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Abstract. Human action recognition has been one of the most active �elds of research
in computer vision over the last years. Two-dimensional action recognition methods
face serious challenges such as occlusion and missing the third dimension of data. The
development of depth sensors has made it feasible to track positions of human body joints
over time. This paper proposes a novel method for action recognition that uses temporal
3D skeletal Kinect data. This method introduces the de�nition of body states; then, every
action is modeled as a sequence of these states. The learning stage uses Fisher Linear
Discriminant Analysis (LDA) to construct discriminant feature space for discriminating
the body states. Moreover, this paper suggests the use of the Mahalonobis distance as
an appropriate distance metric for the classi�cation of the states of involuntary actions.
Hidden Markov Model (HMM) is then used to model the temporal transition between the
body states in each action. According to the results, this method signi�cantly outperforms
other popular methods with a recognition (recall) rate of 88.64% for eight di�erent actions
and up to 96.18% for classifying the class of all fall actions versus normal actions.
© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

Since the last two decades, human action recognition
has drawn much attention from researches in computer
vision and machine learning �elds. In early attempts
for action recognition, Red-Green-Blue (RGB) video
was used as input of recognition system. Various valu-
able methods and algorithms were proposed for recog-
nizing actions and activities using RGB data. However,
several problems exist in action recognition using RGB
frames such as occlusion and di�erent orientations of
the camera. The existence of other objects in addition
to human bodies and the lack of information of the
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third dimension can be mentioned as other challenges
in this category of methods [1{6]. In order to address
these problems, methods for recognizing action from
multiple views have been also introduced; however,
they are typically very expensive in calculations and
are not suitable for real-time recognition [7].

Considering the mentioned problems and intro-
duction of 3D Kinect sensors in the market, researchers
have started to work on 3D data for the purpose of
action recognition. The Kinect sensor provides both
depth and skeleton data in addition to capturing RGB
frames. Di�erent methods have been proposed so far
for action recognition using either depth or skeleton
data.

Action recognition has a variety of di�erent ap-
plications. From one point of view, all actions can
be categorized in one of the two categories of normal
(voluntary) and involuntary actions (see Figure 1).
Daily actions, actions for gaming, and interactions
between human and computer can be considered as
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Figure 1. Applications of human action recognition.

normal actions. On the other hand, involuntary actions
can occur in di�erent places, such as homes, hospitals,
and public places. One of the most frequent involun-
tary actions is falling which can occur to patients in
hospitals. Old people are also subject to dangerous
falls, which can reduce serious injuries and fatalities
if fall is detected by surveillance systems for elderly
care. Another example where proper detection of
involuntary actions can prevent problems and chaos is
in public places. In these places, involuntary actions
such as falling or being thrown can happen as a
result of accident or physical �ght. In comparison
to normal actions, involuntary actions usually have a
larger performance variance among various trails and
di�erent subjects. This characteristic of involuntary
actions is the main challenge of recognizing them.
Although the proposed method in this work can be
applied to both normal and involuntary actions, its
focus is on involuntary actions and tries to handle
the mentioned challenge. Figure 2 depicts a human
action recognition system used for fall detection. As
is seen, it is not possible to train the system using all
various types of fall actions over all di�erent subjects.
Therefore, the challenge is to recognize any fall action
using a limited number of training samples.

This paper proposes a new method for human
action recognition, especially for involuntary actions.
The main contributions are as follows:

� In contrast to most of the action recognition meth-
ods in the literature, this work is not feature-based,

Figure 2. A human action recognition system for fall
detection.

but is holistic. In other words, features (such as a
histogram of joints as used in [8]) are not extracted
from skeleton; the raw features of skeletons are fed to
the so-called body state classi�er. Consequently, the
classi�er is responsible for extracting discriminant
features. As it is well known in face recognition [9],
holistic methods have greater potential for accurate
recognition because of using all the information
and devolving feature extraction to the classi�er.
Our experiments verify our better performance in
comparison to feature-based methods, such as [8],
in both action scenarios of action-vs-action and
normal-vs-fall;

� This work properly handles involuntary actions,
which are variously distributed in the space of joints,
by taking into account the distribution for each body
state;

� Di�erent speeds in performing involuntary actions
are handled by using Hidden Markov Models
(HMM);

� This method can be used for recognizing normal
actions as well as involuntary ones;

� Other than outperforming the recognition of each
of the various normal and involuntary actions in
the dataset, the proposed method achieves a great
recognition rate for classifying the class of all invol-
untary actions versus normal actions. This scenario
is particularly important where only the involuntary
action detection is important, such as elderly or
patient surveillance.

