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Abstract. Train formation planning faces two types of challenges, namely the determi-
nation of the number of cargo trains run known as the frequency of cargo trains and the
formation of desired allocations of demands to a freight train. To investigate the issues of
train makeup and train routing simultaneously, this multi-objective model optimizes the
total pro�t, satisfaction level of customers, yard activities in terms of the total size of a
shunting operation, and underutilized train capacity. In addition, this model considers
guarantee for the yard-demand balance of 
ow, maximum and minimum limitations for the
length of trains, maximum yard limitation for train formation, maximum yard limitation for
operations related to shunting, maximum limitation for the train capacity, and upper limit
of the capacity of each arc in passing trains. In this paper, a goal programming approach
and an Lp norm method are applied to the problem. Furthermore, a Simulated Annealing
(SA) algorithm is designed. Some test problems are also carried out via simulation and
solved using the SA algorithm. Furthermore, a sample investigation is carried out in a
railway company in Iran. The �ndings show the capability and performance of the proposed
approach to solve the problems associated with a real rail network.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Dependent on policy, sustainability, and environment,
transportation is believed to have a signi�cant role in
improving economic conditions of a country leading to
enhanced economic indices, such as Gross Domestic
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Product (GDP) [1,2]. Recently, new development
opportunities for various industries and service sectors
have been made possible by railway transportation.

Railway enjoys signi�cant advantages over other
methods of transportation because it is able to respond
to freight demand at larger distances in terms of length
as demanded with a higher safety degree [3]. Em-
pirical �ndings based on indicators and performances
show the concern for the operational optimization
of a railway network based on important objectives
such as economy, e�ciency, and customer satisfac-
tion. Consequently, among the various studies on
railway transportation, a growing body of evidence
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from the transportation literature shows that a Train
Makeup Problem (TMP) is of remarkable importance
to academia and practitioners. Hence, the TMP has
gained signi�cance in railway transportation planning
investigations. Among the various goals of optimiza-
tion, an important objective has received the main
attention, in which the necessary trains are formed to
satisfy demand in a desired period of time. In addition,
such an optimization model considers the operational
and physical constraints of the network to achieve
feasible and optimal sizes, frequencies, assignments,
traction, and demand pro�les regarding the speci�c
objective functions [4]. However, due to NP-hardness
issues, the main challenge remains: dealing with the
di�culty of solving the train makeup problem in the
context of a design problem of a service network.

Some new features are added to the railway
planning literature in this research. In some railway
transportation networks, there may be di�erent routes
from each origin to a destination. A generic rout-
ing problem tries to determine an optimal route to
provide an e�cient routing plan. A routing problem
in the TMP is not taken into account in literature
reviews; therefore, a novel optimization model with
multiple objectives is considered based on integrating
the makeup train and routing problems all together.
In comparison to the current literature, some new
constraints are added to the optimization model, which
improve its validity in order to provide a better basis of
re
ecting real-world conditions. Following the common
stream of research in multi-objective optimization,
Goal Programming (GP) and Lp norm methods are
applied. In addition, a new simulated annealing
algorithm is proposed to provide good solutions for the
problem. Considering the application of the algorithm,
ten randomly designed problems, as well as a real-world
problem, in the context of a railway company in Iran
are tested by the algorithm. To compare them by the
CPLEX standard software, some of the results from
the algorithm, which are more pertinent, are checked
for greater e�ciency in comparison with those obtained
from the software.

Several sections contribute to the organization
of the paper. Studies related to the TMP are re-
viewed in Section 2. Section 3 presents a model
for the train makeup and routing problem based on
a new approach considering new multiple objective
functions. Following the main optimization research
stream, Section 4 applies two important optimization
methods to �nd a single objective function to replace
with the multiple objective functions of the model.
Section 5 reports the results of applying the solution
method to some randomly generated test problems and
provides optimality and sensitivity analysis �ndings.
Based on a hybrid meta-heuristic, Section 6 proposes
a new algorithm by developing a novel hybrid sim-

ulated annealing algorithm. Section 7 presents the
computational �ndings of applying the algorithm to
10 randomly generated test problems and a real-world
problem associated with a railway company in Iran.
As the �nal section, Section 8 concludes the paper and
provides some further research remarks.

2. Literature review

A TMP has received the attention of researchers from
a mathematical point of view. For example, Assad [5]
presented a multi-commodity network 
ow model to
analyze a TMP. To investigate tactical planning, in
a programming model with a mixed-integer and non-
linear nature solved by a heuristic method, Crainic et
al. [6] minimized delay and operating costs. Based
on a heuristic approach and a Lagrangian relaxation
technique, Keaton [7] developed a method to deal with
a programming model characterized by a mixed-integer
structure. Morlok and Thomas [8] developed a pro-
gramming model with a mixed-integer linear structure
and used a branch-and-bound technique to solve some
small-sized instances. Huntley et al. [9] presented an
MINLP model and used a SA algorithm to �nd a
near-optimal solution. Adopting a hybrid approach,
Yaghini et al. [4] designed a SA based on simplex
for the TMP, in which the moves in this method are
evaluated, selected, and implemented. Bagheri et al.
[10] proposed a method for placing hazardous material
cars to minimize the derailment risk during the train
assembly process. With respect to yard activities, they
took into account the chance associated with derailing
of railway cars with the route and the probability of
extra activities.

