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1. Introduction

Abstract. In a Friction Stir Spot Welding (FSSW) process, welding parameters (the
tool rotational speed, tool plunge depth, and stirring time) affect the nugget formation
in high-density polyethylene (HDPE) sheets. The size and microstructure of the nugget
determine the resistance of the joint to outer forces. The optimization of these parameters
is vital to obtaining high-quality welds. Feed forward back-propagation artificial neural
network models are developed to optimize the FSSW parameters for HDPE sheets. Input
variables of these models include tool rotation speed (rpm), the plunge depth (mm), and
the stirring time (s) that affect lap-shear fracture load (N) output. Prediction performances
of 6 models in different specifications are compared. These models differ in terms of the
training dataset used (80%-100%) and the number of neurons (5-10-20) in a hidden layer.
The best prediction performances are obtained using 20 neurons in a hidden layer in both
training dataset. There is good agreement between developed models’ predictions and the
experimental data.

(© 2018 Sharif University of Technology. All rights reserved.

and stirring time determine the size, characteristics
of the nugget, and the mechanical properties of weld

In the automotive industry, aluminium alloys and
aluminium composite parts are widely used in the body
structure of cars accounting for 20% of the total weight
of the vehicle [1]. The automotive industry invented
the Friction Stir Spot Welding (FSSW) process in 2001
to join aluminium parts together [1]. This welding
process was successfully applied to thermoplastic sheets
[2]. The FSSW process is applied to thermoplastic
sheets in four stages: (1) plunging, (2) stirring, (3)
solidifying, and (4) retracting [3-5]. At the end of the
operation, a nugget forms which joins the workpieces
together. The tool rotation speed, its plunged depth,
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joints [4,5].

Recently, in the field of joining materials,
computer-aided Artificial Neural Network (ANN) mod-
elling has gained increasing importance. Controlling
the welding parameters and mechanical properties of
welds are important problems in welding processes [6].
ANN models have a wide range of applications regard-
ing optimization of welding parameters and analysis
of quality control specifications [7-12]. Based on the
literature examinations, there are very few number of
studies on optimization of welding parameters of FSSW
thermoplastic sheets. There are 2 applications of the
Taguchi method [13,14] and an ANN application [15].
In this ANN-based paper, only two welding parameters
were studied. The present study makes an attempt to
use ANN modelling to optimize FSSW parameters of
HDPE sheets.
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2. Materials and methods

HDPE sheets with 4 mm thickness were used in this
study. A semi-automatic milling machine was used
to weld the sheets. The lap-shear test is the most
common weld test for spot welds. Therefore, lap-shear
test specimens were produced by the milling machine.
In lap-shear tests, fracture loads were identified. The
fracture load determines the weld quality of a spot
weld. A high fracture load indicates that a high-quality
spot weld has been produced in the joining operation.
Table 1 displays how the welding parameters vary in
this research. In each welding operation, the stirring
tool immerged into the weld area with a 3.3 mm/s
plunging rate. The deviation limits of the plunging
depth varied within £+ 0.01 mm. All the welds were
produced without preheating. In each welding, 50-
second constant dwell time was used. Moreover,
192 welds were produced with 64 different welding
parameters. By each welding parameter, 3 welds were
produced. The tests were planned to determine the
effects of tool plunge depth, rotation speed, and stirring
time on polyethylene FSSW lap-shear fracture load.
The lap-shear tests were done on an Instron machine
at a constant crosshead speed of 5 mm/s. For each
of welding parameters, 3 tests were done and the
arithmetic average was calculated.

3. Results and discussion

The relations between FSSW parameters (welding
stirring time, plunge depth, and tool rotational speed)
and lap-shear fracture load of HDPE welds are shown
in Figures 1, 2, and 3, respectively. The graphics were
drawn by using the calculated arithmetic averages of
the lap-shear fracture loads. Each point on the graph
represents the average fracture load of three welds
produced with the same welding parameters. The
effects of welding parameters on the lap-shear fracture
load are not explained in this paper, because other
authors have already investigated them in detail [3,4].

4. Developed artificial neural network models

In this study, 6 ANN models are developed including
three input variables: tool rotation speed (rpm), plunge
depth (mm), and dwell time (s), which affect the Lap-
shear fracture load (N) output. Feed forward back-
propagation ANN models are used to predict the Lap-
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Figure 1. The effect of stirring time on lap-shear tensile
fracture load.
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Figure 2. The effect of tool rotational speed on lap-shear
tensile fracture load.
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Figure 3. The effect of plunged depth on lap-shear
tensile fracture load.

shear fracture load. A sample dataset of laboratory
experiments is shown in Table 2. The input-output
data can be actual or normalized. It is obvious that
using normalized data leads to better results. Dataset
is normalized using Eq. (1):

X = (Xi— X min)/(X max —X min)

X = Normalized data

Xi = Actual data

X min = Minimum value of actual data

X max = Maximum value of actual data (1)

Table 1. Welding parameters and their ranges.

