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Abstract. In recent years, the theory of complex fuzzy sets has captured the attention
of many researchers, and research in this area has intensified over the past five years. This
paper focuses on developing the algebraic structures pertaining to groups and subgroups for
the complex intuitionistic fuzzy soft set model. Besides examining some of the properties
of these structures, the relationship between these structures and corresponding structures
in fuzzy group theory is also examined.
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1. Introduction

Uncertainty, imprecision, and vagueness are character-
istics that are pervasive in problems occurring in the
real world, and these features cannot be handled effec-
tively using mathematical tools that are traditionally
used to deal with uncertainties and vagueness. Some
of the pioneering theories used to deal with these limi-
tations include fuzzy set theory [1], intuitionistic fuzzy
set theory [2], and soft set theory [3]. To overcome the
problems that are inherent in each of these theories,
researchers have chosen to combine these theories to
develop new fuzzy-based hybrid models. The more
well known among these include fuzzy soft sets [4],
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intuitionistic fuzzy soft sets [5], interval-valued fuzzy
soft sets [6], interval-valued intuitionistic fuzzy soft
sets [7], and vague soft sets [8]. Although all of
the above-mentioned theories are able to handle the
uncertainties and fuzziness that exist in the data, all
of these models are not able to handle the periodicity
or seasonality that exists in many real-life problems.
This led to the introduction of the complex fuzzy set
model in [9] and, subsequently, the development and
extension of this theory.

The notion of complex sets stems from the con-
cept of complex numbers, which is a primary con-
cept for solving problems, especially in the field of
engineering. Complex sets notion, in practice, has
the ability to solve many problems that cannot be
solved using traditional mathematical concepts such
as number theory, probability theory, and fuzzy set
theory. Examples of these instances include solving the
improper integrals that are used to represent resistance
in electrical engineering and also represent the phase or
wave-like qualities in two-dimensional problems. This
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led to the notion of complex fuzzy sets in [9], which
is an improved and extended version of ordinary fuzzy
sets. Kumar & Bajaj [10], then, proposed the notion
of Complex Intuitionistic Fuzzy Soft Sets (CIFSS)
that combines the characteristics and advantages of
complex sets, soft sets, and intuitionistic fuzzy sets
in a single set. The CIFSS is parametric in nature
and characterized by an amplitude term, which is
equivalent to the membership and non-membership
functions in an ordinary IFSS, and a phase term that
represents the seasonality and/or periodicity of the
elements. The novelty of CIFSS is manifested in
the additional dimension of membership, which is the
phase of the grade of membership. This feature gives
CIFSS the added advantage of being able to represent
data or information occurring repeatedly over a period
of time, which is often the case with problems that are
two-dimensional in nature.

Although research studies pertaining to the the-
ory of CFSs and other complex fuzzy-based models are
still in their infancy, they have been steadily gaining
momentum in recent years. As of now, almost all of
the work done in this area has revolved around the
study of the theoretical properties of CFSs, complex
fuzzy computing and modeling, complex fuzzy logic,
complex fuzzy optimization and decision-making, and
the application of these in solving time-periodic prob-
lems. The phase term in the structure of CFSs is the
key defining feature of this model and can be used
to model the seasonality and/or periodicity of time-
periodic phenomena. However, this is not the only
interpretation for the phase term. Instead, the phase
term can be used to represent different aspects of the
information, depending on the context of the scope of
the problem or area that is being studied. In most
of the existing literature, the phase term has been
used to represent the time factor and seasonality of
the problems and has been applied to multi-attribute
decision-making problems in a myriad of areas includ-
ing supplier selection, economics, pattern recognition,
engineering, and artificial intelligence.

The phase term can also be used to accurately
represent the cycles present in fuzzy algebraic struc-
tures. In the study of complex fuzzy algebraic theory,
the fuzzy algebraic structures are defined in a complex
fuzzy setting; therefore, the structures consist of an
amplitude term and a phase term. The amplitude term
is equivalent to the membership function in ordinary
fuzzy sets, whereas the phase term can be used to aptly
represent the cycles of the algebraic structures. For
example, when dealing with fuzzy alternating groups,
different cycles can be represented aptly and accurately
using the phase term if the fuzzy alternating groups are
defined in terms of CFSs or any complex fuzzy-based
models. This would make it easier to identify different
cycles and their corresponding membership functions in

