngology, oncology, ophthalmology, and neuro-
surgery [5-9], both for diagnosis, treatment planning,
and execution and for treatment outcome evaluation.
The importance of vessel analysis is supported by the
constant introduction in clinical practice of new medi-
cal technologies aimed at enhancing the visualization of
vessels, as endoscopy in Narrow Band Imaging (NBI)
and cone-beam Computed Tomography (CT) 3D Digi-
tal Subtraction Angiography (DSA) [10]. At the same
time, standard techniques such as Magnetic Resonance
Angiography (MRA) and Computed Tomography An-
giography (CTA) are constantly improved to enhance
vascular tree visualization [11-13].

Recently, the application of LBM in blood 
ow
has received great attention. The rheology of the red
blood cells in micro-canals and their interactive e�ects
on 
ow have been studied, and the formation of blood
clot has been predicted. Besides, blood 
ow in an arti�-
cial heart valve and inside the arteries has been consid-
ered. The 
ow of blood has been simulated in small ves-
sels, too [14]. Of other works in this regard, the study of
lattice Boltzmann of the blood 
ow in a vessel su�ering
aneurysm using a porous stent can be mentioned, which
considers the e�ect of the stent on the hemodynamic
conditions of the 
ow using the numerical simulation.

The LBM is a useful simulation technique for
numerically solving 
ow problems. This method is
also feasible as a simulation technique for systems such
as the suspension of solid particles or a polymeric
liquid. LBM was �rst developed by McNamara and
Zanetti [15] in 1998 to solve the problems with the lat-
tice gas automata method. Unlike conventional numer-
ical schemes based on the discretization of macroscopic

continuum equations, the LBM is based on microscopic
models and mesoscopic kinetic equations. LBM recov-
ers the N-S using Chapman-Enskog expansion. One of
the most important bene�ts of lattice Boltzmann is the
explicit form of governing equation and an easy solution
to parallel equations and boundary conditions employ-
ment on the curved boundaries. The lattice Boltzmann
is usually applicable to the �elds of incompressible 
ow
simulation in complex geometries like blood 
ow in ves-
sels, multiphase 
ows, free convection problems, mov-
ing boundaries, chemical reactions, porous media 
ows,
suspended particles, MHD 
ows, non-Newtonian 
uid

ows, large eddy simulations, turbulence 
ows in aero-
dynamics, and other applications [16,17]. It was also
developed into an e�cient method for solving the prob-
lems including the interaction of 
ow and solid [18,19].
Cheng and Zhang [19] proposed a proper model to sim-
ulate the fast boundary movements and a high-pressure
gradient occurring in the 
uid-solid interaction. In
their research, mitral valve jet 
ow considering the
interaction of lea
ets and 
uid has been simulated.

Applications in a multitude of �elds such as drug
delivery in medicine or solid-liquid separation in pro-
cess engineering rely on the physical laws of particulate

ows. Often, a raw approximation su�ces to design
facilities; however, a more in-depth understanding of
the dynamics and impact of the acting forces is crucial
in the process of improvement [20].

Therefore, they have provided a reasonable basis
for simulating a large number of particles, which is
computationally expensive. Due to the advances in
computing architecture and algorithms in recent years,
it is possible to simulate a large number of single
particles [21]. Such Euler-Lagrange approaches have
become a feasible approach since they are based on
simple di�erential equations; therefore, fast compu-
tations can be achieved for the purpose of reduced
complexity. In such Discrete Element Methods (DEM),
the particles can be approximated as spheres in the �rst
step, yielding good accuracy for many applications [22].

Cardiovascular diseases, including stroke, are one
of the most common and prevalent causes of human
death on the planet. So far, these problems have been
experimentally and theoretically studied. In the �eld of
numerical analysis, further research has been directed
at the recognition of blood properties, and the main
vessel geometry has not been comprehensively analyzed
so far. Therefore, in this article, the 
ow of blood 
uid
in a vessel has been studied. Blood has been considered
as a non-Newtonian 
uid and simulated using Carreau-
Yasuda model. The LBM has been used for obtaining
the numerical solution of the 
ow.

