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Abstract. This study considers Bayesian estimation of parameters of a heterogeneous 3-
Component Mixture of Rayleigh Distributions (3-CMRD) generating a mixture of data.
Being the most popular and reasonable sampling scheme in reliability and survival
analyses, the doubly censored sampling scheme is considered in this research. The
Bayes estimators and their posterior risks were derived under various situations. In
addition, hyperparameters were elicited, and algebraic expressions for posterior predictive
distribution and Bayesian predictive intervals were derived. Assuming the informative
and the non-informative priors, a comprehensive Monte Carlo simulation was conducted
to examine the performance of the Bayes estimators under symmetric and asymmetric
loss functions. Finally, to highlight its practical importance, the proposed 3-component
mixture model was applied to doubly censored lifetime data from a real-life situation. It
was observed that in the analysis of doubly censored data in Bayesian framework, the
SRIGP paired with SELF (DLF) was a suitable choice for estimating mixing proportion
(component) parameters.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Most of the lifetime applications in survival analyses
involve making inference on the basis of censored data.
These data may be doubly, right, or left censored.
Censoring is an asset of datasets, not of parameters,
as an unavoidable aspect of the real-life applications.
In daily life, many kinds of censored data are used,
including doubly censored, right censored, and left
censored. In survival analysis, data are always subject

*. Corresponding author. Tel.: +923015237403
E-mail address: tahirqaustat@yahoo.com (M. Tahir)

doi: 10.24200/sci.2018.20606

to censoring. When the survival time is larger (smaller)
than the observed left (right) censoring time, the
sampling scheme is called left (right) censoring scheme.
It is interesting to note that in left censoring sampling
scheme, one can only have the information that the
survival time is larger than or equal to the observed left
censoring time. When both the �nal and initial times
are interval-censored, it is a doubly censoring sampling
scheme and the data obtained are thus called doubly
censored data. Valuable accounts of doubly censoring
sampling scheme for simple and mixture distributions
have been given by Fernandez [1], Khan et al. [2], Kim
and Song [3], Khan et al. [4], Pak et al. [5], Feroze and
Aslam [6], and Sindhu et al. [7].

The Rayleigh distribution has been successfully
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used as a lifetime distribution, especially when lifetime
of an item depends on its age. It is commonly used
as a suitable lifetime model in reliability engineering
and physics. For example, it has been considered
in the modeling of wave heights [8], light and sound
energy [9], wind power and radio motions [10], ultra-
sound image [11], etc. In such studies, it is reasonable
to assume that lifetime of a given object depends
upon its age. Besides the applications in physics, the
Rayleigh distribution has received reasonable attention
in reliability analysis and probability theory. It seems
acceptable to state that in modeling the lifetimes of
items, the Rayleigh distribution is a better choice than
many others.

Mixture models play an active role in di�erent
real-life studies. Using mixture models when the
data are assumed only from mixture models is called
mixture distributions with direct application. They
have been used fruitfully in many areas like industrial
engineering [12], biology [13], social sciences [14], eco-
nomics [15], life testing [16], reliability analysis [17],
etc. Even when available data are considered to be
generated from a mixture of two or more distributions,
mixture models are useful. This motivated us to mix
two or more statistical models to get a new mixture
model and make Bayesian inference. For a successful
Bayesian inference, we sought help from Santos [18],
Al-Hussaini and Hussein [19], Mohammadi and Salehi-
Rad [20], Ahmad and Al-Zaydi [21], Mohammadi
et al. [22], Ali [23], Ateya [24], Mohamed et al.
[25], and Zhang and Huang [26]. Speci�cally, we
plan to develop a 3-CMRD under doubly censored
sampling scheme for e�cient modeling of the given
lifetime data. The Bayesian inference is made us-
ing the Uniform Prior (UP) and the Je�reys' Prior
(JP) as Non-Informative Priors (NIPs), and Inverted
Chi-square Prior (ICP) and Square Root Inverted
Gamma Prior (SRIGP) as Informative Priors (IPs)
under three loss functions, namely, PLF (precautionary
loss function), SELF (Squared Error Loss Function),
and DLF (DeGroot Loss Function). To accomplish
the task, the direct application of mixture models is
considered.