Welding parameters

Units

Ranges

Tool plunge depth
Tool rotation speed

Stirring time

Millimeter (mm)
Round per minute (rpm)

Seconds (s)

0.1-02-03-04
560 - 710 - 900 - 1200
15-25-35-45
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Table 2. Sample dataset from laboratory experiments.

Inputs Outputs
Tool Plunge Dwell
Data No. rotation . Lap-shear fracture load
speed depth time
Experiment 1 Experiment 2 Experiment 3

1 560 0.1 25 400 500 450
2 560 0.3 25 800 800 900
3 710 0.1 45 2198 2306 2434
4 900 0.2 35 2459 2824 2300
5 900 0.4 15 1000 900 780
6 1120 0.2 25 2330 2600 2560
7 560 0.1 35 715 785 850
8 1120 0.1 25 900 1200 1350
9 710 0.4 35 2210 1923 2100
64 900 0.4 45 2760 2838 2976

Table 3. Normalized dataset sample of laboratory experiments.

Inputs

Outputs

Tool rotation speed Plunge depth Dwell time

Lap-shear fracture load

0.001779359 0.125
0.268683274 0.875
0.606761566 0.625
0.998220641 0.625
0.001779359 0.125
0.268683274 0.375
0.606761566 0.625
0.998220641 0.625
0.268683274 0.625
0.606761566 0.375
0.998220641 0.625

0.125 0.002976190
0.375 0.389880952
0.625 0.671130952
0.125 0.122023810
0.875 0.406547619
0.125 0.251190476
0.625 0.627976190
0.625 0.583333333
0.125 0.235119048
0.875 0.913095238
0.125 0.190476190

Six ANN models, including different properties, are
developed in this study, and their prediction perfor-
mances are compared. Three of the developed ANN
models respectively include 5-10 and 20 neurons in the
hidden layer; 80% of this dataset is used for training
data and the other 20% for validation. In the other
three developed ANN models, 5-10 and 20 neurons in
the hidden layer are trained with 100% of dataset and
validated with the same dataset used in the first three
ANN models. The normalized training and testing
dataset samples of laboratory experiments are shown
in Table 3; testing dataset is shown in bold.

In this study, feed forward back-propagation ANN
model is preferred, which has been used herein for
multi-layered ANNs due to being a global approximator

and the best performed ANN model under current
values.

Levenberg Marquardt is used as a training algo-
rithm in the developed feed forward back-propagation
ANN model.  Gradient Descent with Momentum
(GDM) learning algorithm is applied to the learning
algorithm in Matlab software. Variables are normalized
between 0-1; therefore, LOGSIG (Log- sigmoid) trans-
fer function is preferred for the developed ANN model.
Six different ANN models are developed with different
properties as mentioned above (percentage of training
dataset and the number of neurons in the hidden layer).
As a result of tests and analyses, network’s optimum
topology has been obtained with specific iteration.
The developed ANN model consists of 3-neuron-input
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layers that represent inputs, hidden layers made of 5-
10 and 20 neurons, and the output layer made of a
neuron. Structures representing ANN'’s input, output,
and hidden layers are shown in Figure 4. Then, the
developed ANN models have been run 6 times with
the mentioned properties.
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Figure 4. Structure of developed ANN models.
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5. Conclusion

In this study, six different developed models were
compared with actual data, as illustrated in Figure 5.
Outputs of these ANN models were compared with the
actual values listed in the chart below after training
completion.  Then, MAE (Mean Absolute FError)
and MAPE (Mean Absolute Percentage Error) were
selected as types of error by means of Eqgs. (2) and
(3) to validate the developed ANN models given in
Table 4. The best prediction performance was obtained
with 100% training set and 20 neurons in the hidden
layer as shown in bold in Table 4:

MAE = " |At — Ft| (2)
t=1
MAPE = 1% " | At — FtnAt, (3)
t=1
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Figure 5. Regression analysis results of 6 developed ANN models.
Table 4. MAE and MAPE values of 6 developed ANN models.
Ratio of training dataset 80% 100%
Number of neurons in hidden layer 5 10 20 5 10 20
MAE 0.0567 0.0475 0.0392 0.0384 0.0305 0.0233
MAPE (%) 27.462 27.645 17.606 21417 13.381 10.035
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Table 5. Regression equation and MSE values of developed ANN model.

Ratio of training dataset

Number of neurons

Regression equation R?
(%) in hidden layer
80 5 y=0.9671z + 0.0133  0.9410
80 10 y = 0.9577z 4 0.0161 0.9551
80 20 y = 0.9688x + 0.016 0.9712
100 5 y=0.9791z + 0.0176 ~ 0.9718
100 20 y = 0.9774z 4+ 0.0121 0.9901

where At is actual data, F't is forecast at time ¢, and n
is the number of samples.

Figure 4 shows the comparison between experi-
mental and predicted values of the output variable by
using 6 developed ANN models. Comparison results
(regression equations and MSE values) of all developed
ANN models are concisely given in Table 5.
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