This paper is organized as follows. Section 2
reviews related work. Section 3 proposes the main
algorithm of the proposed method that includes model-
ing human body, action recognition using �sher Linear
Discriminant Analysis (LDA), and HMM. Section 4 in-
troduces the utilized dataset and experimental results.
Finally, Section 5 concludes the article and addresses
possible future work.

2. Related work

According to the importance of action recognition and
its large amount of applications, many di�erent meth-
ods have been proposed in this �eld. In [10], Peng et al.
described di�erent kinds of Bag of Visual Words model
(BoVW) methods and investigated the e�ect of each
of them on action recognition. These factors included
feature extraction, feature preprocessing, codebook
generation, feature encoding, pooling, normalization,
and fusing these descriptors.

Liu et al. [11] employed Genetic Programming
(GP) on spatio-temporal motion features for action
recognition. Features were extracted from both color
and optical 
ow sequences. Wang et al. [12] used
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homography for cancellation of camera motions from
trajectories and optical 
ows. SURF descriptors and
dense optical 
ows were employed with RANSAC to
estimate this homography. Then, a motion-based
histogram of optical 
ows and motion-based histogram
descriptors were used for action recognition.

Facing some challenges such as the coverage of
some body parts by others and introducing 3D meth-
ods, encouraged researchers to use depth map. Li
et al. [13] recognized human's action by sampling the
3D points of the depth image and creating an action
graph. In this method, they modeled the position of
human body by projecting the contour of body shape
onto di�erent planes and sampling them. Then, the
state of human body was modeled with these bags of
3D points. The states were considered as nodes of a
graph, modeling the action. Although this method
is not robust to the constant change of viewing angle
and human's body scale, it recognized 90% of actions,
and the error was halved compared to 2D methods.
Rahmani et al. [14] used histogram of oriented principal
components descriptor on point clouds for cross-view
action recognition.

Zhao et al. [15] classi�ed human's actions by
utilizing information of RGB and depth image. They
obtained spatiotemporal interest points from RGB
image and used a combined descriptor of RGB and
depth images.

Liu et al. [16] encoded spatio-temporal informa-
tion of skeleton joints in depth sequences into color
images. In this regard, 5D space of (x, y, z, f , n)
was expressed as a 2D coordinate space and a 3D color
space, where f and n denote time and joint labels,
respectively. A convolutional neural network was used
to extract more discriminative deep features. These
features were used for action recognition.

Rahmani and Mian [17] transferred human poses
to a view-invariant high-level space and recognized
action in depth image by using a deep convolutional
neural network. Their method obtained appropriate
results in multi-view datasets. In [18], Zhang et al. used
3D Histograms of Texture (3DHoTs) from depth maps.
The 3DHoTs were formed by characterizing the salient
information of action. In their method, action was
represented by texture features. The classi�cation of
actions was done by the multi-class boosting classi�er.

Chen et al. [19] projected depth videos onto three
orthogonal Cartesian planes. The absolute di�erence
between two consecutive projections was accumulated,
creating Depth Motion Maps (DMMs). Then, ac-
tion recognition was performed by distance-weighted
Tikhonov matrix with an I2-regularized classi�er. Chen
et al. [20] proposed a Local Binary Patterns (LBP)
descriptor which is invariant to shape and speed for
action recognition in depth videos. They partitioned
DMMs and extracted LBP for action recognition.

Liang et al. [21] applied DMMs-based gradient local
autocorrelations features of depth videos to capture
the shape information of sub-actions. They proposed
Locality-constrained a�ne subspace coding to encode
the extracted features. This method had competitive
results with less complexity.