2. Governing equations

LBM has received great attention in recent decades.
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This is a reliable and alternative method to CFD
and has been successfully used so far in most of the
engineering applications such as solving incompressible

ows, the 
ow inside the porous surfaces, multi-phase

ows, and the simulation of blood 
ow [23]. Unlike
other methods that consider 
uid as continuous, it is
considered here as composed of particles. Therefore,
LBM is able to model the relationship between the
particles, which is the basis of the multi-phase 
ows.
When the Mach number (the ratio of the average
velocity of the 
uid to the velocity of sound) and
Knudsen number (the ratio of the mean free path to the
characteristic length of the 
ow) are small enough, the
Boltzmann equations will provide a suitable approxi-
mation of Navier-Stokes equations. The �nal form of
Navier-Stokes equations will be Eqs. (1) and (2):

r � ~u = 0; (1)

�
�
@~u
@t

+ ~u � r~u
�

= �rp+ �r2~u; (2)

where � and � are the mass density and dynamic viscos-
ity of the 
uid, respectively. In addition, ~u = (u; v) and
p are the velocity �eld and pressure, respectively, and t
indicates the time. As mentioned before, in LBM, the

uid is composed of given particles, which can collide
with each other. In the above method, in addition to
the spatial position, velocity is discretized, too. It is
shown that the particles move only in the directions
that are identi�ed with discrete velocities. The form of
the discrete equations of lattice Boltzmann, resulting in
the same Navier-Stokes equations (1) and (2) by using
the expansion of Chapman-Enskog, is given as follows:

fi(~x+êi�t; t+�t)�fi(~x; t) =�fi(~x; t)�f
eq
i (~x; t)

�
; (3)

where fi(~x; t) is the distribution function of the parti-
cles with velocity êi, which is at position ~x at time
t. �t is the time step, feqi (~x; t) is the equilibrium
distribution function, and � indicates the dimensionless
relaxation time in the Boltzmann equation. In this
work, the LBM with a two-dimensional model of D2Q9
has been used; in addition, as evident in Figure 1, eight
moving particles with one �xed particle are used in this
model. The velocities of these particles can be written
as follows:

êi=

8>>>><>>>>:
(i; i); i = 0�

cos �(i�1)
2 ; sin �(i�1)

2

�
c; i = 1� 4

p
2
�

cos �(i�9=2)
2 ; sin �(i�9=2)

2 )c; i = 5� 8
(4)

where c = �x=�t, and �x is the distance between two
adjacent nodes in the Eulerian grid. The equilibrium

Figure 1. Velocities in the model of D2Q9.

distribution function is written as follows:

feqi = wi�
�
1 + 3

(êi � ~u)
c2

+
9
2

(êi � ~u)2

c4
� 3

2
j~uj2
c2

�
; (5)

where wi represents the weight coe�cients given below:8><>:w0 = 4=9
wi = 1=9 if i = 1� 4
wi = 1=36 if i = 5� 8

(6)

On the other hand, the elastic force in the lattice
Boltzmann equation is de�ned as in Eq. (7):

Fi =
�

1� 1
2�

�
wi
�

3(êi � ~u)
c2

+
9(êi � ~u)
c4

êi
�
: (7)

The kinematics viscosity of the lattice, �, in the model
of D2Q9 is related to the dimensionless relaxation time
as follows:

� = c2s

�
� � 1

2

�
: (8)

The macroscopic 
uid density is obtained through
Eq. (9):

� =
8X
i=0

fi: (9)

Moreover, the macroscopic velocity will be:

~u =
1
�

� 8X
i=0

fiêi
�
: (10)

It is worth mentioning that although the incompress-
ible isotherm 
ows are simulated in LBM, density is
not constant. In addition, pressure does not appear
clearly in any of the above equation. In this method,
the following equation is used to calculate pressure:

p = �c2s; (11)
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where p is the unit pressure in the lattice, cs = c=
p

3 is
the sound velocity in lattice, and � is the lattice density.
In LBM, �x = �t = 1 and, therefore, cs = 1=

p
3.

