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Abstract. An efficient synthesis of benzopyranophenazines is presented by one-pot four-
component reaction of hydroxynaphthoquinone, o-phenylenediamine, benzaldehydes, and
malononitrile with graphene oxide dichlorotriazine (GO-DCT) as an efficient nanocatalyst
under microwave irradiation in ethanol. The catalyst was characterized by Fourier-
transform infrared spectroscopy (FT-IR), X-Ray powder Diffraction (XRD), Energy
Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), and Scanning Electron
Microscopy (SEM). Atom economy, experimental simplicity, wide range of products, low
amount of catalyst loading, reusability of the catalyst, excellent yields in short reaction
times, and applying the microwave methodology as an efficient and green method are some
of the substantial features of this method.

(© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Phenazines have a number of pharmacological activ-
ities including anti-tumor [1], antimycobacterial [2],
anti-proliferative, [3] antibiotics [4], antifungal [5],
and anti-inflammatory [6]. Some phenazines isolated
from Streptomyces (a marine bacterium) are described
with biological significance (Figure 1) [7-10]. There-
fore, seeking efficient and economical methods for the
preparation of phenazines through multicomponent
reactions (MCRs) is a valuable area of research in
organic and medicinal chemistry. Recently, reports
have been developed on synthesis of phenazines us-
ing p-TSA [11], glacial acetic acid [12], 1,4- diazabi-
cyclo[2.2.2]octane (DABCO), [13,14], thiourea-based
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organocatalysts [15], caffeine [16], theophylline [17],
L-proline [18], 1-butyl-3-methylimidazolium hydroxide
([Bmim]OH) [19], EtsN [20], pyridine [21], and oxalic
acid [22]. However, some of the reported methods
suffer from drawbacks including long reaction times,
generating a large amount of waste, unpleasant reac-
tion conditions, use of toxic, and non-reusable catalyst.
Therefore, to avoid these restrictions, the discovery of
an efficient and retrievable catalyst with high catalytic
activity for the synthesis of benzopyranophenazines
is still favored. Recently, Graphen Oxide (GO) has
attracted significant interest as the catalyst in or-
ganic synthesis [23,24]. Graphene and graphen oxide
have large specific surface area, high surface-to-volume
ratio, and chemical stability [25,26]. The graphene
oxide is an effective platform for the construction of
functionalized graphene platelets that can potentially
confer improved mechanical, thermal, and electronic
properties. Both small molecules and polymers have
been covalently tethered to graphene oxide’s highly
reactive oxygen functionalities, or non-covalently at-
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Scheme 1.
microwave irradiations.

tached on the graphene surfaces, for potential use in
sensors, polymer composites, paper-like materials, pho-
tovoltaic applications, and drug-delivery systems [27-
31]. Herein, we wish to report the use of graphene oxide
dichloro triazine (GO-DCT) as an efficient catalyst
for the preparation of benzopyranophenazines by a
multicomponent reaction of hydroxynaphthoquinone,
o-phenylenediamine, benzaldehydes, and malononitrile
under microwave irradiation (Scheme 1).

2. Experimental section

2.1. Chemicals and apparatus

!H NMR and '3C NMR spectra were recorded on
Bruker Avance-400 MHz spectrometer using DMSO-
ds as solvent. The elemental analyses (C, H, N) were
obtained from a Carlo ERBA Model EA 1108 ana-
lyzer. Fourier transform infrared (FTIR) spectra were
recorded on WQF-510, spectrometer 550 Nicolet. The
Energy-Dispersive X-ray Spectroscopy (EDS) measure-
ments were performed by SAMX analyzer. The AFM
of GO mnanosheets were measured using a Scanning
Probe Microscope (SPM-9600, Shimadzu). Powder X-
Ray Diffraction (XRD) measurements were carried out
on a Philips diffractometer of X'pert Company with
monochromatized Cu Ka radiation (A = 1.54056 nm).
SEM images were taken by MIRA3-TESCAN.

2.1.1. Preparation of graphene oxide dichlorotriazine
(GO-DCT)

At first, GO was prepared from graphite powder
through the improved hummers method as starting
material [32]. 0.5 g graphite powder was dispersed
into 200 mL HoSO4 (98%), sonicated for 2 h at 50°C,
and stirred for 24 h. Then, 10 g NaNO3 was added
into stable dispersion and the mixture of reaction was
placed in ice-water bath under stirring for 1 h. 30 g
KMnO4 was added slowly and stirred for 24 h. Then,
200 mL H5O and 60 mL HsOs were added into the
mixture of reaction. The color of the reaction material
was light brown, which was filtrated and washed with
water and dried in oven. The obtained GO (1 g) was
dispersed in 10 mL CHClI;; then, 0.5 g 2.4 6-trichloro-
1,3,5-triazine was added and stirred for 24 h at room
temperature. The obtained solution was filtrated and
washed with CHCI3 and dried in oven.