The remainder of this study is arranged as follows.
The 3-CMRD is given in Section 2. Section 3 is about
developing the likelihood for censored data. Sections 4
and 5 are devoted to derivation of joint and marginal
posterior distributions, respectively. Elicitation of
hyper parameters is considered in Section 6. Bayes
Estimators (BEs) and associated Posterior Risks (PRs)
are derived in Section 7. Section 8 studies the use of
posterior predictive distributions and Bayesian predic-
tive intervals. For illustrative purposes, a Monte Carlo
simulation study is performed in Section 9. Sections 10
and 11 consist in a real-life example and concluding
remarks, respectively.

2. The 3-component mixture model

The probability density function (pdf) of a �nite 3-
CMRD with unknown component parameters �j (j =
1; 2; 3) and mixing proportions pk (k = 1; 2) is:
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3. The doubly censored sampling scheme

Assume n units are used in a real-life experiment from
a 3-CMRD. Let yr; yr+1; :::; yw be the only ordered
values that can be pointed out. The remaining r � 1
smaller values and n�w larger values are assumed to be
censored. The failed items can be observed as a subset
of either the 1st or 2nd or 3rd subpopulation. Let
y1r1 ; :::; y1w1 , y2r2 ; :::; y2w2 , and y3r3 ; :::; y3w3 be failed
values belonging to the 1st, 2nd, and 3rd subpop-
ulations, respectively. The remaining values, which
are smaller than yr and larger than yw, are assumed
to be censored from each component, where yr =
min (y1r1 ; y2r2 ; y3r3) and yw = max (y1w1 ; y2w2 ; y3w3).
Also, the numbers of failed values, s1 = w1�r1+1, s2 =
w2�r2 +1, and s3 = w3�r3 +1, can be observed from
the 1st, 2nd, and 3rd subpopulations, respectively. The
remaining n� (w � r + 3) values are taken as censored
and w�r+3 are considered as uncensored values. Also,
by setting, we have r = r1 + r2 + r3, w = w1 +w2 +w3,
and s = s1 + s2 + s3. Now, using the above nota-
tions, the likelihood function for doubly censored data
y = f(y1r1 ; :::; y1w1) ; (y2r2 ; :::; y2w2) ; (y3r3 ; :::; y3w3)g,
coming from a 3-component mixture model, is given
by:
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Speci�cally, the likelihood function from a 3-CMRD for
the doubly censored data is given by:
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After simpli�cation, the above likelihood function may
be written as:
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4. The joint and marginal posterior
distributions

The joint posterior distributions giving the doubly
censored data y are presented using two NIPs (UP and
JP) and two IPs (ICP and SRIGP).

4.1. The Uniform Prior (UP)
There are situations in which little prior knowledge
on the parameter(s) of interest is available. In these
situations, the UP and the JP are used as suit-
able non-informative priors. We take the improper
UP for the unknown component parameters �j , i.e.,
�j � uniform (0;1), j = 1; 2; 3, and the UP for
the unknown proportion parameters pk, i.e., pk �
uniform (0; 1), k = 1; 2. Thus, the joint prior
distribution of parameters �j and pk is:

�1 (
) / 1; �j > 0; pk � 0;
2X
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pk � 1: (5)

Now, given y, using the UP, the joint posterior distri-
bution of parameters �j and pk is de�ned as shown in
Box I. Substituting the relative expressions in Eq. (6),
we obtain Eq. (7) shown in Box II, where:
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Box I
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4.2. The Je�reys' Prior (JP)
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Given y, the joint posterior distribution of parame-
ters �j and pk is de�ned by Eq. (9) as shown in Box III.
On substituting the relevant likelihood and prior distri-
butions in (9), the joint posterior distribution is given
by Eq. (10) as shown in Box IV, where:
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4.3. The Inverted Chi-square Prior (ICP)
When de�nite prior knowledge is given, it is quanti�ed
into an IP distribution. The ICP is assumed, as
an IP, for the unknown component parameters �j ,
i.e., �j � IC (aj ; bj), j = 1; 2; 3. The bivariate
beta prior is considered for the unknown proportion
parameters, i.e., (p1; p2) � Biv Beta (a; b; c). The
joint prior distribution of �j and pk is obtained by
Eq. (11) as shown in Box V. Given y, the joint posterior
distribution of parameters using the ICP is de�ned by
Eq. (12) as shown in Box VI. The speci�c form of the
joint posterior distribution is obtained by Eq. (13) as
shown in Box VII, where:
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4.4. The posterior distribution using the
square root inverted gamma prior