Moreover, the relation between the physical pressure,
pp, and the network pressure, p, is given as in Eq. (12):

pp = �pc2s;p = �p
�
c2s

�
�xp
�tp

��2

= �p
�

�xp
�tp

�2 p
�
; (12)

where the index p represents the physical quality.
The relationship between tension and the shear

rate in Newtonian 
uids is linear in form, while, for
non-Newtonian 
uids, this relationship is non-linear.
For non-Newtonian 
uids, viscosity depends on shear
rate, which is mentioned by di�erent models known
as non-Newtonian models. One of the non-Newtonian
models used for modeling viscosity is the Carreau-
Yasuda model, which is given in Eq. (13) and is usually
used to show the exact shear behavior of blood:

� � �1
�0 � �1 = [1 + (� _
)a](n�1)=a; (13)

where �0 is the viscosity in the zero-shear rate, and
�1 is viscosity in in�nite shear rate. Moreover, �,
n, and a are the time constant, power-law power,
and dimensionless parameter, respectively. Herein, a
describes the width of the transition area between the
zero-shear rate and the power-law areas. The inverse
of � represents the critical shear rate in which viscosity
starts to decrease with an increase in shear rate. In
Carreau-Yasuda model for shear rates larger than 104,
viscosity, �1, is constant [20]. The shear rate for non-
Newtonian models is obtained as follows:

S�� =
1
2

�
@u�
@x�

+
@u�
@x�

�
; (14)

DII =
lX

�;�=1

S��S�� ; (15)

_
 =
p

2DII ; (16)

where S is the strain rate tensor, u is the local velocity
component of the 
uid, DII is the second invariant of
the strain rate tensor, and _
 is the shear rate. When
the super�cial viscosity is known, the instantaneous
and local relaxation times for all the walls can be
determined, and the changes in distribution functions
can be obtained according to Eq. (3).

The non-Newtonian blood 
ow in the present
manuscript has been considered as a laminar, incom-
pressible and steady 
ow with an approximate Mach
number less than one. The solution is obtained using
the LBM. The lattice Reynolds number is de�ned as
Relbm = ulbmD

�lbm . Table 1 summarizes the coe�cients of
the Carreau-Yasuda model.

Table 1. Coe�cients of Carreau-Yasuda model [24].

�0 �1 � a n

0.056 0.005 3.131 2 0.4

Figure 2. Comparison of outlet velocity between the
present results and Wang and Ho [25] results.

3. Veri�cation

To verify the present results based on those related to
non-Newtonian Carreau-Yasuda 
uid 
ow, the velocity
pro�le at the channel outlet has been compared with
the results of Wang and Ho [25] with a 30 � 100
grid. The parameters of the Carreau-Yasuda model
are chosen as those used in [25], presented in Table 1.
Knowing � , we can obtain viscosity in the zero shear
rate �0 and with the Reynolds number 1.1 for the
grid; the numerical value of inlet velocity can be
calculated. By calculating the numerical value of u

umax
,

the horizontal velocity pro�le at the outlet of the canal
is depicted in Figure 2. It is observed that there is very
good agreement between the present results and those
obtained in [25]. According to Figure 2, the maximum
velocity at the center of both diagrams tends to be of
the same value; therefore, the veracity of the obtained
results for the two-dimensional channel of the present
problem can be understood for other simulations in this
research.

4. Investigation of blood 
ow in an open
straight vessel

4.1. E�ect of Reynolds number
Reynolds number is used to determine the velocity of

ow. This study takes into account the Reynolds num-
ber from 0.05 to 1.5 to carry out numerical computation
in order to �nd the e�ect of oscillatory 
ow inside the
vessel. Figure 3 shows that an increase in Re from 0.05
to 1.5 increases the axial velocity of blood with time.
Large Re (= 1:5) results in the thinner concentrated
boundary layer on the surface, while low Re (= 0:05)
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Figure 3. Variation of critical pressure gradient versus
Reynolds numbers for di�erent power-law indexes.

causes high concentration on surface and velocity of
blood tends to zero. By increasing power-law index, the

ow shows higher Reynolds number; hence, the value
of local shear rate will increase, which causes a decrease
in viscosity and an increase in Reynolds number as a
result.