a systematic manner. The desire to utilize this unique
ability of the phase term present in the CFS model and
other complex fuzzy-based models in the study of fuzzy
algebra served as the main motivation to introduce and
develop the theory of complex intuitionistic fuzzy soft
groups in this paper. In this regard, the notion of CIFS
groups and other supporting algebraic structures for
CIFSGs are introduced and developed. The lack of
proper research pertaining to the algebraic theory of
complex fuzzy-based models in the literature served as
another motivation for the study done in this paper.
The rest of this paper is organized as follows.
In Section 2, some important background information
pertaining to the concepts introduced here is recapitu-
lated. In Section 3, the algebraic structures of complex
intuitionistic fuzzy subgroups and complex intuition-
istic fuzzy soft groups are derived, and the properties
and structural characteristics of these algebraic struc-
tures are proposed and, subsequently, verified. The
relationship between the structures introduced here
and corresponding concepts in fuzzy group theory and
classical group theory are also examined and verified in
this section. In Section 4, normal complex intuitionistic
fuzzy soft groups are proposed, and the properties of
this structure are discussed and verified. Concluding
remarks are presented in Section 5, followed by ac-
knowledgments and a list of references.

2. Preliminaries

In this section, we recapitulate some of the important
background information pertaining to the development
of the algebraic structures that will be proposed here.

2.1. Intuitionistic fuzzy sets
An Intuitionistic Fuzzy Set (IFS) [2] is an extension
of the classical fuzzy set and is characterized by a
membership function and a non-membership function,
each of which describes the degree of belongingness
and non-belongingness of the elements with respect to
each attribute. The concept of IFS was then further
extended by incorporating the concept of soft set to
derive the concept of Intuitionistic Fuzzy Soft Set
(IF'SS) 15].

In all that follows, U shall be used to denote a
universal set.

Definition 2.1 [2]. Let A = {(z, pa(x),va(z)):x €
U}, where both pa and vy are functions from U to
[0, 1], satisfying 0 < pa(z) +va(z) < 1foral oz e U.
Then, A is called an intuitionistic fuzzy seton U, where
1A is the membership function of A and v, is the non-
membership function of A.

Define ma(z)=1—pa—va. Then, for each zy € U:

(i) The value of pa(xg) is called the degree of belong-
ingness of xg to A;
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(ii) The value of va(zg) is called the degree of non-
belongingness of xg to A;

(iii) The value of wa(xzg) is called the degree of uncer-
tainty or indeterminacy of xo to A.

Henceforth, A and B shall be used to denote two
intuitionistic fuzzy sets on U, which are defined below:

A =A{(z,pa(x),valx)) : v € U},

B ={(z,up(x),vp(z)) :x € U}.
Definition 2.2 [2]. The subset and equality of A and
B are defined below:

(a) ACB,if pa(z) < up(z) and va(z) > vp(z) for
allz e U;
(b) A=B,if AC Band BC A.

Definition 2.3 [2]. The complement, union, and
intersection of A and B are defined below:

(a) A= {(x,valr),pa(z)):z e Uk

(b) Au B = {(z,max{ua(x),ps(r)}, min{ra(z),
vp(x)}):z e Ul
(c) An B = {(z,min{ps(x),us(zr)}, max{va(z),

vp(z)}) 1 x € U}

Definition 2.4 [2]. The set {x € U : va(z) > 0}
is called the support of A and is denoted by #a.
Moreover:

(a) A issaid to be nullif #4 = 0; otherwise, it is said
to be non-null;

(b) A is said to be absolute if S5 =U.

2.2. Soft sets and intuitionistic fuzzy soft sets
Definition 2.5 [3]. Let E be a set of parameters.
Denote @(U) to be the power set of U, and let F be a
function from E to p(U). Then, the set of ordered pairs
{(,F(e)) : e € E,F(e) € p(U)}, denoted by (F, E),
is called a soft set on U. Moreover, for each ¢y € E,
F(eo) is called the set of eg-elements of (F, E), or the
eo-approzimate elements of (F, E).

Definition 2.6 [11]. Let E be a set of parameters.
Let (F,E) be a soft set on U. Then, the set {¢ €
E : F(e) # 0}, denoted by (F,E), is called the
support of (F, E). Moreover, (F, E) is said to be null
it /(F, E) = 0; otherwise, it is said to be non-null.