Sha�a et al. [11] developed a novel robust model
with a mixed-integer nature for a TMP with un-
certain input data, in which a heuristic method is
designed because of the di�culty of �nding an optimal
solution. Based on the train scheduling and with
emphasis on the average travel duration time, Sun et
al. [12] considered the user's satisfaction and energy
consumption to present an optimization model with
multiple objective functions for the train routing on
a railway network supporting high speed, which is able
to provide an important basis for a train planning to
provide a good service. For implementation purposes,
an enhanced Genetic Algorithm (GA) was developed
and implemented. Yaghini et al. [3] developed a hybrid
technique to solve a mathematical model for train
makeup planning with fuzzy costs in an Iranian railway
system. In fact, they developed a network design
model that considered a �xed-charge situation with
capacity limitations and multiple commodities. In an
operational setting on a railway network, Masek et
al. [13] mathematically investigated the transportation
of single-wagon consignments. Bornd�orfer et al. [14]
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analyzed a problem that considers the freight train
routing. Considering both passenger and cargo, they
investigated a transport network, in which routes of
trains are �xed. Taking into account all running times
and all expected delays for each freight train, they
found feasible and optimal routes. Boysen et al. [15]
introduced and discussed the train formation problem
in its basic setting. They analyzed the status of
its complexity and designed both heuristic and exact
solution methods. They also tested their solution
method in a wide-ranging computational experiment.
Cheng et al. [16] proposed a methodology to assess risk.
Adopting a mathematical approach, they modeled the
train formation and the location of railcars of hazmat
kind in a prede�ned transport passage. A sample
study was considered and analyzed to gain managerial
insights with four di�erent sets of conditions related to
an American network.

Based on programming with a mixed-integer na-
ture, Bahrami et al. [17] integrated hub location and
vehicle routing problems in order to provide door-to-
door parcel delivery services. A simulated annealing
approach helped them propose a novel technique that
has multiple steps based on an algorithm with local
search capability. They used the technique to solve a
real case in Iran. Gallardo-Bobadilla and Doucette [18]
applied a linear programming approach to optimize
the railway blocking problem e�ciently and �nd the
optimal allocation of shipments to blocks and their
routing plan with an acceptable level of error. Yaghini
et al. [19] proposed a modi�ed speci�c method for a
train makeup problem. This is an exact approach
in real life of the railway network. This method is
proposed to modify the behavior of a standard solver
to deal with a mixed-integer programming problem.

Jamili [20] focused on trip duration and ex-
pected deferrals and presented a novel periodic
train-scheduling mathematical model under uncer-
tainty. He proposed Simulated Annealing (SA) and
Electromagnetism-like Method (EM), as well as a
hybrid of these two metaheuristics, for solving the prob-
lem. To deal with an integer-linear setting, Tavakkoli-
Moghaddam et al. [21] designed a programming model
for a cell formation problem in an environment that
is dynamic with a multi-cycle scheming vision. This
problem is categorized as an NP-hard problem; thus,
they took into account an SA algorithm to solve
their model. Furthermore, Alikhani-Kooshkak et al.
[22] presented a multi-objective model for the train
makeup problem with locomotive limitations. They
considered seven di�erent objectives (e.g., minimizing
the total lost demand, the transfer time of trains,
and the total consumed fuel) and proposed a hybrid
�re
y algorithm to solve the problem in a real-word
application.

Despite its multi-dimensional nature, the litera-

ture review reveals that the multi-objetive optimization
of the TMP is understudied. Some examples are o�ered
here. First, maximization of the pro�t is possible via
mathematical focus on incomes and expenses. Second,
the maximization of customers' satisfaction level is
attainable by considering frequencies of trains. This
results in the decrease of the time demands spent in
yards for shunting activities. Thus, one criterion for
the maximization of customers' satisfaction level and
minimization of the costs is to assume maximizing
trains in terms of the total frequencies, minimizing yard
activities in terms of the total quantity of the actions
of shunting kind, and minimizing train underutiliza-
tion.

This is currently missing from the literature (see
e.g. [3,4]); basically, the minimization of variable and
�xed costs is common in the current literature. In
addition, all the required constraints associated with
train formation problem are not considered in the
current stream of research. Focusing on the length of
the train, Yaghini et al. [19] modeled merely the biggest
train considering the size of station with respect to the
number of trains and the quantity of actions of shunting
kind. In other words, they did not consider signi�cant
concepts such as the determined minimum limitation
related to the least length of each train which is formed,
train tonnage, the capacity of yard in terms of tonnage,
available time, and upper limit of the capacity of each
arc for train passage through di�erent routes in the
railway network.