By developing Kinect sensors and related software
for tracking humans in images and detecting positions
of body joints in 3D space, several methods were pro-
posed to recognize action using this information. One
of these methods introduced Cov3DJ descriptor [22],
which separated di�erent action classes by �nding
covariance matrix of positions of the joints during the
action and used Support Vector Machine (SVM) for
classi�cation.

Reddy et al. [23] recognized action by considering
mean, minimum, and maximum of position of joints
as features and compared them to features obtained by
using Principle Component Analysis (PCA) on position
of joints. Likewise, Mart��nez-Zarzuela et al. [24] tried
to recognize actions by taking a sequence of positions
of joints as a signal and extracting the �ve �rst Fast
Fourier Transform (FFT) components as a feature
vector fed into a neural network. However, this method
did not perform very well for complex actions involving
di�erent body parts.

As di�erent actions involve di�erent joints, An-
jum et al. [25] selected important and e�ective joints
at the training level, according to the type of action.
In their method, each action was determined by three
joints. Results showed that this method performed
better with less information; however, joints should be
selected in training for each action. Therefore, extend-
ing this algorithm for new actions is time consuming
and expensive.

Liu et al. [26] used a tree-structure-based traversal
method for 3D skeleton data and extended RNN-
based learning method to spatio-temporal domain. In
this way, they could analyze the hidden sources of
information in actions. Ke et al. [27] transformed skele-
ton sequences into clips consisting of spatio-temporal
features. They used deep convolutional neural net-
works to learn long-term temporal information. Multi-
task learning network was used to incorporate spatial
structural information for action recognition.

In [28], Shahroudy et al. described actions by
partitioning kinetics of body parts. They used a sparse
set of body parts to model actions as a combination
of multimodal features. Dynamics and appearance of
parts were represented by a heterogeneous set of depth
and skeleton-based features. Huynh et al. [29] proposed
a new method more robust to human scale and changes
of position. They categorized joints into three classes
of stable, active, and highly active joints and utilized
angles of 10 important joints and vectors connecting
moving joints to stable joints. Their method performed
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better than a similar method, which uses only raw
positions of joints.

Luvizon et al. [30] selected subgroups of joints
by vector of locally aggregated descriptors algorithm.
Classi�cation accuracy was improved by the non-
parametric KNN classi�er with large margin nearest
neighbor. Amor et al. [31] used skeleton shapes as
trajectories on Kendall's shape manifold to represent
special dynamical skeletons.

Xia et al. [8] used middle and side hip joints to ex-
tract a histogram of positions of other joints to be used
as a feature vector. They reduced the dimension of the
feature vector using LDA and used K-means method
to cluster the feature vectors. Each cluster constituted
a visual word. Each action was determined as a time
sequence of these visual words and modeled by HMM.
Results showed that this method partially overcame
challenges such as di�erent lengths of actions and the
same action done in di�erent ways and view angles.

Papadopoulos et al. [32] obtained the orientation
of body using the positions of shoulders and hip joints
and, thereby, extracted orthogonal basis vectors for
each frame. A new space was then constructed for
every person according to its orientation of body.
According to these vectors and the new space, the
spherical angles of joints were used instead of positions
of joints. The use of angles, instead of position of joints,
made the method more robust against human's body
scale and changes in the shape of body. This method
also used the energy function to overcome the challenge
of the same actions done by opposite hands or feet.

Although there are many proposed methods for
action recognition, many problems and challenges still
remain unsolved. This paper tries to tackle some of
them such as di�erent distributions of actions in sta-
tistical feature space, especially for involuntary actions.

3. Methodology

In order to recognize actions, in the �rst step, the
actions should be modeled appropriately. Modeling
actions depends on various facts such as application,
types of actions, and method of classi�cation. One of
the most important applications of action recognition
is online recognition where the recognition should be
performed in real time. This article considers this
type of recognition as its objective. In this category,
the action should be modeled so that the model can
be updated during completion of action and, �nally,
the type of the performed action can be recognized.
Therefore, in this article, each action is supposed to be
a sequence composed of several body states.