Definition 2.7 [5]. Let E be a set of parameters.
IFS(U) denotes a collection of all intuitionistic fuzzy
sets on U and let F be a function from E to IFS(U).
Then, the set of ordered pairs {(¢, F(¢)) : ¢ € E, F(e) €
IFS(U)}, denoted by (F, E), is called an intuitionistic
fuzzy soft set on U.

Definition 2.8 [5]. Let (F,E) be an intuitionistic
fuzzy soft set on U. Then, the set {¢ € E : F(c) # 0},
denoted by #(F,E), is called the support of (F, E).
Moreover, (F, E) is said to be null if #(F,E) = 0;
otherwise, it is said to be non-null.

Definition 2.9 [5]. Let (F1, Ey) and (F2, E3) be two
intuitionistic fuzzy soft sets on U. Then, (F1, Ey) is an
intuitionistic fuzzy soft subset of (Fz, Es), denoted by
(f17E1)g(f2,E2), if:

(i) Er C Es;
(ii) Fi(e) C Fao(e) for all e € S(F1, Eq).

Remark. For each ¢ € 7 (Fy, Ey), Fi1(e) is non-null.
Thus, if (Fi, E1)C(Fa, Es), then Fi(e) C Fa(e), and
we also have F5(e) being non-null, which implies ¢ €
S (Fa, E2). As a result, the condition #(Fi, E) C
S (Fa, Es) follows.

Definition 2.10 [5]. Let (fl,El) and (f27E2) be
two intuitionistic fuzzy soft sets on U. Define R =
E1UE2, S = ElmEg; foralle € S, ﬂ(é‘) = ]:1(8)U]:2<€)
and K(g) = Fi(g) N Fa(e).

-7:1(5)7 € E E1 -5
H(E) = .7:2(6), ce€ By — S
Fi(e)UFa(e), €8
and:
File), ceE - S
K(e) =< Fa(e), ceFy—S
FileyNFa(e), e€ S
Then:

(i) (H,R)is called the union of (F1, E1) and (Fz, Es)
and is denoted by (H, R) = (Fy, F1)U(Fy, Ey);
(ii)) (K,R) is called the intersection of (Fi,Er)
and (Fy,E;) and is denoted by (K,R) =
(fl,El)ﬁ(]:Q,Eg);
(iii) (H,S) is called the restricted union of (Fy,F;)
and (Fy,Es) and is denoted by (H,S) =
(fl,El)O(fQ,Ez);
(K,S) is called the restricted intersection of
(F1, E1) and (Fy, Es) and is denoted by (K, S) =
(‘7'—17E1)ﬁ(.7:2,E2);

2.3. Complex fuzzy sels

In this section, an overview of the concept of Complex
Fuzzy Sets (CFS) [9] and Complex Intuitionistic Fuzzy
Soft Sets (CIFSS) [10] is presented. Since the introduc-
tion of CFS, attempts to improve and overcome the
drawbacks that are inherent in the CFS model have
led to the introduction of several complex fuzzy-based
hybrid models. We refer the readers to [10,12-18] for
more details on these models.
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Definition 2.11 [9]. A complex fuzzy set A defined
on a universe of discourse U is characterized by a
membership function p4(x) that assigns a complex-
valued grade of membership in A toany element z €
U. By definition, all values of pa(x) lie within the
unit circle on the complex plane and are expressed
by pa(z) = ra(z)e“s®) where i = V=1, r4(x)
and wa(z) are both real-valued, r4(z) € [0,1], and
wa(z) € (0,27]. A complex fuzzy set A is thus of the
following form:

A={(z,pa(x)):weU}

= { (x,rA(a:)ei“’A(z)) 1T € U} .

Henceforth, symbol i is used to denote the imaginary
unit /—1, whereas symbol O is used to denote {z €
C : |z| £ 1}. Up until Section 2.2, we have reached
the concept of Intuitionistic Fuzzy Soft Sets (IFSS),
involving the relations >, <, max, min on the outcomes
of membership and non-membership functions of the
IFSS model. Such relations are inherently defined for
real numbers only. On the other hand, a CFS and all its
generalizations have membership and non-membership
functions that can lie anywhere in O;. We must,
therefore, generalize the concept of >, <, max, min
for all complex numbers in O;. To achieve these, the
following definitions and lemmas are given.