The Square Root Inverted Gamma Prior (SRIGP) is
taken as an IP for the unknown component param-
eters �j , i.e., �j � SRIG (aj ; bj), j = 1; 2; 3, and
the bivariate beta prior is assumed for the unknown
proportion parameters pk (k = 1; 2), i.e., (p1; p2) �
Biv Beta (a; b; c). The joint prior distribution of
parameters �j and pk is obtained by Eq. (14) as shown
in Box VIII. Given y, the joint posterior distribution
of parameters �j and pk is now de�ned by Eq. (15)
as shown in Box IX. The �nal expression for the joint
posterior distribution is now derived by Eq. (16) as
shown in Box X, where:
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5. The marginal posterior distributions

Given y, the marginal posterior distributions of pa-
rameters �j and pk assuming the NIPs and the IPs
are derived by Eqs. (17) and (18) as shown in Box XI,
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Box X
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Box XI

h� (p� jy ) =
Z 1�p�

0

Z 1
0

Z 1
0

Z 1
0

g� (
 jy )

d�1d�2d�3dp� ; (19)

Eq. (20) is shown in Box XII, where � and � take
di�erent values as:

(i) � = 1; � = 2;� = B; and � = A;
(ii) � = 1; � = 2;� = A; and � = B.

Also, � = 1 for the UP, � = 2 for the JP, � = 3 for
the ICP, and � = 4 for the SRIGP.

6. Elicitation

Elicitation is used to enumerate prior professional in-
formation of a person about some unknown quantity of
interest and it can be utilized to improve any numerical
data that we may have. Under Bayesian paradigm,
elicitation and speci�cation of the prior distribution
is a very complicated and common problem. In
Bayesian framework, elicitation mostly rises as a tool
of identifying the prior distribution for a parameter,
which is random. In various sampling models, di�erent
methods for speci�cation of thoughts to determine the
hyperparameters have been developed. For elicitation
of hyperparameters, there are many methods given in
the literature.

To elicit (determine) a prior distribution,
Aslam [27] developed some criteria dependent on the
Prior Predictive Distribution (PPD). He used con-
�dence level, predictive mode, and predictive prob-
abilities for eliciting hyperparameters. The general
criterion of judgment is to associate the PPD with
the assessment of the expert and select hyperparam-
eters that make the judgment agree strictly with a
member of the family. Then, following the laws of
probability, the professional should be consistent with
the determining probabilities. Certain contradictions
may occur, which are not important. The function
� (!1; !2) can be used for elicitation of hyperparam-

eters !1 and !2 as � (!1; !2) = min
!1;!2

P
z

n
p(z)�p0(z)

p(z)

o2
,

where p(z) represents the predictive probabilities con-
sidered by !1 and !2, which are hyperparameters,
and p0(z) indicates the determined predictive proba-
bilities. Now, for eliciting the hyperparameters, the
above equations are solved simultaneously through
Mathematica software. Thus, in this article, a method
based on predictive probabilities is used. The PPDs
given in Eqs. (22) and (24) are used for eliciting
the hyperparameters of the ICP and SRIGP, respec-
tively.

6.1. Elicitation for the ICP
The PPD using the ICP is derived as:

h� (p� jy ) =

1
8	�
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B�A1�
1� B�A2�
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� (1� p�)�0�+C0��1
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Box XII
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p (y) =
Z 1

0

Z 1�p2

0

Z 1
0

Z 1
0

Z 1
0

f (y j
 )�`3 (
)

d�1d�2d�3dp1dp2; (21)

p (y) =
1

(a+ b+ c)

(
aa1b

a1
2

1 y

(b1 + y2)
a1
2 +1

+
ba2b

a2
2

2 y

(b2 + y2)
a2
2 +1

+
ca3b

a3
2

3 y

(b3 + y2)
a3
2 +1

)
:

(22)

Using the above PPD Eq. (22), 9 integrals for the
limits of values of random variable Y , i.e., 1/2 � y � 1,
1 � y � 3/2, 3/2 � y � 2, 2 � y � 5/2, 5/2 �
y � 3, 3 � y � 7/2, 7/2 � y � 4, 4 � y � 9/2,
and 9/2 � y � 5 are considered with probabilities
0.26, 0.24, 0.15, 0.10, 0.05, 0.03, 0.02, 0.01, and
0.005, respectively. It is worth mentioning that these
probabilities might have been taken from the opinion
of expert(s) about the likelihood of the considered
intervals. Also, various intervals could be considered.
These 9 derived equations are simultaneously solved
using Mathematica software. Using the methodology
de�ned above, the values of hyperparameters are a1 =
4:87245, b1 = 4:61091, a2 = 4:42412, b2 = 4:18569,
a3 = 3:89641, b3 = 3:76739, a = 2:16005, b = 3:88109,
and c = 3:09061.