4.2. The e�ect of the vessel diameter and
blood viscosity on the blood 
ow

Clearly, the application of the Computational Fluid
Dynamics (CFD) technique reduces the complexity and
cost of empirical works [26]. Resistance is basically in
the form of friction. Since, in fact, the friction between
blood and the walls of vessels develops resistance
against blood 
ow. Such resistance depends upon
the length of the vessel, vessel diameter, and blood
viscosity. In this study, the e�ects of vessel diameter
and blood viscosity on the resistance against blood 
ow
are studied.

By inserting factors in
uential in resistance into
the previous formula, another formula titled \the
Poiseuille law" can be obtained as follows:

Q = P �D4=(�� L); (17)

whereQ, P , D, and L are blood 
ow rate, pressure, ves-
sel diameter, viscosity, and vessel length, respectively.

This formula indicates the ability of blood to 
ow
in any assumed vessel. According to the formula, the
amount of blood 
ow has a direct relationship with the
pressure di�erence between the two ends of the vessel.
In addition, it has a direct relationship with the fourth
power of vessel diameter and an inverse relationship
with the length of vessel and blood viscosity.

Figure 4 displays the variation of the dimen-
sionless 
ow rate for di�erent vessel diameters. As
is known, the blood present in a vessel is almost
motionless near the walls of the vessel. For this reason,
the velocity of blood 
ow at the center of vessels would
be very high, while it would have very low velocity
near the walls. In addition, according to the obtained
results shown in Figure 4, an increase in the diameter

Figure 4. The e�ect of vessel diameter on blood 
ow.

Figure 5. The e�ect of viscosity on the blood 
ow rate.

of the vessels leads to an increase in the velocity of
blood 
ow in the center. For that reason, the amount
of blood transmitted through a vessel would increase as
a result of an increase in the diameter of the vessel. In
fact, if all other factors are kept constant, the amount
of blood transmitted through a vessel would correlate
with the fourth power of the vessel diameter. Thus,
in Figure 4, three vessels are investigated that are of
a similar length, but di�ering diameters (1, 2, and
4 mm). It should be pointed out that even such small
di�erences in the diameter of vessels can result in a
256-time increase in the amount of blood transmitted
through a vessel.

Figure 5 displays the variation of the dimension-
less 
ow rate for di�erent viscosities. In this �gure,
the variation of three values of viscosities is illustrated
while being transmitted in a vessel with a constant
diameter. Because the blood velocity in the small
vessels is extremely low and often less than 1 mm/s, the
blood viscosity can be as high as ten times. Increasing
the viscosity of blood is a sign of a disease called sickle
cell anemia, in which red blood cells become sickle cell
and rigid. Thus, blood 
ow in the cells of people
su�ering from anemia is very fast, while the speed
of blood 
ow in patients having polycythemia is very
slow. In patients having anemia, the concentration of
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red blood cells is very low, while it is very high in
those having polycythemia. Therefore, because of their
malformation, they lose the ability to carry oxygen [27].

As is known, greater friction would occur near the
vessel walls because of the high viscosity of the liquid

owing within a vessel, leading to greater resistance.
Such an e�ect is illustrated in Figure 5. In all of the
cases, the amount of pressure required to drive the
liquids forward in the vessel is equal together. However,
since the three liquids have di�ering viscosities, the
blood 
ow is di�erent from each other. The major
factor contributing to the creation of blood viscosity
is the concentration of red blood cells.

The previous pieces of research illustrate that
viscosity in blood is three times that of water [28].
Nevertheless, if the concentration of red blood cells is
reduced to half of its natural amount, viscosity in blood
is twice that of water. In addition, if the concentration
of red blood cells doubles in amount, the viscosity of
blood is 15 times that of water.