In the next step, positions of joints in the 3D space
are utilized in order to model the state of body. The
positions of joints are prepared by the output of the
Kinect sensor. The skeleton consists of several joints,

Figure 3. Selected joints out of available joints in the
skeletal data. The joints used for alignment are also
shown.

which are 25 joints for the dataset used for dealing
with the experiments in this paper. A number of these
joints are, however, very close to each other without
any important di�erence in movements; therefore, their
information is almost redundant. With respect to the
actions addressed in this paper, merely 12 important
joints, including right and left ankles, right and left
knees, right and left wrists, right and left shoulders,
head, middle spine, hip and spine shoulder, are selected
out of the skeleton. The position of spine base (hip)
and right and left shoulders are used for alignment in
order to correctly describe the state of body in di�erent
persons and runs. The selected joints and, also, the
joints required for alignment are shown in Figure 3.
State modeling, including skeleton alignment and state
classi�cation, is detailed in the following.

3.1. Modeling state of body
In order to model and describe the state of body, a
proper descriptor should be created. This descriptor
models the action as a time sequence of states and
tries to recognize the action. The body states are
determined as follows. According to the nature of every
action, the main body states, of which the action is
composed, are conjectured and, then, are manually
selected and sampled out of the training sequences
of frames. Notice that this manual selection is done
merely in the training phase, while, in the test phase,
each input frame is automatically classi�ed by the
classi�er of body states.

1. Aligning skeleton: Di�erent locations and orien-
tations of body in the frames create the need to
align the skeleton. As already mentioned, 12 joints
positions are used in 3D space in order to describe
the state of body. In order to cancel the location of
body skeleton, the position of hip joint is subtracted
from the position of all joints. This is performed for
every frame in the sequence.
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Figure 4. Alignment of skeleton using the left and right
shoulders to cancel the orientation of skeleton.

Moreover, di�erent orientations of skeleton or
camera make recognizing similar states di�cult and
even wrong. Thus, in order to cancel di�erent
orientations of body skeletons, the body rotates
around y-axis making the projection of the vector
that connects the left and right shoulders onto xz
plane parallel to x-axis. Through this rotation, the
skeleton directly faces the camera. This procedure
is illustrated in Figure 4. The axes can be seen
in Figure 3. In the literature, the alignment of
skeleton is often performed; however, the methods
or the joints used for that might di�er. For example,
in [8], left and right hip joints are utilized rather
than shoulder joints for alignment;

2. Creating feature vector: To determine the state
of body in each frame, proper feature vectors
are required. Three joints out of the 12 joints
are used for alignment and the remaining nine
joints are used to create the feature vectors. If
(xm, ym, zm) denote the coordinates of the mth
joint (m = f1; � � � ; 9g), the raw feature vectors
are obtained as [x1; � � � ; x9; y1; � � � ; y9; z1; � � � ; z9]T .
Fisher LDA [33,34] is utilized for extracting dis-
criminant features from the raw feature vectors. In
Fisher LDA method, the dimension of the feature
vector is reduced to C�1, where C is the number of
states. In LDA, the within (Sw) and between-class
(Sb) scatter matrices are:

Sw =
CX
i=1

X
xk2Xi

(xk � �i)(xk � �i)T ; (1)

Sb =
CX
i=1

Ni(�i � �)(�i � �)T ; (2)

in order to minimize the within class covariance
and maximize the between class covariance [34,35],
where �i and � denote the mean of the ith state and
the mean of class means, respectively. The Fisher
projection space is created by the eigenvectors of
S�1
w Sb. By its projection into this space, feature

vector F for an input skeleton state is obtained.
After projection onto Fisher space, the ob-

tained feature vectors are located relative to each

Figure 5. An example of Fisher and Principle
Component Analysis (PCA) directions.

other such that those relating to similar and di�er-
ent states, respectively, fall close and apart. By this
fact, recognition of states becomes available.

There are also other methods for feature re-
duction which can be used for classi�cation. One
of the most popular methods of this category is
PCA [34,35]. However, PCA method cannot always
classify the data as well as LDA does. As an
example, suppose that the distribution of classes
is similar to that depicted in Figure 5. In this
example, the Fisher LDA direction is perpendicular
to the direction of PCA. As is obvious in this �gure,
Fisher LDA tries to minimize within-class variance
while maximizing between-class variance in order to
classify them.