GO-DCT

MW, ethanol

2.1.2. Preparation of benzopyranophenazines

A mixture of hydroxynaphthoquinone (1 mmol), o-
phenylenediamine (1 mmol), an aldehydes (1 mmol),
malononitrile (1.5 mmol), and graphene oxide dichloro-
triazine (GO-DCT) (8 mg) in EtOH (15 mL) was
irradiated inside microwave oven at the power level
of 500 W for the appropriate time. After completion
of the reaction (TLC), hot ethanol (10 mL) was
added. The catalyst was insoluble in hot ethanol,
and it could be recycled by centrifuging. The solvent
was evaporated and a solid was obtained to afford
the benzopyranophenazines. The pure products were
characterized by comparison of their physical data
(melting points, IR, and H NMR) with those of known
compounds in the literature.

2.1.3. Spectral data of products
3-Amino-1-(4-cyano-phenyl)-1H-benzofajpyranc/2,5-
¢[phenazine-2- carbonitrile (5h):

Yellow solid, m.p.: 288-290°C; IR (KBr, v, em™1!):
3322, 3176, 3045, 2831, 2182, 2139, 1644, 1622, 1584,
1483, 1455, 1444, 1392, 1383, 1355, 1337, 1292, 1256,
1160; 'H NMR (400 MHz, DMSO-dg) (6, ppm): 5.42
(s, 1H, CH), 7.23 (s, 2H, NH,), 7.38 (d, J = 8.0 Hz,
2H, Ar-H), 7.42 (d, J = 8.0 Hz, 2H, Ar-H), 7.83-8.08
(m, 4H, Ar-H), 8.12-8.15 (m, 1H, Ar-H), 8.17-8.22 (m,
1H, Ar-H), 8.42 (d, 1H, J = 7.6 Hz, Ar-H), 9.17 (d, 10,
J = 7.2 Hz, Ar-H); *C NMR (100 MHz, DMSO-ds)
(8, ppm): 37.3, 57.9, 113.8, 115.3, 118.3, 122.1, 124.3,
125.5, 126.3, 127.8, 128.2, 128.6, 129.0, 129.2, 130.1,
130.3, 130.6, 130.8, 139.9, 140.1, 140.7, 141.4, 145.6,
1465, 15957 Anal. Calcd. for CQ7H15N5OZ C, 76227
H, 3.55; N, 16.46; Found: C, 76.18; H, 3.43; N, 16.35.

3-Amino-1-(4-methozy-phenyl)-1H-
benzo[a]pyranof2,3-c/phenazine-2- carbonitrile (5m):
Yellow solid, m.p.: 268-269°C; IR (KBr, v, em™1!):
3315, 3174, 3048, 2829, 2180, 1652, 1620, 1585, 1487,
1465, 1450, 1394, 1384, 1350, 1330, 1293, 1258, 1163;
'H NMR (400 MHz, DMSO-ds) (6, ppm): 3.84 (s, 3H,
OCH;), 5.83 (s, 1H, CH), 6.65 (d, 2H, J = 7.6 Hz,
ArH), 6.90 (d, 2, J = 7.6 Hz, Ar-H), 7.35 (s,
9H, NH,), 7.857.93 (m, 4H, Ar-H), 7.98-8.40 (m,
3H), 9.10 (d, 1H, J = 8.0 Hz, Ar-H); 3C NMR
(100 MHz, DMSO-dg) (6, ppm): 37.5, 55.2, 58.3,
1121, 115.2, 115.5, 120.2, 120.4, 121.4, 125.2, 127.0,
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[G0443, G0444]

129.1, 129.3, 129.7, 130.1, 130.5, 130.8, 130.9, 140.3,
141.2, 141.9, 146.4, 147.3, 159.4, 160.5; Anal. Calcd.
for Co7H1§N4O5: C, 75.34; H, 4.21; N, 13.02; Found
C, 75.25; H, 4.15; N, 12.93.

3. Results and discussion

The process for the preparation of graphene oxide
dichlorotriazine (GO-DCT) catalyst is schematically
described in Scheme 2. Graphene Oxide nanosheets
(GO) were prepared using a modified Hummer’s
method and subsequently functionalized with dichloro-
triazine.