Definition 2.12. Let u = rel and v = 7e'¥, with
r,7 € [0,1] and w, v € (0,2x]. The relations > and <
are given as follows:

(i) # > v, when both r > 7 and w > %, or when
v =0

(i) g < v, when both r < 7 and w < %, or when
n=0.

Remark. The usual definition of > and < at the
real interval [0,1] is a special case of this definition.
However, there remain pairs of elements of O; such
that neither > nor < can be established between them,
such as 0.1e* and 0.4, because 0.1 < 0.4, but 3 > 2.
Nonetheless, 0 < p < 1 still holds for all ¢ € O;.

Definition 2.13. Let S = {p, :n € V} C O;. Then,
max S and min S are as defined below:

max S > u, for all n € V;
(b) If £ € Oy is such that &€ > pu, for all n € V|
then £ > max S,
(if) (a) minS < p, for all n € V;
(b) If ¢ € Oy is such that ¢ < uyp for all n € V|
then ¢ < maxS§S.

Remark. Unlike subsets of R, max.S and min S may
not be in S, even if S is finite. For example, if Sy =
{0.1e',0.4e*'}, then max Sy = 0.4e* and min S, =
0.1

Definition 2.14. Let u = rel, with r € [0,1] and
w € (0,27]. The complement of p, denoted by 1 ~ u,
is defined as 1 ~ p = (1 — r)e | where:

, 2m —w, w <27
W =
w, w =27

Remark. If p€[0,1],then 1 ~pu=1—p.
Lemma 2.1.

Forallpe O, 1~ (1~ pu)=p.

Remark. Let y = rel, with r € [0,1] and w €
(0,2x]. Then, |p| = r.

Lemma 2.2, Forall p € O,

L) =1—|pl.

2.4. Complex intuitionistic fuzzy soft sets

The object of study in this paper is the CIFSS
model [10], which is an adaptation of the original CFS
model [9]. It is a hybrid composed of complex fuzzy
sets, intuitionistic fuzzy sets, and soft sets character-
ized by membership and non-membership functions
that represent the degree of belongingness and non-
belongingness of the elements with respect to the
attributes that are under consideration.

Definition 2.15 [10]. Let E be a set of parameters,
CIFS(U) be the collection of all complex intuitionistic

fuzzy sets on U, and F be a function from FE to
CIFS(U). Then, the set of ordered pairs {(¢, F(¢)) :

e € E,F() € CIFS(U)}, denoted by (F,E), is called
a Complex Intuitionistic Fuzzy Soft Set (CIFSS) on U.
Note that, for each ¢ € E:

Fle) = {(1’7;1];(6)(1’),1/];(6)(90)) ix € U}

:{(x,rﬁ(g)(x)eiwf<e)(x)7 Tﬁ(s)(x)eiwf(E)(I))ZZE € U} .

In all that follows, let CIFSS(U) denote the collection
of all complex intuitionistic fuzzy soft sets on a universe
U. Furthermore, we write (F,E) € CIFSS(U) to

denote that (JE, E) is a complex intuitionistic fuzzy soft
set on U.

Definition 2.16. Let (F, E) € CIFSS(U). Then, the
set {e¢ € E : F(e) is non-null}, denoted by .7(F, E),
and is called the support of (]—N', E). Moreover, (]—N',E)
is said to be null if y(‘?},E) = {); otherwise, it is said
to be non-null.
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Definition 2.17 [10]. Let (Fi,E)), (%, Ey) €
CIFSS(U). Then, (Fi,E)) is a compler intuition-
istic  fuzzy soft subset of (J%Q,Eg), denoted as
(F1, E1)C(Fs, Bs), if:

(i) Ei C Ey;
(i) Fi(e) C Fo(e) for all € € S (F1, Ey).

Remark. When (j':l,El)i(j':g,EQ) for each ¢ €
y(fl,El), ]—N'l(a) is non-null. Since ]—N'l(a) C ]-N'g(a),
we also have ]—N'g(a) being non-null, which implies ¢ €
y(j':Q,Eg). As a result, the condition ﬂ(fl,El) C
F(Fy, Ey) follows.