From the discussion above, it could be concluded
that pressure and resistance have two opposing e�ects
on blood 
ow. In other words, pressure tends to
increase the 
ow, while resistance tends to decrease it.
This phenomenon is shown with the following formula:

Blood 
ow = pressure=resistance:

The above formulas have played a key role in almost
all of the studies on the hemodynamics of systemic
circulation and, consequently, they have to be un-
derstood thoroughly before any attempt to be made
at interpretations regarding blood 
ow. Resistance
is equal to the di�erence in pressure divided by the
blood 
ow. Thus, for constant blood 
ow, an increase
in pressure will increase the resistance. Nevertheless,
since the viscosity of blood is directly proportional to
resistance, it is inversely proportional to the blood 
ow.
Thus, if viscosity increases, it will increase resistance
and decrease blood 
ow.

5. Results of closed ends coronary bifurcation

5.1. Problem modeling
The geometry of coronary bifurcation is shown in
Figure 6. Considering the grid independence, the
number of elements is considered as 11000 to simulate
the blood 
ow in the present study.

5.2. Assumptions and boundary conditions of
the present problem

Simulation and problem solving have been done with
the following assumptions:

I. The walls of the vessel are assumed to be rigid;
II. The problem is solved in the unsteady state;

III. The blood 
ow is considered incompressible;

Figure 6. Display of the coronary bifurcation geometry
modeled in this study.

The boundary conditions are also considered as follows:

I. The end of the vessel is closed (no-slip boundary
condition is used);

II. The motion of all wall grids is bounded in all
directions, or the no-slip condition is used (speed
in the walls is assumed zero).

5.3. Pressure distribution of blood in di�erent
points of the coronary bifurcation

The total amount of time to carry out the analysis is 2
seconds. However, the results of analysis indicate that
the blood 
ow hits the end of the blocked vessel and
is re
ected by no more than 2 seconds. The histories
of pressure changes in di�erent parts of the vessel are
shown in Figure 7 with regard to the points indicated
in Figure 6. Due to the passage of blood from one
point, a peak appears in the pressure diagrams. The
peaks at points A and B are related to the passage
of high-pressure blood 
ow. The values of pressures
are 0.0664 and 0.0279 for points A and B, respectively.
This indicates that blood pressure is damping in the
intravascular motion. Two peaks are observed in the
pressure history of point C, which is near the junction
of the vessel. The �rst peak is associated with the
initial 
ow of blood, and the second peak represents
the secondary and re
ected 
ow from the end wall

Figure 7. History of pressure at points A, B, C, D, E,
and F.
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of branches. At point C, the main and return 
ows
of blood make the maximum pressure of 0.0191 and
0.00834, respectively. The graph of point D, which
is located in the subbranch, is also the same, and
the mainstream makes a pressure rate of 0.00748. At
point F, which is located along the main branch, the
maximum pressure due to the main blood 
ow and the
re
ection of blood 
ow through that peak point will be
0.0011 and 0.00162, respectively. The most important
point in the present analysis is to estimate the pressure
caused by blockage of the vessel in the desired location
of point E, which, according to the pressure history of
that point, the maximum pressure due to the passage
of blood at the end of the branch is 0.00851.

Of note, blood 
ows through the vessel and is
re
ected when it reaches the closed E point. The
amount of re
ection pressure based on the type and
angle of the collision is several times greater than the
blood pressure before the collision. For this reason, the
amount of pressure on point E is far greater than the
pressure before it hits point E. The simulation results
include time pressure contours and pressure diagrams.
It should be noted that, in all diagrams and contours,
the pressure is in terms of time and time in seconds.

5.4. Analysis of the blood 
ow inside the
coronary bifurcation according to the
behavior of pressure contours

As can be seen below, pressure contours are formed
from the entrance and expand at approximately the
same point with the release of blood in the vessel,
which can be concluded from changes in blood pressure
throughout the coronary and blood 
ow patterns at
di�erent times shown in the diagrams and �gures
below.