XRD patterns of graphene oxide dichlorotriazine
(GO-DCT) are shown in Figure 1. The character-
istic peaks in the spectrum are in agreement with
the standard XRD pattern of functionalized-graphene
oxides [29-33].

The morphology of graphene oxide dichlorotri-
azine was investigated by Scanning Electron Mi-
croscopy (SEM) as shown in Figure 2. The SEM
image of graphene oxide dichlorotriazine nanoplatelets
showed crumpled thin layers with wrinkles and folds on
the surface of GO.

The FT-IR spectra of graphene oxide and
graphene oxide dichlorotriazine are shown in Figure 3.
The FT-IR spectrum of GO demonstrates the char-
acteristic oxygen-containing groups. The character-
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Figure 1. The XRD pattern of graphene oxide
dichlorotriazine (GO-DCT).
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Figure 2. SEM image of graphene oxide dichlorotriazine
(GO-DCT).

istic peaks at 3443 cm ™! (O-H stretching vibration),
1704 cm ™! (C=O0 stretching vibration), and 1126 cm !
(C-O-C stretching vibration) appear in the spectrum
of GO [33]. The peak at approximately 1659 cm~!
is attributed to C=C double bonds. Figure 3(b) shows
the FT-IR spectrum of graphene oxide dichlorotriazine.
The intense peaks appearing at around 619, 1123, and
1580 cm ! are attributed to stretching vibrations of C-
Cl, C-O, and C=N bonds. These basic characteristic
peaks verify that dichlorotriazine is coated on the
surface of graphene oxide.

Figure 4 shows the EDS spectra of graphene oxide
dichlorotriazine. The presence of elements such as
carbon, oxygen, nitrogen, and chlor was confirmed by
EDS spectroscopy.

Atomic Force Microscopy (AFM) was utilized to
observe the morphology of GO nanosheets and measure
their thickness. The AFM images of GO and graphene
oxide dichlorotriazine easily confirm the wrinkled two-
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Figure 3. FT- IR spectrum of graphene oxide (a) and graphene oxide dichlorotriazine (b).
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Figure 4. EDS spectrum of graphene oxide
dichlorotriazine (GO-DCT).

dimensional characteristic of the GO nanosheets. The
images show that the thickness of GO is approximately
0.9 to 1.5 nm, corresponding to structures with one to
two layers (Figure 5(a) and (b)).

Initially, we focused on systematic evalua-
tion of different catalysts for the model reaction
of hydroxynaphthoquinone, o-phenylenediamine, 4-
chlorobenzaldehyde, and malononitrile under different
conditions. To obtain the ideal reaction conditions for
the synthesis of compound 5b, we studied some other
catalysts and solvents, which are shown in Table 1.
Screening of diverse catalysts such as NiCl,, imidazole,
ZrOCl,, P-TSA, GO, and GO-DCT revealed GO-DCT
as the most effective catalyst to perform this reaction

under microwave irradiation in ethanol. In further
studies on the catalyst loading, we recognized that yield
of compound 5b remained almost the same when 8 mg
of GO-DCT was used (Table 1). Use of lower catalyst
loading (6 mg) afforded 5b in 89% yield. The results
illustrated that the microwave certainly affected the
reaction system. It could reduce the reaction time and
increase the yield of the products (Table 2). When
the reaction was carried out under reflux conditions, it
gave low yields of products and took longer reaction
times, while the same reaction was carried out under
microwave irradiation to give excellent yields of prod-
ucts in short reaction times. Therefore, it was observed
that the reaction in the presence of 8 mg GO-DCT
and under microwave irradiation gave the best result
as the obtained product was 96% isolated yield during
10 minutes.

The results show that the present catalytic
method is extensible to a wide diversity of substrates
to create a variety-oriented library of benzopyra-
nophenazines. From the above observation, it is im-
portant to mention that electron-withdrawing groups
increase the rate of reaction and give better yields than
electron-donating groups (Table 2).

We investigated reusability of the GO-DCT as
catalyst for the preparation of product 5b and it was
found that product yields were reduced to a small
extent in each reuse (run 1, 96%; run 2, 96%; run
3, 96%; run 4, 95%; run 5, 95%, run 6, 94%). After
completion of the reaction, the nanocatalyst was easily
separated using centrifuging. The catalyst was washed
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Table 1. Optimization of reaction conditions using different catalysts under different conditions®.