The resulting feature vectors are used for
training and testing the state of body. The action
will be de�ned as a time sequence of multiple
speci�c states. The state of body is recognized in
the test phase by �nding the minimum distance as
described in the following section.

3. Finding the minimum distance: In every frame
denoted as f , the state of body should be rec-
ognized. For achieving this goal, the distances
between feature vector F of this frame and the
means of the feature vectors of all states are found.
The minimum distance determines the state of
frame f . If eFi denotes the mean of feature vectors
of the ith class, the state is found as:

state(f) = arg min
i
d
�
F; eFi� ; (3)

where d is the distance measurement function which
can be one of the two followings:
� Euclidean distance: One of the most popular
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methods for calculating the distance of two
vectors is Euclidean distance, which is used as
one of the distance methods in this article. The
function of Euclidean distance can be formulated
as:

d
�
F; eFi� =

sX
j

�
Fj � eFij�2

; (4)

where Fj and eFij are the jth components of F
and eFi, respectively;

� Mahalanobis distance: As the minimum distance
from the means of states is used for recognizing
the state, using a proper distance has much
important in
uence on the accuracy of recogni-
tion. Therefore, the distribution of �nal feature
vectors in the feature space should be considered,
and the distance measurement should be de�ned
accordingly.

If body states are categorized into C
classes, the dimension of the �nal feature
(Fisher) vectors will be C � 1. As the di-
mension of the feature vectors might be high,
their distribution in each class cannot be directly
visualized for direct analysis. However, the
distribution of feature vectors can be analyzed in
higher dimensions by calculating their covariance
matrices. The �rst twodirections of Fisher space
are used here for illustrating the distribution
of each of the eight body states de�ned for
the TST dataset [38,39], which are discussed in
more details in Section 4. Figure 6 illustrates
the training samples projected onto the space
constructed by the �rst two Fisher directions.
As shown in this �gure, distribution of feature
vectors for each state is di�erent in the two
directions.

Figure 6. Projection of samples of states onto Fisher
space. As can be seen, the states have di�erent
distributions.

The more di�erently people perform an
action containing a state, the wider the dis-
tribution for the state would be. The more
widely distributed states are usually those during
the completion of an involuntary action. For
instance, as shown in Figure 6, after projection
on constructed Fisher space, states related to
normal actions such as standing and sit states
are less distributed than the states occurred in
involuntary actions, such as lay front and lay
back. In order to handle the challenge of di�er-
ent distributions of projected states, a distance
measurement function other than Euclidean one
should be used which considers the distributions.

Mahalanobis distance considers variances
of distributions in its calculation, which is cal-
culated as:

d
�
F; eFi� =

r�
F � eFi�T S�1

�
F � eFi�; (5)

where S denotes the covariance matrix of the
feature vectors of the class to which the distance
is calculated.

As is obvious in Eq. (5), covariance matrix
S acts as a weighting matrix for each class
according to its distribution. That is, the
importance of distance in a particular dimension
is considered in calculating the distances. In
other words, the distance in a direction with
smaller variance is less valuable, yielding S�1 in
the equation.

Mahalanobis distance is actually an exten-
sion to the standard deviation from the mean in
the multi-dimensional space. The experiments
reported in the following sections show the out-
performance of this distance in comparison with
Euclidean distance.

3.2. Classy�ng actions using HMM
As previously mentioned, every action can be modeled
as a sequence of consequent states. After recognizing
states of body using Fisher LDA, HMM is utilized in
this work to classify actions.

Every action is modeled using a separate HMM.
Each HMM has a number of hidden states with speci�c
transition probabilities between them. For instance,
a three-state HMM and its transition probabilities
are illustrated in Figure 7 [36]. Every hidden state
has speci�c emission probabilities for emitting body
states. The transition and emission probabilities of
each HMM are estimated by the well-known Baum-
Welch expectation maximization algorithm [37] using
the training observations, i.e., sequences of body states.
This algorithm starts with initial assumptions for all
of the parameters of the model (i.e., transition and
emission probabilities) and then updates the param-
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Figure 7. A three-state Hidden Markov Model (HMM)
model.

eters using corresponding expectation maximization
equations iteratively until convergence.