6.2. Elicitation for the SRIGP
The PPD for a random variable, Y , using the SRIGP
is obtained as:

p (y) =
Z 1

0

Z 1�p2

0

Z 1
0

Z 1
0

Z 1
0

f (y j
 )�4 (
)

d�1d�2d�3dp1dp2; (23)

p (y)=
1

(a+ b+ c)

(
aa1ba1

1 y�
b1 + y2

2

�a1+1 +
ba2ba2

2 y�
b2 + y2

2

�a2+1

+
ca3ba3

3 y�
b3 + y2

2

�a3+1

)
:

(24)

Using the procedure de�ned above, we obtain
the values of hyperparameters as a1 = 4:54009, b1 =

4:12418, a2 = 4:75611, b2 = 4:42104, a3 = 3:97389,
b3 = 3:830018, a = 9:09837, b = 5:91833, and c =
6:84910.

7. Bayes estimators and posterior risks

In this section, the PLF, SELF, and DLF are used
to acquire BEs and their PRs assuming the di�erent
prior distributions. Legendre [28] de�ned the SELF as

L
�
�;  ̂

�
=
�
��  ̂�2

, which is a symmetric loss func-
tion. Norstrom [29] de�ned PLF as an asymmetric loss

function by L
�
�;  ̂

�
=  ̂�1

�
��  ̂�2

. DeGroot [30]

de�ned a loss function of L
�
�;  ̂

�
=  ̂�2

�
��  ̂�2

.
Table 1, given below, provides the general expressions
of the BEs and their PRs.

7.1. The BEs and PRs under SELF assuming
the UP, JP, ICP, and SRIGP

The respective marginal posterior distribution yields
the algebraic expressions for BEs and PRs for param-
eters �j and pk under SELF as shown in Box XIII.

7.2. The BEs and PRs under PLF assuming
the UP, JP, ICP, and SRIGP

The algebraic expressions of BEs and PRs for pa-
rameters �j and pk under PLF are derived with the
corresponding marginal posterior distribution as shown
in Box XIV.

7.3. The BEs and PRs under DLF assuming
the UP, JP, ICP, and SRIGP

The respective marginal posterior distribution yields
the algebraic expressions for BEs and PRs for param-
eters �j and pk under DLF as shown in Box XV.

8. Posterior predictive distribution and
Bayesian predictive interval

The posterior predictive distribution (ppd) is the
distribution for a future value, say Yn+1, based on
the already observed sample vector y. Given doubly
censored data, say y, the ppd for Yn+1 is obtained by
Eqs. (37) and (38) as shown in Box XVI.

For constructing a Bayesian Predictive Interval
(BPI), suppose that L and U are the two endpoints of
BPI. A 100(1 � )% BPI can be constructed through

Table 1. BEs and PRs under SELF, PLF, and DLF.

Loss function Bayes estimators Posterior risks

SELF = L
�
�;  ̂

�
=
�
��  ̂�2

 ̂ = E�jy (�) �
�
 ̂
�

= E�jy
�
�2�� �E�jy (�)

�2
PLF = L

�
�;  ̂

�
=  ̂�1

�
��  ̂�2

 ̂ =
�
E�jy

�
�2��1/2 �

�
 ̂
�

= 2
�
E�jy

�
�2��1/2 � 2E�jy (�)

DLF = L
�
�;  ̂

�
=  ̂�2

�
��  ̂�2

 ̂ = E�jy
�
�2��E�jy (�) �

�
 ̂
�

= 1� �E�jy (�)
	2
.
E�jy

�
�2�
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Box XIII

the ppd de�ned in Eq. (38) as:
LZ

0

f (yn+1 jy ) dyn+1 =

2
; and

1Z
U

f (yn+1 jy ) dyn+1 =

2
:

After simpli�cation, the BPI (L;U) can be acquired by
using Eqs. (39) and (40) as shown in Box XVII.

9. Monte Carlo simulation

It is well clear from the algebraic expressions of Bayes
estimator and posterior risks de�ned in Section 7 that
it is di�cult to analytically compare di�erent Bayes
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Box XIV

estimators. The Bayes estimators considered in this
study may be compared numerically by using Monte
Carlo simulations. Through a Monte Carlo simula-
tion study, the Bayes estimators are compared under
various loss functions, priors, sample sizes, left and
right test termination times, and parametric values.