3. Mathematical model

In this section, the �xed and variable costs of trans-
portation are optimized. In doing so, we assume
the transportation of goods with a speci�c origin and
destination for each train based on available infor-
mation (e.g., [19]). Here, the origin and destination
de�ne each train. We also assume that there exists
a balance of the 
ow for each yard-demand pair.
Furthermore, we consider that there is an upper limit
for the length of train that constrains the amount
of demand allowed to be allocated to an arbitrary
train. Each yard faces a maximum limitation in the
number of trains and another maximum limitation in
the size of demands put together for train formation in
an operation with a classi�cation or shunting nature.
The current literature is extended by adding some
new features. First, a routing problem with the
train makeup in railway networks is assumed. In
some railway transportation networks, there may be
di�erent routes from each origin to a destination.
Each route of a network consists of some tracks (i.e.,
arcs), in which each track has a speci�c capacity
(i.e., a number of trains passing through the track
in a speci�c time period). Additionally, one of the
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main contributions of this presented model is the
transfer of demands from an origin to a destination
via di�erent routes consisting of tracks (i.e., arcs)
with the limited capacity. It is worth noting that
a decision for a train's route is made based on the
objectives of our integrated train makeup and routing
problem and related limitations. In fact, this model
determines the trains and relevant routes in order to
transport dedicated demand. Notably, the proposed
model speci�es that each demand must be transferred
by which trains. It is worth noting that the basic
model [19] does not cover this topic. It may not be
economical to form a train to carry almost nothing
due to a very low volume of demands. In addition,
the capacity of routes in terms of tonnage and the
arcs capacity in terms of the size of frequencies of
passing trains via arcs are constrained. Therefore, this
paper considers some new constraints for the original
model to extend it in order to improve its validity
by considering previously ignored important real-life
conditions. In particular, a minimum limitation for
the length of train is assumed to constrain the least
amount of demands that can be allocated to a train.
A maximum limit is considered in terms of tonnage
for the capacity of yard operations of shunting type.
Moreover, a maximum limitation for the number of
trains is assumed that allows for passing through an
arbitrary arc of the network.

Second, in the basic model, all transportation-
based requests are accepted. In contrast, the lost
demand property is allowed in our model, and the costs
and bene�ts of accepting a request are compared. This
leads to denial of some demands due to their uneco-
nomical nature. These directions are not considered in
the previous literature.

In this paper, four objective functions are con-
sidered by optimizing the pro�t and customers' satis-
faction level to its maximum possible, yard activity in
terms of the total quantity of the operations of shunting
kind, and the underutilized trains in terms of tonnage
to its minimum possible.

Based on the above points, a mathematical ap-
proach is adopted to formulate a novel model below.

Notations

k Demand k belongs to the set K

t Train t belongs to the set T

s Yard s belongs to the set S

r Route r belongs to the set R

i Arc i belongs to the set I

K Set K denotes demands originating
from an arbitrary node called orig(k)
and destined to dest(k)

T Set T denotes trains carrying demands.
Each train starts from its origin and
ends at its destination in a setting
where its origin and destination have
been set before. The train does not
load or unload any demand in the
midway; however, it is allowed to take
many paths in its entire trip.

S Set S denotes yards. Each yard
receives trains, breaks them up, blocks
their cars, assembles their demand, and
forms the train. After these activities,
the train is ready to depart from the
station.

R Set R denotes the routes between the
Origin and Destination (O-D) of trains.
Each route contains a number of arcs

I Set I denotes the arcs in the related
railway network

orig(k) Demand k originates from node orig(k)
dest(k) Demand k is destined to node dest(k)
Gk One unit of demand k has the weight

Gk
bk If the rail company ships demand k, it

gain bk for each unit of demand
dk Amount of 
ow dk from its origin

(orig(k)) to its destination (dest(k))

ckt Shipping one unit of demand k on
train t has the cost ckt

frt Forming train t on route r has a �xed
cost frt

Urt Train t on route r has a maximum
Urt of units of demand allocated to it.
This concept helps de�ne the biggest
train in terms of length

Lrt Train t on route r has a minimum Lrt
of units of demand allocated to it.
This concept helps de�ne the smallest
train in terms of length

P rt Train t on route r has the capacity P rt
in terms of tonnage

Qs Shunting operation in yard s has the
capacity Qs in terms of tonnage

Hs Trains formed in yard s have the
maximum number Hs

Ns Shunting operations performed in yard
s have the maximum number Ns

Ai For a desired period of planning,
trains passing through arc i have the
maximum number Ai

ck Rail company loses ck for each unit of
demand if it rejects demand k
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a Planner is allowed to reject the fraction
a of demands as the lost sale ratio

Decision variables

xkt Demand k on train t has the 
ow
amount of xkt

yrt Train t on route r has the number of
frequencies yrt

wk Demand k has the amount wk as the
number of lost units from transporting.
In assessing a request, the rail company
compares both bene�ts and costs of
accepting a request