In order to decrease computational cost of the
algorithm, the frame per second rate has been reduced
by down sampling. Uniform down sampling with
the rate of 20 is used which was shown appropriate
according to our experiments (note that the sampling
rate of the Kinect V2 sensor is known to be 30 frames
per second (fps) in normal lighting conditions and
15 fps in poor lighting conditions. According to the
corresponding RGB images of the dataset, the samples
in this dataset should have been captured in normal
lighting condition, and hence, the original sampling
rate for this dataset must be 30 fps). After constructing
a HMM for each action, an unknown sequence is
recognized by feeding it to each HMM. After feeding
the test sequence of frames to all trained HMMs, every
HMM outputs a probability of occurrence for that
sequence. The maximum probability determines the
action of that sequence.

To obtain an insight, note that every period of
repetitions of a body state can be roughly associated to
a HMM state. For example, when having three-state
HMMs for classifying actions, the actions sit, grasp,
and end up sit are mostly made of the sequences:

- fstanding; crouching; sit on chairg,
- fstanding;bend; standingg,
- fstanding; crouching; sit on groundg
where body state denotes a sub-sequence of repetitions
of the body state (more details about how body states
are de�ned are discussed in Section 4). Moreover,
in each sub-sequence, the number of repetitions of
the corresponding body state can be di�erent across
subjects and di�erent trials.

For each action, the sequences that are used
for training HMM are adjusted to have the same
lengths (number of body states). This equalization is
performed by manually repeating the last state done
by the person so that the total number of states of all
actions becomes equal. It is important to note that this
equalization does not compensate for di�erent lengths

Figure 8. The overall structure of the proposed
framework.

and speeds of actions performed by di�erent people or
over di�erent trials.

The advantage of HMM, in this work, is that it
considers solely the dynamic of sequence and is not
sensitive to various paces and lengths of actions. For
instance, there exist sequences of lengths 75 frames
upto 463 frames with di�erent speeds of actions in
TST fall dataset [38,39], and these sequences have been
successfully handled and recognized by this method.

The overall structure of the proposed framework
is summarized in Figure 8.

4. Experimental results

To examine the proposed method, TST Fall Detection
dataset [38] is used. The details of this dataset are
explained in next section followed by the explanation
on how the actions are modeled in this dataset. In the
end, the results of the experiments are presented.

4.1. Dataset
TST Fall Detection dataset [38,39] is used for verifying
the e�ectiveness of this method. There are two main
categories of actions in this dataset, i.e., daily living
activities and fall actions. Eleven di�erent persons
perform every action for three times. The daily living
activities are sit, lay, grasp, and walk; the fall actions
are falling front, back, side, and end up sit.

This dataset has prepared information of 3D
position of joints and depth data obtained by the
Kinect sensor V2, which is more accurate than previous
Kinect sensors. Only the skeletal data of this dataset
are used in this work for experiments.

As previously mentioned, one of the important
goals of human action recognition is surveillance appli-
cation, especially for controlling the elderly or patients.
The main goal of detecting involuntary actions and
improvements of Kinect V2 encouraged this work to use
the mentioned dataset. Unlike other datasets, involun-
tary actions, such as falling down, exist su�ciently in
this dataset, making this database challenging.

As fall actions are performed involuntarily, di�er-
ent states and conditions from normal actions appear
for di�erent people. Therefore, existing action recogni-
tion methods may not necessarily perform as well for
fall actions. Moreover, a number of methods have been
proposed to recognize fall actions, which concentrate on
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Figure 9. An example of actions in TST dataset [38,39].

using features such as speed and acceleration recorded
by accelerometer sensors. These features are not able
to e�ectively discriminate the normal actions from each
other nor involuntary actions from each other; thus,
they do not help recognize the actions in general.
Therefore, the main challenge here is to develop a
method that can detect and analyze both of the normal
and involuntary actions and, also, recognize them from
each other.

Several samples of depth images of actions in TST
dataset are shown in Figure 9.

4.2. Recognition of states
In the dataset, only the actions are labeled; therefore,
labeling states should be performed manually. Accord-
ing to the actions, eight di�erent states are chosen
and labeled to be used to train and test the state
classi�cation module. The chosen states should include
the main states of actions in the dataset and should

Table 1. Correctness rate of recognizing state of body.