For each of the �ve unknown parameters �j and pk
in a 3-CMRD, simulated BEs and PRs are reported in
Tables 2-4 using the following simulation technique:

1. Consider that sample size n is �xed. Using the
Mathematica software, a sample from the mixture
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Box XV
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Box XVI

distribution is generated as follows:

(i) Assuming f1 (y;�1) = y
�2

1
exp

�� y2

2�2
1

�
, gener-

ate np1 random values;

(ii) Assuming f2 (y;�2) = y
�2

2
exp

�� y2

2�2
2

�
, gener-

ate np2 random values;

(iii) Assuming f3 (y;�3) = y
�2

3
exp

�� y2

2�2
3

�
, gen-

erate the remaining n (1� p1 � p2) random
values.

2. Take a sample censored at �xed test termination
times on left test termination time yr and right test
termination time yw;

3. Select values which are less than yr and greater than
yw as censored ones;

4. Using the censored sample selected through the
steps 1-3, calculate BE �̂i and PR �

�
�̂i
�

by solving
Eqs. (25)-(36);

5. Repeat steps 1-4, 500 times;

6. Calculate the simulated BEs and their simulated
PRs as �̂ = 1

500

500P
i=1

�
�̂i
�

and �
�
�̂
�

= 1
500

500P
i=1

�
�
�̂i
�

,

respectively;

7. Repeat steps 1-6 for sample size n = 40; 80; 140 with
parameters (�1; �2; �3; p1; p2) 2 (13; 11; 9;0:4; 0:4)

and left and right test termination times (yr; yw) 2
(2; 30).

From the simulated results arranged in Tables 2-
4, it is noticed that the amount of under-estimation
(and/or over-estimation) of parameters �j and pk
assuming di�erent NIPs and IPs under symmetric loss
function (SELF) and asymmetric loss functions (PLF
and DLF) is smaller for larger sample sizes with �xed
yr and yw. Also, the degree of over-estimation (and/or
under-estimation) of parameters �j and pk is grater for
larger yr and smaller yw values. The di�erences of the
BEs of parameters �j and pk from their assumed values
decrease to zero by increasing the sample size.

The PR of the BE is a notable measure for the as-
sessment of the performance of the BEs. It is observed
that the amounts of PRs of the BEs of parameters �j
and pk using di�erent prior loss functions considered
in this study are inversely proportional to sample size
for �xed left test termination time yr and right test
termination time yw.

When selecting a suitable prior, it is observed that
the IP (ICP and SRIGP) is a more e�cient prior than
the NIP under the considered loss functions. Also,
it is evident that the SRIGP (JP) materializes as the
preeminent prior compared to the ICP (UP) amongst
the di�erent IPs (NIPs) due to smaller associated
PR. On the other hand, in estimating the component
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and:
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Box XVII

parameters �j , the DLF shows superior performance
to SELF and PLF, whereas SELF shows better perfor-
mance then the other two loss functions in estimating
the proportion parameters pk. Selecting the best loss
function and prior has no dependency on sample sizes
yr and yw. However, it is noteworthy that choosing
the loss function (prior) with a prior (loss function) is
dependent on the amount of PRs associated with it.

10. Example of real data

G�omez et al. [31] reported real data on the life of weak
crack of Kevlar 373/epoxy, which was subject to �xed
force at the 90% stress level until it thoroughly failed.

G�omez et al. [31] revealed that the mixture data z could
be shown by exponential distribution. For exponential
random mixture data (z), the transformation y =p

2z provides the Rayleigh random mixture data (y).
Therefore, as this transformation agrees well with our
�ndings, we can apply the mixture data of G�omez
et al. [31] to the proposed Bayesian methodology.
To illustrate the proposed methodology, the data are
randomly grouped into three sets of values with 26
values belonging to the 1st subpopulation, 25 values
belonging to the 2nd subpopulation, and 25 values
belonging to 3rd subpopulation. Now, we have the
situation in which the mixture data are doubly cen-
sored. To implement censored sampling, z1r1 ; :::; z1w1 ,
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Table 2. BEs and PRs of 3-CMED under SELF with parameters �1 = 13; �2 = 11; �3 = 9; p1 = 0:4; and p2 = 0:4.