3.1. Mathematical model
3.1.1. Objective functions
In this section, the objective functions of our model
are explained. The �rst objective function optimizes
pro�t. It attempts to maximize income. In addition,
it attempts to minimize the costs. Variable, �xed,
and lost demand costs are considered in the model.
The second objective function optimizes customers'
satisfaction level. It attempts to maximize the total
train frequencies. If the total train frequencies increase,
a decrease in demands waiting in yards of shunting
kind prepared to be transferred from an origin to a
destination is expected; consequently, one criterion
for the improvement of customers' satisfaction level
is perhaps maximizing the total train frequencies.
The third function targets the minimum of the yard
activities in terms of the total number of operations of
shunting kind. To put it di�erently, the main objective
here is to minimize the unnecessary disassembly of
wagons (i.e., demands) in intermediate stations before
arriving at the destination targeted by the demand. In
fact, this approach leads to the minimization of train-
wise transportation demands with mismatching origins
and destinations. The best scenario occurs when two
conditions are satis�ed: (a) the origin of demand and
the origin of the train carrying the demand coincide
and (b) the destination of demand and that of the train
carrying the demand coincide. This implies that the
optimal plan to transport a demand to avoid unnec-
essary shunting costs and operations requires a single
train, which carries the demand throughout its journey
from its origin to its destination. The fourth objective
function targets the minimum of underutilized trains.
It attempts to �nd minimum di�erences between the
trains in terms of tonnage able to be carried and the
demands, which are transferred.

maxZ1 =
X
k

bk(dk � wk)�X
k

X
t

ckt x
k
t

�X
t

X
r

frt y
r
t �

X
k

ckwk; (1)

maxZ2 =
X
t

X
r

yrt ; (2)

minZ3 =
X
s

X
k

dest(k)6=dest(t)
dest(t)=s

X
t

xkt ; (3)

minZ4 =
X
t

X
r

P rt y
r
t �

X
k

X
t

Gkxkt : (4)

3.1.2. Limitations considered in the model
The lost demand is allowed in transportation. Con-
straint (5) establishes the balance of 
ows for all
of the yard-demand pairs. Constraint (6) requires
the predetermined maximum limit for the trains that
are formed in terms of its length to constrain the
uppermost quantity of the demands allocated to trains.
Inequality (7) requires the predetermined maximum
limit for the number of trains formed in all the yards.
Constraint (8) requires the predetermined maximum
limit for the yard activity in terms of the number of the
operations of shunting kind. Constraint (9) examines
the predetermined minimum limit for each formed train
in terms of its length. Constraint (10) demonstrates
the capacity of train in tonnage as the maximum limit.
It models the maximum weight the train is allowed to
carry. Inequality (11) ensures that each yard shunts
demands as much as its shunting capability in terms
of tonnage. For a desired period of planning, Inequal-
ity (12) necessitates the predetermined maximum limit
for the overall frequencies of trains passing each track.
Constraint (13) de�nes the magnitude of demands
permitted to be lost since they are rejected and will
not be transported. Since variables x, y, and w are
required to be integer, Constraint (14) imposes this
requirement.X
orig(t)=i

xkt �
X
t

dest(t)=i

xkt =

� dk � wk orig(k) = i
�dk + wk dest(k) = i
0 otherwise

�
8i 2 S; k 2 K; (5)X
k

xkt �
X
r

Urt y
r
t 8t 2 T; (6)

X
t

Orig(t)=s

X
r

yrt � Hs 8s 2 S; (7)

X
k

dest(k)6=dest(t)
dest(t)=s

X
t

xkt � Ns 8s 2 S; (8)
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X
k

xkt �
X
r

Lrty
r
t 8t 2 T; (9)

X
k

Gkxkt �
X
r

P rt y
r
t 8t 2 T; (10)

X
k

dest(k)6=dest(t)
dest(t)=s

X
t

Gkxkt � NsQs 8s 2 S; (11)

X
r
i2r

yrt � Ai 8i 2 I; (12)

wk � a:dk 8k 2 K; (13)

xkt ; y
r
t ; wk 2 Integer: (14)

4. Multi-objective decision-making approaches

It is well known that there are three well-known main
methods for solving a multi-objective optimization
problem, namely (1) a priori articulation of preferences,
in which before running the optimization algorithm,
the user is able to determine the relative importance of
the objective functions or desired goals, (2) a posteriori
articulation of preferences, in which a single solution is
selected out of the various possible solutions that are
equivalent from a mathematical point of view, and (3)
no articulation of preferences where the decision-maker
is not able to determine any preference.

Following our discussion with the managers of the
Iranian railway network, it was found that although
the managers understood the importance of considering
multiple objectives in the decision-making, they were
not able to prioritize the objectives. This is the �rst
time that they have introduced such an approach to
the network. Consistent with the literature discussed
above, we consider goal programming and Lp norm
approaches to solve our problem, in which all the
weights are set to one. This is the reason why
these approaches are basic methods that fall into the
category of \a priori articulation of preferences" and
the category of \no articulation of preferences". It is
indeed a simpli�ed version of the a priori category, in
which all the weights are considered equal to one (see
e.g. [23]).

In this section and for aggregation purposes,
two common aggregating approaches, namely goal
programming and Lp norm, are adopted to convert
a mathematical model with multiple objectives to a
model with one objective.