Figure 8 shows that the blood 
ow throughout
the coronary bifurcation is as expected. Nevertheless,
while moving along the way, the pressure decreases and
the blood moves to the two ways.

According to the pressure contours in Figure 9,
that part of blood 
ow that passes through the straight
line is subject to higher pressure compared to the 
ow
that enters the subbranch. It can be analyzed in such a
way that the motion of blood in the previous direction
is more signi�cant, and the blood 
ow tends to move
at the highest levels of irregularities and the lowest
levels of energy [29]. Therefore, a large part of the
blood enters into a direct and high-pressure branch. In
addition, according to the pressure contours created in
the main and secondary branches of Figure 10, it can be
seen that the blood 
ow in the branch is accompanied
by lower pressure changes and is less turbulent than the
main branch 
ow due to the high speed and pressure
in this branch.

In Figure 11, both blood 
ows start with almost
identical pressure pro�les from the end of the path.

Figure 8. Motion of blood 
ow in two ways.

Figure 9. The blood 
ow and its collision into two ways.

However, in the return path, the blood 
ow pressure
in the main branch is higher than the subbranch. The
blood 
ow of the main branch reaches the intersection
of the vessel �rstly. Moreover, because of the low pres-
sure of the subbranch, it enters this branch and does
not enter the main path at all. Then, by moving the
blood 
ow of the subbranch and colliding it with the
main branch of the pressure contour, they are combined
and move towards the low-pressure intersection of the
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Figure 10. Crossing the blood 
ow in two ways and its
re
ection through the walls.

Figure 11. Bringing the re
ected blood 
ow together in
a two-way and forming a single 
ow.

coronary bifurcation. As can be seen, the pressure at
this point will be at the highest level. Then, after
moving the blood from the intersection of the branches,
with the pro�le of the pressure, it almost uniformly
moves to the beginning of the path.

6. Conclusion

This study modeled the blood 
ow in a straight vessel
and coronary bifurcation with a constant velocity 
ow
input and showed computational results together with

uid 
ow inside the human vessel using by LBM. Then,
this paper investigated the e�ect of Reynolds number
and the e�ect of the vessel diameter and blood viscosity

on the blood 
ow. Now, the concluding remarks are
presented in the following:

� The results were compared with the available nu-
merical outputs, and this comparison showed con-
siderable agreement between them;

� Non-Newtonian LBM showed its high ability in the
modeling of rheological problems;

� Large Reynolds number resulted in thinner con-
centration boundary layer on the surface, while
low Reynolds number caused high concentration on
surface and the velocity of blood tended to zero;

� An increase in the diameter of the vessels would
increase the velocity of blood 
ow in the center;

� Increasing the viscosity of the blood 
owing within
a vessel increased the friction at the vessel walls and,
as a result, the higher resistance was observed;

� Pressure and resistance had two opposing e�ects
on blood 
ow. In other words, pressure tended to
increase the 
ow, while resistance tended to decrease
it;

� The amount of blood 
ow had a direct relationship
with the pressure di�erence between the two ends of
the vessel. In addition, it had a direct relationship
with the fourth power of vessel diameter and an
inverse relationship with the length of vessel and
blood viscosity;

� As the blood released in the coronary bifurcation,
pressure contours formed from the entrance and
expanded at approximately the same point;

� The obtained results showed that part of the blood

ow passing through the straight line had higher
pressure than the 
ow that entered the subbranch;

� The blood 
ow in the subbranch was accompanied
by lower pressure changes and was less turbulent
than the main branch 
ow;

� In the return path, the blood 
ow pressure in the
main branch was higher than that in the subbranch.
The blood 
ow of the main branch reached the
intersection of the vessel �rst.

One of the applications of this research can help recog-
nize and treat vascular diseases including obstruction.
As is known, a progressive decrease in the diameter of
the vessels can lower the blood 
ow to the heart and
may cause blockage of one or more vessels. In all old
people, the disease develops with varying degrees of
intensity and gradually reduces the progression of the
coronary reserve.
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