yr; yw n Prior distribution �̂1(SELF ) �̂2(SELF ) �̂3(SELF ) p̂1(SELF ) p̂2(SELF )

2, 30

40

UP
BE 13.33840 11.46070 9.979170 0.390525 0.396327

PR 4.369720 3.121660 5.685300 0.005761 0.005754

JP
BE 12.86390 11.27800 9.783080 0.391943 0.397957

PR 3.821840 2.873360 4.990160 0.005721 0.005720

ICP
BE 11.80070 10.49960 8.257880 0.366211 0.397800

PR 2.793170 2.200540 2.716760 0.004559 0.004692

SRIGP
BE 11.13290 9.501270 7.243980 0.427406 0.342300

PR 2.067660 1.513920 1.464150 0.003814 0.003505

80

UP
BE 13.12030 11.30900 9.510120 0.394990 0.398038

PR 1.991010 1.486130 2.178200 0.003046 0.003040

JP
BE 12.92660 11.20420 9.323220 0.395260 0.398459

PR 1.861470 1.417360 1.984710 0.003027 0.003031

ICP
BE 12.38550 10.68930 8.626310 0.381692 0.398773

PR 1.578580 1.209790 1.458730 0.002678 0.002708

SRIGP
BE 11.82570 10.26080 8.099090 0.416901 0.365138

PR 1.316480 1.019100 1.062860 0.002391 0.002278

140

UP
BE 13.07193 11.18586 9.392980 0.396800 0.399156

PR 1.263000 0.954000 1.324000 0.002077 0.002071

JP
BE 12.95280 11.09090 9.208700 0.397699 0.399242

PR 1.246000 0.944000 1.229000 0.002073 0.002065

ICP
BE 12.52868 10.89802 8.762496 0.386731 0.399186

PR 1.106822 0.870031 0.974588 0.001896 0.001911

SRIGP
BE 12.33457 10.41274 8.334605 0.413209 0.373871

PR 0.982727 0.736358 0.772555 0.001744 0.001681
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Table 3. BEs and PRs of 3-CMED under PLF with parameters �1 = 13; �2 = 11; �3 = 9; p1 = 0:4; and p2 = 0:4.

yr; yw n Prior distribution �̂1(PLF ) �̂2(PLF ) �̂3(PLF ) p̂1(PLF ) p̂2(PLF )

2, 30

40

UP
BE 13.39110 11.45110 10.35580 0.398138 0.404467

PR 0.303573 0.253295 0.520760 0.014644 0.014390

JP
BE 13.25400 11.39070 9.934260 0.398041 0.403746

PR 0.300589 0.250244 0.476557 0.014512 0.014216

ICP
BE 11.89710 10.53390 8.447830 0.373705 0.402624

PR 0.231132 0.205001 0.299366 0.012359 0.011751

SRIGP
BE 11.00500 9.726970 7.428160 0.430554 0.348558

PR 0.181545 0.158089 0.195688 0.008908 0.010163

80

UP
BE 13.14930 11.34840 9.674050 0.398764 0.403144

PR 0.142221 0.124301 0.215089 0.007606 0.007528

JP
BE 13.05410 11.18350 9.474640 0.399227 0.403078

PR 0.142092 0.123109 0.210275 0.007580 0.007505

ICP
BE 12.37780 10.81110 8.698990 0.384788 0.402108

PR 0.126007 0.111468 0.160471 0.006991 0.006754

SRIGP
BE 11.99510 10.20380 8.095940 0.420207 0.366766

PR 0.111184 0.097178 0.125259 0.005720 0.006231

140

UP
BE 13.07060 11.31620 9.385300 0.399170 0.403120

PR 0.097000 0.086000 0.133000 0.005210 0.005140

JP
BE 12.98190 11.18812 9.236380 0.399596 0.403001

PR 0.095540 0.084440 0.127500 0.005205 0.005128

ICP
BE 12.53180 10.92642 8.863021 0.389835 0.401886

PR 0.087255 0.078797 0.108817 0.004884 0.004767

SRIGP
BE 12.22169 10.49760 8.367542 0.414654 0.376752

PR 0.078975 0.070002 0.088693 0.004224 0.004486
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Table 4. BEs and PRs of 3-CMED under DLF with parameters �1 = 13; �2 = 11; �3 = 9; p1 = 0:4; and p2 = 0:4.

yr; yw n Prior distribution �̂1(DLF ) �̂2(DLF ) �̂3(DLF ) p̂1(DLF ) p̂2(DLF )