4.1. Goal programming approach
In the goal programming aggregation method (see, e.g.
[22]), the objective function is de�ned by:

minZ = �1v+
1 + �2v+

2 + �3v�3 + �4(v+
4 + v�4 ): (15)

In addition, the constraints below are introduced to the
above developed model:X

k

bk(dk � wk)�X
k

X
t

ckt x
k
t �

X
t

X
r

frt y
r
t

�X
k

ckwk � (v+
1 � v�1 ) = M1; (16)

X
t

X
r

yrt � (v+
2 � v�2 ) = M2; (17)

X
s

X
k

dest(k)6=dest(t)
dest(t)=s

X
t

xkt � (�+
3 � ��3 ) = M3; (18)

X
t

X
r

P rt y
r
t �

X
k

X
t

Gkxkt � (v+
4 � v�4 ) = M4; (19)

v+
i ; v

�
i � 0 8i 2 Z; (20)

where �i denotes the coe�cient, v+
i denotes the slack

variables, and vi denotes the surplus variables of
objective function i. Mi symbolizes the desired level
(target value) for the Individual Objective Function i
(i.e., IOF (i)). Herein, this parameter may be assumed
as the optimal Objective Function Value (OFV); the
same is done here.

With regard to the following issues, the sum of
the deviations of individual objective functions from
the related desired level is minimized in objective
function (15):

� Orientation aimed individually by each objective
function (e.g., max and min);

� Individual importance factor of each objective func-
tion.

Inequalities (16) to (19) are associated with objective
functions (1) to (4) by regarding their related indi-
vidual level, which is desired. Constraint (20) shows
that the variables of surplus and slack (v+

i and v�i ) are
positive.

4.2. Lp norm method
Concerning the Lp norm technique, the aggregated
mathematical goal is presented as follows:

minL� P =
�
�1

�
Z�1 � Z1

Z�1

�p
+ �2

�
Z�2 � Z2

Z�2

�p
+ �3

�
Z3 � Z�3
Z�3

�p
+ �4

�
Z4 � Z�4
Z�4

�p� 1
p

; (21)

where �i symbolizes the multiplier of mathematical
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goal i, Zi symbolizes mathematical goal i, and Z�i
stands for the optimal OFV i. Objective function (21)
tries to minimize the sum of normalized deviation of
individual objective functions from a related solution,
which is optimal, considering the following issues:

� Kind of the deviation calculation (P );
� Fraction of deviation by taking into account the

related individual OFV, which is optimal.

Here, objective function (21) with p = 1 (i.e., linear)
and p = 2 (i.e., nonlinear) is considered. The set of
constraints is identical with no di�erence.

5. Results and sensitivity analysis

5.1. Experimentation of our model
Here, ten random problems are considered. The
computer utilized is characterized by Intel Core 2 Duo
2 .53 GHz CPU and 4.00 GB of RAM. The standard
solver CPLEX version 12.4 is used. The incoming value

bk is two times the value of demand loss cost ck. The
multipliers of all objectives are identical in the case of
all techniques. When weights of the objectives are not
pre-speci�ed, considering identical importance values
for them is not a strange task in the literature [24].
Thus, importance values (weights) that are equal to 1
are allocated to all the goals before being aware of the
importance values for the objective functions. The test
problems are de�ned in Table 1.

At �rst, the test problems are dealt with by tak-
ing into account each objective function individually.
Table 2 demonstrates the outcomes of our numerical
experiments. Here, GP and Lp norm techniques solve
these problems. Table 2 shows the values of the IOFs
that are optimal. As shown in this table, the data
relating to column IOF (3) are all zero. In other words,
in all of Test Problems 1 to 10 (Table 1) the total num-
ber of shunting operations is zero, which indicates that
there are no unnecessary disassembly and assembly
operations (shunting operation) in the network in the

Table 1. Test problems.

No. No. of
yards

No. of
demands

No. of
potential trains

No. of
constraints

No. of
variables

Ratio of trains
to demands

1 30 25 427 2251 21375 17
2 35 30 466 2688 27990 16
3 40 25 583 2999 29175 23
4 35 60 466 3763 55980 8
5 50 45 991 5478 89235 22
6 50 60 1257 7041 150900 21
7 60 70 1380 8662 193270 20
8 60 80 1475 9557 236080 18
9 70 85 1475 10754 250835 17
10 70 75 1380 9759 207075 18

Table 2. Outcomes of each individual objective function, IOF, to be considered as input for GP and Lp norm approaches
employed as optimal solution (i.e., Z�i ) or desired level (i.e., Mi).

Problem
no.

IOF (1)
($)

IOF (2)
(no. of trains)

IOF (3)
(no. of shunting

operations)

IOF (4)
(tonnage)

1 368639.1 649.0 0.0 227533.0
2 346586.1 800.0 0.0 286855.0
3 179625.9 896.0 0.0 247304.0
4 756824.6 839.0 0.0 533449.0
5 411148.9 570.0 0.0 885869.0
6 70344.8 591.0 0.0 1224201.0
7 479483.6 573.0 0.0 1373561.0
8 1409402.9 1112.0 0.0 1583427.0
9 1437728.3 1126.0 0.0 1653359.0
10 776791.4 1210.0 0.0 1503769.0
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optimal solution for two reasons. First, there are a high
number of trains to transport demands of the problem
with common origins and destination. Second, there
exist demands with origin and destination di�erent
from the origin and destinations of available trains,
which are rejected from transportation by the lost sale
constraint (i.e., Constraint (13)). Finally, the results of
the IOF (3) appear to be an ideal solution with respect
to the data of this problem.