Definition 2.18 [10]. Let (F,E) € CIFSS(U).
Then, the complement of (JE, E), denoted by (JE, E)e s
defined as (F,E)° = (F°,~E), where F¢ is a function
from - F to CIFS(U) given by:

Fe(me) = {(9“”ﬂw)(x)’“f(w)(x)) e U}

{(wnern o) ),

for all —¢ € —-F.

Remark. Definition 2.18 can be restated as follows.

Let (F,E) € CIFSS(U). Define 7 as a function
from E to CIFS(U), where 7 () is the complement
of F(e) for all ¢ € E. Then, (T,E) is called the
complement of (F,E) and this can be denoted as
(T,E) = (F,E)~.

Note that, for each ¢ € E, T(c) = {(@, vz,
(x),ujf-(g)(x)) : 2 € U} in line with Definition 2.3.

Definition 2.19 [10]. Let (Fi,E)), (%, By) €
CIFSS(U). Define R = E1UE,, S = E1NE,; and for all
e €8, H(e) = Fi(e)UFa(e) and K(g) = Fy(e) N Fale).

-7:1(5 s € E E1 —
H(e) = { Fale), c€cE—S
Fi(e)UFy(e), €8
and
Fi(e), cc B -8
K(e) = Fale), c€By—S
Fi(e)NFo(e), €8
Then:

(i) (M, R)is called the union of (F1, By) and (Fs, Es)
and is denoted by (H, R) = (F1, E1)U(Fs, Ey);

(i) (K,R) is called the intersection of (F1,Ey)
and (Fy,E;) and is denoted by (K,R) =
(Fr, EV)NFs, By);

(iti) (H,S) is called the restricted union of (F1,E1)
and (Fy,Es) and is denoted by (H,S) =
(F1, E0)O(Fy, By);

(iv) (E,S) is called the restricted intersection of
(F1, Er) and (Fy, Es) and is denoted by (K, 5) =
(F1, EV)(Fo, By).

We now define two new operations for the CIFSS
model, namely the (a, §)-level set and the characteris-
tic set of a CIFSS, and provide some properties of these
operations. The formal definitions of these operations
and the properties of these operations are given below.

Definition 2.20. Let (F,E) € CIFSS(U), and
a, B € 01. The («, 8)-level set of (F, E), denoted by
(F,E)(q,p), is a soft set on U defined below:

(J%, E) (aﬁ): {(5, }N'(a,ﬁ)(s)) cee b, ﬁ(a75)(€) € p(U)} ,

where Fop)(e) = {x € U pg, (v) 2 a,vg (z) <
B} foralle € E.

If o = 3, then (J%, E)(a,a) is called the a-level set
of (F,E), denoted by (F,E),, and defined as:

(J%’E)a - {(gﬁa(g)) e € E,Fule) € p(U)}v

where Fo(e) = {z € U : fge(x) 2 vy (z) < of
for all ¢ € E.

Remark. Note that since ]—N'(a”g)(a) € p(U) for all
¢ € E, we have:

(]—N', E)(a,,g) = {(e,ﬁ(aﬂ)(s)) te € E} )

Definition 2.21. Let (F,E) € CIFSS(U) and S be
a non-null proper subset of U. If {[L]f-(s) :e € B} =y

and {V]f-(g) :e € E} = vp, in which:

() rel, reS
z) = )
Ho l~re¥, z2€eU-S

and:

() Tel?, z€S
vo(z) = .
0 l~rel¥, zecU-S

where w + ¢ € {2m,47} and re > 7el¥, and then
(F,E) is said to be characteristic over S.
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Remark. Consider the particular case where U =
{p,q} and po(z) = vo(z) = § forallz € U.

Note that rel* = re™ = relv = re'¥ = 1 € Oy,
and w+1 =4r, 7 =7, and w = 9. However, S can be
either {p} or {q}. We now have an example of (F, E)
as characteristic over more than one non-null proper

subset of U.

Proposition 2.1. Let (F,E) € CIFSS(U), and
(F,E) be characteristic over S, in which:

() rei«, r€eS
z) = .
Ho l~reY, z€eU-S5
and:
() Tel?, resS
Vo\xr) = .
0 l~re, 2€U—-S

are the membership and non-membership functions of
F(e), respectively. Then:

i r+7=1

(i) rel > 1 ~re? and Tel¥ <1 ~ 1el¥,

Proof.