State Euclidean Mahalanobis

Standing 99.38% 94.26%
Crouching 50.00% 70.00%
Lay back 80.71% 81.22%
Lay front 67.50% 85.00%
Lay side 88.89% 82.22%
Bend 62.90% 90.32%
Sit on chair 86.87% 69.70%
Sit on ground 72.15% 79.91%
Total 76.03% 81.57%

not contain unnecessary states that are close to other
states. The chosen states are standing, crouching, lay
back, lay front, lay side, bend, sit on chair, and sit
on ground. An example of each state is shown in
Figure 10.

The \leave one subject out" cross-validation is
used for the experiments. In each iteration, the entire
samples of a person are considered as test samples,
and the samples of other subjects are used for training
system. This type of cross-validation is fairly di�cult,
because the system does not see any sample from the
test subject in training phase. The state recognition
experiment is repeated using both of the distance
methods, and the results are listed in Table 1. Note
that all the rates reported in this paper are recall rates:

Recall =
true positive

true positive + false negative
; (6)

unless the type of rate is mentioned.
Table 1 shows that the Mahalanobis distance

outperforms the Euclidean distance in general. As
was expected, the recognition rates of crouching, lay
front, and bend have improved signi�cantly using
Mahalanobis distance. The reason is that the variances
of training data for these states are huge, and this fact
is not taken into account when Euclidean distance is
used.

It is worth noting that by using the Maha-
lanobis distance, the recognition rate of bend state
has improved at the cost of reducing the recognition
rate of standing state. A careful consideration of
Figure 6 reveals that there exists an overlapping region
of distributions between the two states. Euclidean
distance, which does not consider the distribution of
classes, mostly recognizes the overlapping region as the
standing state. On the other hand, the Mahalanobis
distance mostly recognizes this region as the bend
state, because the variance of standing state is much
less than bend. This fact can also be seen from the
confusion matrices of states for both distances, which
are depicted in Figure 11.
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Figure 10. An example of the selected states.

4.3. Action recognition and comparison
In the last step, an action is represented as a sequence
of states. Each state in this sequence is recognized
by projecting into the LDA space and utilizing a
distance measure. Then, the probability of each
HMM (note that there is an HMM for each speci�c
action) generating the input sequence of states is
calculated, and the maximum probability determines
the recognized action. The number of hidden states in
HMMs (note that hidden states are di�erent from body
states) a�ects the recognition performance. Therefore,
di�erent hidden states were tested for HMMs in this
work and were compared to each other. Results of
three di�erent numbers of hidden states for HMMs
are reported in Table 2. The experiments of this
table are performed with Mahalanobis distance. As
was expected, according to the nature of states and
actions in the TST Fall dataset [38,39], HMMs with
three hidden states perform better; hence, the number
of hidden states for HMMs is considered to be three in
this work. It is worth noting that the combination of
optimum number of hidden states for each action was

Table 2. E�ects of the number of states of HMM on the
recognition rate.

Action 2 states 3 states 4 states

Sit 87.88% 90.91% 90.91%
Grasp 90.91% 90.91% 87.88%
Walk 93.94% 93.94% 93.94%
Lay 84.85% 96.97% 90.91%
Fall front 84.85% 81.82% 81.82%
Fall back 84.85% 84.85% 78.79%
Fall side 81.82% 81.82% 81.82%
End up sit 84.85% 87.88% 84.85%
Total 86.74% 88.64% 86.36%

also considered; however, the experiments showed that
the use of a constant number of hidden states for all
HMMs results in better performance.

In this article, the proposed method is compared
with the method of Xia et al. [8] which has received
considerable attention in literature [40{43] and has
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Figure 11. Confusion matrix of states.

been used for comparison in very recent methods [44{
48]. Note that all the above methods have been experi-
mented with the datasets that have been created using
an older version of Kinect sensor with no involuntary
actions.

For implementing this method [8] and fairly com-
paring it with the proposed method using the TST
dataset, several necessary adjustments were done to
its settings. First, for LDA, the states were labeled
in the same way as in the proposed method. Second,
the number of hidden states for HMMs was chosen
to be three, according to the actions of the dataset.
Third, the best number of clusters for histogram was
experimented to be eight, which conformed to the
number of classes of states in the proposed method.