Table 3 shows the outcome of our numerical
experiment. The standard solver software does not
�nd any solution in 10 hours. The �ndings indicate
the suitability of CPLEX in terms of time resource
for GP and when p = 1. Therefore, they are almost
similar since they demonstrate the same performance.
However, based on the solving time reported in Table
3, the L1 norm method always outperforms the goal
programming method as reported in all the cases
of Table 3, and the solving time related to the L1
norm method is shorter than that related to the goal
programming method (see Figure 1). However, due to

Figure 1. Comparison of the performance of GP and L1

norm techniques, in which the L1 norm method always
outperforms the goal programming method.

the non-linearity for the case p = 2, even a feasible
solution cannot be found in 10 hours for problems
with a considerable size. It is worth noting that
the deviation of individual objective functions in goal
programming methods is not normalized; therefore, the
optimal value of this method is di�erent from that of
Lp norm method.

There are two cases for the Lp norm technique:
p = 1 and p = 2. Because of the non-linearity of
the case p = 2, the technique for p = 2 is able
to e�ectively discover better solutions in the related
solution space [25]. Because of the compatibility of
non-linear models with real-life conditions and their
capability to attain suitable quality in solution �nding,
the L2 norm method is applied. In the Lp norm
method with p = 2, the solver has to examine more
points in solution space, which calls for much more time
for the discovery of a non-dominated solution. The
outcomes shown in Table 3 demonstrate this argument.
Regarding this issue, Figure 2(a) and (b) demonstrate
the Lp norm method in the discovery of a solution for
p = 1 and p = 2, individually. In addition, Lp norm
with p = 1 was merely used for testing the model and
sensitivity analysis.

5.2. Sensitivity investigation
In order to investigate the sensitivity of our model,
problem no. 3 is used in this section. This model
contains multiple objective functions with di�erent
characteristics. Since each function has a di�erent
impact on the solutions, their multipliers and the target
value of each individual are examined in our sensitivity
analysis [26,27]. Four di�erent aspects described below
are very important, because some of the aspects are
basic factors in converting the model with multiple
objectives into a single combined objective one.

Table 3. Outcomes of Lp norm and GP techniques.

No.
L1 norm L2 norm Goal programming

Optimal
value�

Solving
time (sec)

Optimal
value

Solving
time (sec)

Optimal
value

Solving
time (sec)

1 1.80 1.61 1.17 81.43 13954.00 3.24
2 1.74 1.96 1.12 124.31 14694.00 3.76
3 1.75 2.21 1.13 267.87 3883.00 4.68
4 1.50 5.45 N/A�� 36000.00 10304.00 73.26
5 1.71 7.66 1.13 572.80 7320.00 36.51
6 1.86 13.24 N/A 36000.00 10150.00 48.12
7 1.53 15.40 1.09 36000.00 21648.00 63.31
8 1.67 27.19 N/A 36000.00 2589.00 69.38
9 1.83 28.11 N/A 36000.00 2929.00 86.61
10 1.50 29.25 N/A 36000.00 11948.00 87.29

� Optimal value = The sum of deviation of individual objective functions from the related desired level (IOF (i));
�� N/A = Not Available (i.e., no feasible solution is found in 10 hours of time).
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Figure 2. Lp norm method in discovering a solution for (a) p = 1 and (b) p = 2.

Figure 3. Impact of increasing the cost of losing the
demand (i.e., ck) on the value of the IOF (1).

Figure 4. Impact of the incremental changing rate of the
cost of losing the demand (i.e., ck) on the quantity of
covered demands.

5.2.1. Impact of cost of losing demands on IOF (1)
Figure 3 demonstrates that increasing the cost of lost
demand (ck) leads to a signi�cant reduction in the value
of the IOF (1). As shown in Figure 2, increasing the
cost of the lost demand is caused by decreasing the
IOF (1), indicating a great impact on the objective
function by this parameter. Figure 4 demonstrates that
increasing the cost of the lost demands leads to greater
demand coverage.

5.2.2. Impact of varying the multiplier of IOFs in the
L1 norm method

The importance factors of all IOFs are �xed as 1. The
output of the mathematical objective for the L1 norm
technique is examined by varying the importance factor
of each IOF and assuming the rest are unchanged.
Additionally, the importance factor of the selected IOF
is �xed as 100. Figure 5 exhibits the impact of changing
the importance factor of IOFs on the mathematical

Figure 5. Impact of varying the multiplier of IOFs on the
mathematical objective in the L1 norm method.

Figure 6. Impact of varying the multiplier of IOFs on the
mathematical objective in a GP technique.

objective for the L1 norm method. The outcomes
demonstrate the great importance of the IOF (1).

5.2.3. Impact of varying the multiplier of IOFs in the
GP method

To solve the problems by the GP method, the impor-
tance factors of all IOFs are �xed as 1. The output of
the mathematical objective is examined by varying the
importance factor of each IOF and considering the rest
as unchanged. The importance factor of the chosen
IOF is �xed as 5. Figure 6 shows the e�ect of varying
the importance factor of IOFs on the mathematical
objective in the GP method. The �ndings indicate
signi�cant importance of IOF (1) compared to other
IOFs.