2, 30

40

UP
BE 13.44550 11.73720 10.69460 0.403827 0.412936

PR 0.023118 0.022182 0.050456 0.036722 0.035164

JP
BE 13.30780 11.51810 10.08720 0.403184 0.411814

PR 0.022265 0.021672 0.045749 0.036399 0.035092

ICP
BE 12.18270 10.45980 8.567050 0.379911 0.408243

PR 0.018709 0.018640 0.033179 0.032853 0.029963

SRIGP
BE 11.17940 9.697940 7.428130 0.435719 0.352969

PR 0.015748 0.015472 0.024486 0.020509 0.028010

80

UP
BE 13.15920 11.42870 9.783750 0.402739 0.406934

PR 0.011135 0.011192 0.022317 0.019267 0.018736

JP
BE 13.05000 11.31450 9.569450 0.402929 0.406882

PR 0.011112 0.011120 0.021650 0.019104 0.018716

ICP
BE 12.48150 10.82950 8.738990 0.388961 0.405646

PR 0.010194 0.010335 0.017825 0.018099 0.016851

SRIGP
BE 12.09400 10.28450 8.133410 0.422726 0.371004

PR 0.009248 0.009396 0.014753 0.013615 0.016796

140

UP
BE 13.10719 11.27572 9.436629 0.402564 0.405187

PR 0.007248 0.007399 0.013894 0.012938 0.012736

JP
BE 13.10140 11.15356 9.357930 0.402339 0.404606

PR 0.007240 0.007360 0.013670 0.012920 0.012680

ICP
BE 12.67745 10.83887 8.955196 0.392153 0.404140

PR 0.006939 0.007182 0.012190 0.012526 0.011917

SRIGP
BE 12.37931 10.49015 8.399147 0.417437 0.378596

PR 0.006451 0.006651 0.010473 0.010140 0.011871
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z2r2 ; :::; z2w2 , and z3r3 ; :::; z3w3 failed values belonging
to the 1st, 2nd, and 3rd subpopulations, respectively,
are considered. The remaining values greater than 3.4
and less than 0.5 are taken to be censored from each
population such that zr = min (z1r1 ; z2r2 ; z3r3) = 0:5
and zw = max (z1w1 ; z2w2 ; z3w3) = 3:4, whereas the
numbers of failed values s1 = w1 � r1 + 1 = 19,
s2 = w2 � r2 + 1 = 20, and s3 = w3 � r3 + 1 = 19 can
be observed in subpopulations 1, 2, and 3, respectively.
The remaining n�(w � r + 3) = 18 values are censored
values and w � r + 3 = 58 are the uncensored values
such that r = r1 + r2 + r3, w = w1 + w2 + w3, and
s = s1 + s2 + s3. The total number of tests conducted
is 76, i.e., n = 76. The data are summarized as follows:

n1 = 26; r1 = 4; w1 = 22;

s1 = w1 � r1 + 1 = 19;

y2
1r1 = 2z1r1 = 1; y2

1w1
= 2z1w1 = 6:8;

w1X
i=r1

y2
1i = 2

w1X
i=r1

z1i = 61:0512;

n2 = 25; r2 = 3; w2 = 22;

s2 = w2 � r2 + 1 = 20;

y2
1r1 = 2z1r1 = 1; y2

1w1
= 2z1w1 = 6:8;

w2X
i=r2

y2
2i = 2

w2X
i=r2

z2i = 63:9028;

n3 = 25; r3 = 3; w1 = 21;

s3 = w3 � r3 + 1 = 19;

y2
1r1 = 2z1r1 = 1; y2

1w1
= 2z1w1 = 6:8;

w3X
i=r3

y2
3i = 2

w3X
i=r3

z3i = 59:4332;

n = n1 + n2 + n3 = 76;

r = r1 + r2 + r3 = 10;

w = w1 + w2 + w3 = 65; and

s = s1 + s2 + s3 = 58:

Since n � (w � r + 3) = 18, we have 23.68% doubly
censored sample.

It can be seen that the results for real data ,
given in Table 5, coincide with the simulated results.
Thus, the performance of the SRIGP is the best among

all the considered NIPs (UP and JP) and IPs (ICP
and SRIGP) by having the minimum amounts of PRs
for the BEs. Also, it is noticed that the results are
comparatively more precise for the JP (SRIGP) than
for the UP (ICP) among the NIPs (IPs) under SELF,
PLF, and DLF. Moreover, it can be seen that SELF
(DLF) performs better than DLF and PLF (SELF and
PLF) in estimating mixing proportion parameters pk
(component parameters �j).