25 (2018) 3322-3330

Entry Solvent (conditions) Catalyst Time (min) Yield (%)®
1 EtOH (reflux) No catalyst 400 Trace
2 EtOH (reflux) NiCly (5 mol%) 400 42
3 EtOH (reflux) ZrOCl; (5 mol%) 500 45
4 EtOH (reflux) imidazole (7 mol%) 400 35
5 EtOH (reflux) p-TSA (8 mol%) 250 53
6 EtOH (reflux) GO (15 mg) 250 57
7 H20O (reflux) GO-DCT (15 mg) 150 46
8 DMF (reflux) GO-DCT (15 mg) 150 55
9 CH3CN (reflux) GO-DCT (15 mg) 150 64
10 EtOH (reflux) GO-DCT (15 mg) 150 75
11 HO (MWI: 400 W)®  GO-DCT (10 mg) 15 56
12 DMF (MWI: 400 W) GO-DCT (10 mg) 15 68
13 CHsON (MWI: 400 W) GO-DCT (10 mg) 15 79
14 EtOH (MWL 300 W)  GO-DCT (8 mg) 10 86
15  EtOH (MWL 400 W)  GO-DCT (8 mg) 10 96
16 EtOH (MWL 500 W) GO-DCT (8 mg) 10 96
17 EtOH (MWL 400 W)  GO-DCT (6 mg) 10 89
18 EtOH (MWL 400 W)  GO-DCT (10 mg) 10 96
19 EtOH (MWI: 400 W) GO (12 mg) 10 81

2Reaction conditions: 2-hydroxynaphthalene-1,4-dione (1 mmol),
O-phenylenediamine (1 mmol), 4-chlorobenzaldehyde (1 mmol),
and malononitrile (1.5 mmol) as a model reaction;

b Microwave irradiation;

“Isolated yield.

Table 2. Synthesis of benzopyranophenazine derivatives.

Entry R Product Time (min) Yield (%)* m.p/°C found (reported)
1 H 5a 10 92 297-300 (298-300) [34]
2 4l 5b 10 96 200-292 (288-290) [34]
3 2l 5¢ 10 93 209-302 (301-303) [34]
4 4-Br 5d 10 97 282-284 (283-285) [34]
5 4-F 5e 10 98 273-276 (274-276) [34]
6  3-NO, 5f 10 93 277-281 (278-279) [34]
7 4-NO, 5g 10 98 280-282 (281-283) [34]
8 4-CN 5h 10 91 288-290
9 4-N(Me), 5i 15 84 261-263 (261-263) [34]
10 4-Me 5j 15 86 203-295 (293-204) [34]
11 2-OMe 5k 15 82 268-270 (270-272) [34]
12 3-OMe 51 15 84 239-241 (240-242) [34]
13 4-OMe 5m 15 82 268-269
14 24-dichloro 5n 10 97 306-309 (308-310) [34]

2Tsolated yield.
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Figure 6. XRD patterns of graphene oxide
dichlorotriazine catalyst after 5 runs.

four times with ethanol and dried at room temperature
for 24 h.

In order to investigate the structural change of
catalyst, the XRD pattern of recovered catalyst was
provided (Figure 6). The result showed that there was
no structural change after the reaction.

A proposed mechanism for the synthesis of
benzopyranophenazines using GO-DCT is shown in
Scheme 3:

(i) The initial condensation of hydroxynaphtho-
quinone with o-phenylenediamine afforded inter-
mediate T,

(ii) Knoevenagel condensation of malononitrile and
benzaldehydes formed intermediate IT;

25 (2018) 3322-3330 3327
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Figure 5. AFM of graphene oxide (a) and graphene oxide dichlorotriazine (b).

(iii) The Michael addition of intermediate I to inter-
mediate IT formed intermediate ITI, which in the
subsequent cyclization and tautomerism afforded
the corresponding products.

In this mechanism, the surface atoms of GO-DCT be-
haved as the centers where chemical reactions could be
catalytically stimulated. The proposed mechanism has
been supported in the literature [15,19,34]. Therefore,
the superior performance of GO-DCT can mainly be
attributed to many active sites such as —-OH, -COOH,
and triazines groups.

4. Conclusions

We developed a straightway and efficient method for
the preparation of benzopyranophenazines using GO-
DCT as an efficient catalyst under microwave irradia-
tion. The method offers several advantages including
rapid assembly of medicinally privileged heterocyclic
molecules, use of easily available substrates, high
yields, shorter reaction times, reusability of the cat-
alyst, low amount of catalyst, and use of microwave
irradiation as a valuable and powerful technology.
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