5.2.4. Impact of changing the target value of IOFs in
the GP method

To solve the problems by the GP technique, the target
values of all IOFs are set to their best values. The
output of the mathematical objective is studied by
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Figure 7. Impact of variations of the target value of IOFs on the best mathematical objective value in the GP technique.

varying the target value of each IOF and assuming
the rest as unchanged. Figure 7 shows the impact
of varying the target value of IOFs (i.e., � 20%) on
the mathematical goal in the GP method. The related
results illustrate the more important role of IOF (1)
over other IOFs in contributing to the best output of
the mathematical goal.

6. Proposed hybrid algorithm design

A meta-heuristic approach is adopted here to solve
the model in case p = 2 for the Lp norm technique.
The rationale behind our e�ort is the nonlinearity of
the model in this case, which leads to unacceptable
requirement for time resource for computational pur-
poses. Speci�cally, a hybrid algorithm considering the
SA and branch-and-cut algorithms is designed.

SA as a well-known meta-heuristics was �rst
introduced by Kirkpatrick et al. [28]. The main steps
of SA are as follows. Starting with an initial solution,
SA moves to other alternative neighboring solutions
iteratively. If the alternative solution outperforms the
current solution, it is chosen as a new solution. If,
however, the performance of the alternative solution
is worse than the current solution, it is still accepted
by the probability exp(��E=T ), where �E denotes
the di�erence of the OFV between the current and
alternative neighboring solutions, and T is a parameter
called temperature to control the exploration process
of the SA algorithm. Many iterations are executed at
each temperature. Then, gradually, the temperature
decreases. While, initially, the temperature is selected
to be at its highest value to increase the probability of
accepting undesirable solutions in terms of the OFV,
the temperature has its lowest value at the end of search
to decrease the probability of accepting undesirable
solutions. Subsequently, the structure of our hybrid
algorithm and its building blocks are explained.

In our meta-heuristic method, SA speci�es the
lost demand, wk, and the exact method tackles other
unknowns of the model. In Figure 7, a pseudo code
for our meta-heuristic algorithm used in the problems
with p = 2 of the presented model is shown. In
this pseudo code, current solution denotes the current

solution, initial solution denotes the initial solution,
neighbor solution denotes the neighborhood solution,
and best solution denotes the best solution. In addition,
Cycle denotes the number of moves needed to generate
neighboring solutions. When this number reaches the
de�ned value (MAX CYCLE), the internal loop of the
algorithm terminates to start a new iteration with a
new temperature. Afterward, the building blocks of
our pseudo code are explained.

6.1. Generating an initial solution
To generate an initial solution, the L1 norm technique
is applied in the standard solver. In so doing, we
temporarily assume a full coverage of all demands, and
all of wk variables are set to zero. We then plug the
solution from the L1 norm technique into L2 norm
and consider its value as initial solution (see Figure 8).
Since the L1 norm technique is much more e�cient
than the L2 norm technique, we apply it to �nd initial
feasible solutions in a fast manner.

Figure 8. Pseudo code of our hybrid algorithm.
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6.2. Generating the neighbor solutions
The initial solution generation step leads to another
step, in which a move is required to search the solution
space. Figure 9 shows the pseudo code of the procedure
for generating a neighbor solution. In each cycle of
move, this process should be done. In this pseudo
code, MAX TEMP is a parameter that shows the initial
temperature in SA.

6.3. Terminating criteria
In the proposed algorithm, two terminating criteria
are considered, namely reaching the initial temperature
and m numbers of reducing the temperature without
any improvement.

7. Experimental results

For experimental purposes, our algorithm is tested on
ten test cases. These test cases are already introduced

in Table 1. The comparison of the behavior of the
standard solver and the proposed algorithm is tabu-
lated in Table 4. In fact, in comparison to the standard
solver, our algorithm is able to provide a better solution
method in terms of both problem size and speed.

Figure 10 depicts our sample investigation of a
star-type railway network in Iran. This network has
60 yards. In addition, 200 origin-destination pairs
demonstrate its demand pattern. Tehran plays the role
of a hub in the center of the network. The yards of the
network order the trains and classify them for incoming
and outgoing trains, respectively.

The parameters of our sample investigation are
tabulated in Table 5. Tables 6 to 8 present the results,
which are similar to those of 10 test cases presented
before (see Table 4). Once again, in comparison to
the standard solver, our algorithm is able to provide a
better solution method in terms of both problem size
and speed.

Figure 9. Pseudo code of generating the neighbor solutions.

Table 4. L2 norm method results (i.e., p = 2) by using the proposed algorithm obtained by solving test problems.

no.
CPLEX software Proposed algorithm

Optimal value� Solving time (sec) Optimal value Solving time (sec)

1 1.17 81.43 1.17 1567.87

2 1.12 124.31 1.13 1391.12

3 1.13 267.87 1.13 1417.25

4 N/A�� 36000.00 1.06 2999.83

5 1.13 572.80 1.13 3190.26

6 N/A 36000.00 1.15 3598.97

7 1.09 36000.00 1.09 3419.57

8 N/A 36000.00 1.10 3282.55

9 N/A 36000.00 1.12 4055.16

10 N/A 36000.00 1.07 3934.80
� Optimal value = The sum of deviation of individual OFVs from the related desired level (IOF (i));
�� N/A = Not Available (i.e., no feasible solution is found in 10 hours of time).
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Figure 10. Network of the Iranian railway.