Results are listed in Table 3. The proposed
method using both of the distance methods is compared
with the method of Xia et al. [8]. Results reveal that,
in all actions, the proposed method using each of the
two distance measures outperforms the method [8]. Al-
though the method [8] has utilized LDA and clustering
methods to prepare data for training HMM, it has
made several states very close to each other by using
a histogram concept, which has increased the error.
As an example, in fall actions, the angular positions

Table 3. Comparison of results of our method and
method [8] for TST dataset.

Action Euclidean Mahalanobis [8]

Sit 84.85% 90.91% 81.82%
Grasp 96.97% 90.91% 84.85%
Walk 100% 93.94% 90.91%
Lay 75.76% 96.97% 90.91%
Fall front 54.54% 81.82% 48.49%
Fall back 69.70% 84.85% 66.67%
Fall side 81.82% 81.82% 69.70%
End up sit 69.70% 87.88% 33.33%
Total 79.16% 88.64% 70.83%

of joints are much similar, and their di�erences are
ignored when using the histogram.

Using Mahalanobis distance has signi�cantly en-
hanced the performance, especially in fall actions. In
other words, improving the performance of recognizing
di�cult involuntary states, such as crouching and lay
front, has improved the total recognition rate. As
mentioned before, the main reason for this fact is that
the intrinsic variance of states is considered in the
Mahalanobis distance.

The confusion matrix of actions is reported in
Figure 12. This matrix shows that the actions that
are similar to each other are sometimes confused and
wrongly recognized. Actions, such as falling on front,
side, and back, are sometimes confused with each other,
because their distributions (and, thus, their behavior)
are similar and wider than others, as is obvious in
Figure 6. In some scenarios such as anomaly detection
in actions, this confusion between subgroup actions
might not matter. Hence, another experiment was
performed considering all fall and normal actions as
two di�erent high-level groups. In this scenario, the
recognition rate improves from 88.64% to 96.18%. In
addition, as can be seen in Table 4, the false alarm
rate has also been signi�cantly reduced. This result
indicates that the possibility of wrongly recognizing a
normal action as fall action is considerably low.

5. Conclusion and future work

5.1. Conclusion
A new action recognition method was proposed in
this paper, which is particularly useful for recognizing
the actions with some sort of complexities such as
various types of falling action. Since this method uses
feature vectors with low dimension and does not have
big computational overhead, it can be used in real-
time purposes. Experiments showed that this method
outperformed other methods, especially in scenarios
where normal and involuntary actions were mixed up.
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Table 4. Comparison of results, considering all abnormal.

Euclidean Mahalanobis [8]

Recognition rate (true positive rate) 78.78% 96.18% 77.27%

Speci�city rate (true negative rate) 90.15% 96.21% 90.90%

False alarm rate (false positive rate) 9.15% 3.78% 9.09%

Figure 12. Confusion matrix of actions.

In the proposed method, a feature vector was created
for representing the state of body in each frame using
the Kinect data. The state of body was then recognized
in the corresponding discriminative Fisher subspace.
Finally, actions are classi�ed and recognized by feeding
the sequence of recognized states of body to HMMs.
Because of using Hidden Markov Model (HMM), this
method is robust to di�erent paces and lengths of
actions. Moreover, the Mahalanobis distance is utilized
for considering the wider distribution of involuntary
body states in order to enhance the recognition rate.

5.2. Potential future work
Data were preprocessed by skeleton alignment to make
the algorithm robust against the orientation of camera.
As for the future work, the angles between the joints
can be used instead of their positions in order to

obtain more robustness. In addition, recognizing more
complex and longer actions can be considered as future
work.

Moreover, manual selection/sampling of body
states limits the scalability of the system. Automatic
selection of body states in an approach similar to [49],
which automatically �nds elementary states of higher
level actions, can also be considered as future work.

Another possible limitation of the proposed
method is that canceling the motion of body by
alignment, which is necessary for the proposed method,
omits the motion information. This cancellation might
cause di�culties for recognizing actions with close body
states, except for di�erent motions. Handling this issue
can be considered as another potential future work.
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