A BPI is an interval related to a variable yet to be
detected, with a quanti�ed probability of the variable
lying in the interval. Using the above data, 90% BPI
for weak crack of Kevlar 373/epoxy subject to �xed
force at 90% stress level in the future, assuming NIP
and IP, is presented in Table 6.

When an NIP is to be used, the BPIs for the
JP are narrower than for the UP. Similarly, when IPs
are available, the BPIs for the SRIGP are narrower
than for the ICP. The Bayesian prediction intervals are
narrower with IPs (ICP or SRIGP) than with NIPs
(UP or JP).

11. Concluding remarks

Under doubly censoring sampling scheme, we con-
sidered the Bayesian analysis of 3-CMRD to model
lifetime data. The Monte Carlo simulation study and
real life application led to the following conclusions.

From the simulated results given in Tables 2-
4, increase in sample size resulted in improved Bayes
estimators of parameters �j and pk. Although Bayes
estimators either overestimated or underestimated the
parameters, the amounts of over-estimation and/or
under-estimation for parameters �j and pk were quite
higher (lower) with relatively smaller (larger) sam-
ple sizes for �xed left and right test termination
times. Similarly, sample size and test termination
times a�ected the PRs. Speci�cally, as sample size
increased (decreased), the amounts of posterior risks
of Bayes estimators of parameters �j and pk decreased
(increased) for �xed test termination times. This
observation held for each loss function considered in
this study, no matter which prior was used. However,
the SELF (DLF) was proven to be the preferable
choice for estimating mixing proportion (component)
parameters.

As an overall conclusive statement, we can say
that in the Bayesian estimation of parameters under
doubly censoring sampling scheme, the SRIGP paired
with DLF was the preferable option to estimate �j
and the SRIGP paired with SELF was the suitable
choice to estimate pk. Also, the results given in
Tables 5 and 6, which were achieved for real-life
mixture data, were compatible with the results of
the simulation study, showing the correctness of the
simulation scheme.
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Table 5. BEs and PRs of 3-CMED under SELF, PLF, and DLF with real-life data.

Prior Loss function �̂1 �̂2 �̂3 p̂1 p̂2

SELF

UP
BE 1.88287 1.93224 1.91006 0.32644 0.34565

PR 0.04975 0.05210 0.05392 0.00364 0.00376

JP
BE 1.86053 1.90956 1.88617 0.32643 0.34571

PR 0.04758 0.04984 0.05145 0.00364 0.00376

ICP
BE 1.77120 1.83070 1.81269 0.31700 0.35193

PR 0.03793 0.04073 0.04255 0.00310 0.00329

SRIGP
BE 1.72387 1.74247 1.74344 0.36969 0.31738

PR 0.03257 0.03286 0.03546 0.00283 0.00263

PLF

UP
BE 1.89603 1.94567 1.92413 0.33197 0.35104

PR 0.02633 0.02687 0.02813 0.01105 0.01080

JP
BE 1.87327 1.92256 1.89976 0.33196 0.35111

PR 0.02549 0.02601 0.02718 0.01105 0.01080

ICP
BE 1.78188 1.84179 1.82439 0.32185 0.35657

PR 0.02135 0.02218 0.02340 0.00970 0.00928

SRIGP
BE 1.73329 1.75187 1.75358 0.37350 0.32149

PR 0.01884 0.01881 0.02028 0.00762 0.00824

DLF

UP
BE 1.90929 1.95920 1.93829 0.33759 0.35653

PR 0.01384 0.01376 0.01456 0.03302 0.03052

JP
BE 1.88610 1.93566 1.91344 0.33758 0.35660

PR 0.01356 0.01348 0.01426 0.03304 0.03054

ICP
BE 1.79262 1.85295 1.83616 0.32678 0.36127

PR 0.01195 0.01201 0.01278 0.02992 0.02585

SRIGP
BE 1.74276 1.76133 1.76378 0.37734 0.32566

PR 0.01084 0.01071 0.01153 0.02029 0.02545

Table 6. BPI (L;U) of the 3-CMRD with real life data.

UP JP ICP

L U L U L U SRIGP

0.60114 4.78425 0.59415 4.72487 0.56980 4.51303 0.54853 4.32760
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