Table 5. Speci�cations of the Iranian railway.

No. of
yards

No. of
demands

No. of
potential trains

No. of
constraints

No. of
variables

The ratio of
trains to demands

56 197 1089 14534 429263 6

Table 6. Outcomes of each mathematical objective to be used for GP and Lp norm techniques employed as the optimal
solution (i.e., Z�i ) or desired level (i.e., Mi).

IOF (1)
($)

IOF (2)
(number of train)

IOF (3)
(number of shunting operations)

IOF (4)
(tonnage)

281656.29 211.00 0.00 2529437.00

Table 7. Results of the LP norm and GP methods for an Iranian railway network.

L1 norm (i.e., p = 1) L2 norm (i.e., p = 2) Goal programming
Optimal

value
Solving

time (sec)
Optimal

value
Solving

time (sec)
Optimal

value
Solving

time (sec)
1.80 179.21 N/A 36000.00 496668.00 691.32

Table 8. Computational results of L2 norm method (i.e., p = 2) by using the proposed algorithm obtained by solving an
Iranian railway under study.

CPLEX software Proposed algorithm
Optimal value Solving time (sec) Optimal value Solving time (sec)

N/A 36000.00 1.12 4411.29

Figure 10 shows a part of the network in detail to
improve the illustration. There are some demands in
this part of the network. It is worth noting that the
maximum number of frequencies of the train can pass
through arc i of network (Ai), shown for each track of
the network in Figure 11.

Table 9 de�nes the demands associated with

Figure 10. Here, the lower bound of the demand for
each train is considered to be 10. In addition, the upper
bound of the demand for each train is assumed to be 45.

Figure 12 shows the best plan for train formation.
Here, lines show the paths passed by trains. Moreover,
circles show the yards. In addition, arrows show the
route of trains. The �ndings indicate that 17 trains
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Table 9. Demands related to Figure 10.

Demand
no.

Origin Destination Demand
volume

Demand
no.

Origin Destination Demand
volume

1 Chadormalo Isfehan 161 11 Kerman Bafgh 18
2 Bafgh Isfehan 132 12 Bandar Abbas Bafgh 32
3 Bandar Abbas Isfehan 76 13 Qom Isfehan 6
4 Kerman Isfehan 25 14 Chadormalo Ardakan 16
5 Tehran Isfehan 35 15 Qom Bafgh 7
6 Isfehan Sistan 8 16 Qom Kashan 2
7 Isfehan Yazd 15 17 Yazd Bafgh 10
8 Chadormalo Yazd 38 18 Tehran Sistan 14
9 Bandar Abbas Yazd 45 19 Tehran Kerman 16
10 Chadormalo Bafgh 20 20 Yazd Isfehan 8

Figure 11. Part of the network to provide a more detailed illustration.

Figure 12. Train makeup and routing plan for a part of the network by the proposed algorithm.

are required to be formed. As shown in Table 9,
these trains will carry 20 origin-destination pairs. Of
note, as shown in Figure 11, for example, Train 8
travels through Bandar Abbas-Bafgh-Yazd-Ardakan-
Arzhang-Sistan-Isfahan route that ships demands 3,
and Train 12 travels through Chadormalo-Ardakan-
Yazd route that carries demands 8. It is worth noting

that there are some loops associated with Figure 10 in
the network. For this reason, these issues cannot be
shown in Figure 11. The answer shows that some of
the demands are not covered (the demand of 6,7,13-18,
and 20), and all of the covered demands are transferred
by direct trains.

Of note, the implementation of the proposed
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model for the Iranian railway network shows that the
model is completely practical and can be used for
di�erent rail networks in the world. The results reveal
the capability of the proposed model.

8. Conclusion and future work

This study considered a mathematical model with
multiple objectives for the TMP integrated routing
problem. The mathematical objectives maximized
the total pro�t, maximized customers' satisfaction
level, minimized the total quantity of the operations
in the yards of shunting type, and minimized the
underutilized trains. To combine these objectives into
only one objective, GP and LP norm techniques were
applied. In addition, a hybrid Simulated Annealing
(SA) algorithm was recommended to solve the problem.
Based on the standard and proposed techniques and
for experimental purposes, ten random test problems
were solved. Furthermore, a sample investigation in a
railway company in Iran was performed. Our algorithm
was able to show nice behavior in all test cases and
the sample investigation with a reasonable requirement
for time resource, while the standard software could
not �nd feasible solutions for some test cases and the
sample investigation in 10 hours of time. Our �ndings
provided signi�cant evidence for the e�ectiveness of
our model and proved the e�ciency of our solution
technique. This paper considered the customer's satis-
faction as one of the key issues that will be discussed
in more depth and provided more accurate parameters
to measure it as the future study. Furthermore, the
presented model can be extended to a routing problem
by considering the time travel of trains, scheduling, and
certain restrictions (e.g., safety, cost and bene�t).
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