(i) Note that gy and vy are the membership and
the non-membership functions of F(c), which is
a complex intuitionistic fuzzy set. Then, the
condition 0 < |po(z)| + |po(z)] < 1 holds for all
z € U. We now have both 0 < r+7 < 1 and
0 < |1 ~re|+ |1~ 7el¥| <1 by Definition 2.21.
From Lemma 2.2, it follows that:

|1 Nrei“’|+|1 ~Tew| =(1-r+(1-7)

=2—(r+71),

causing 0 < 2—(r+7) < 1; therefore, 1 < r+7 < 2,
which implies r + 7 = 1;

(i) As (F,E) is characteristic over S, w+1) € {2, 47}
and re” > rel¥. Since r > rand r + 7 = 1, it
follows that 7 > % and 7 < 3. Thus, we have
1-r< % and1—71 > % These further imply that

rzl—-randrt<1—r71.

Now, suppose that w + ¢ = 2x. Since w > ¥, it
follows that w > w and ¥ < 7. Wenow have 1l —w < 7
and 1 — 4 > 7, implying that w > 27 —w and ¥ <
2m — . In addition, note that both w,?y < 2x. By
Definition 2.14, we have e > (1 — r)el*™ %) = 1 ~
rel and el < (1 —71)el?™=%) =1 ~ 1el?.

On the other hand, if w + ¢ = 4x, then w =
¥ = 2m. Then, by Definition 2.14, we have relv >
(1—7)e“ =1~ re* and 7el¥ < (1—7)el¥ = 1 ~ e,
(]

3. Complex intuitionistic fuzzy soft groups

The study of soft algebra and fuzzy soft algebra was
initiated by Aktas & Cagman [19] and Aygunoglu &
Aygun [20], respectively. Other researchers such as
Feng et al. [11], Acar et al. [21], Inan and Ozturk [22],
and Ghosh et al. [23] also contributed to the devel-
opment of these areas. Besides, many more advanced
algebraic structures pertaining to groups, rings, and
hemirings of fuzzy soft sets have been introduced in
the literature. Some of the latest works include the
introduction of soft fuzzy rough rings and ideals by
Zhu [24], I-fuzzy soft groups by Vimala et al. [25],
soft union set characterizations of hemirings by Zhan
et al. [26], and neutrosophic normal soft groups by
Bera and Mahapatra [27]. Yamak et al. [28], Leoreanu-
Fotea et al. [29], and Selvachandran and Salleh [30-
34], on the other hand, were responsible for introducing
the algebraic structures of soft hypergroupoids, fuzzy
soft hypergroups as well as soft hyperrings, fuzzy soft
hyperrings, vague soft hypergroups, and hyperrings,
respectively. Khan et al. [35] proposed the notion of
soft interior hyperideals of ordered semihypergroups,
whereas Ma et al. [36] studied the concept of rough
soft hyperrings.

Research in the area of complex fuzzy algebra
is still in its infancy. The study of the complex
fuzzy algebraic theory was initiated by Al-Husban et
al. [37,38] through the introduction of the algebraic
structures of complex fuzzy subrings and complex
fuzzy rings in [37,38], respectively. Al-Husban and
Salleh [39], then, defined the notion of a complex
fuzzy group, which is defined in a complex fuzzy
space, instead of an ordinary universe of discourse.
Alsarahead and Ahmad [40,41], then, proposed the
structures of complex fuzzy subgroups and complex
fuzzy soft groups in [40,41], respectively. To the best
of our knowledge, these are the only published works
in this area of research at present.

The aim of this section is to establish the novel
concept of Complex Intuitionistic Fuzzy Soft groups
(CIFS-groups) in the Rosenfelds sense (i.e., using
the concept of a fuzzy subgroup of a group defined
by Rosenfeld [42]). The properties and structural
characteristics of the proposed algebraic structures are
examined and, subsequently, verified.

Henceforth, symbol G will be used to denote a

group.

Definition 3.1 [19]. Let (F,E) be a non-null soft
set on G. Then, (F, E) is said to be a soft group on G
it F(e) < G for all e € S(F, E).

Remark. As in classical group theory, a null set
cannot be a group, and a null soft set on G is not a
soft group on G.
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Now, define the notion of a complex intuitionistic
fuzzy subgroup of group G and, then, use it to define
the notion of a complex intuitionistic fuzzy soft group
of a group G.

Definition 3.2. Let M = (z,py(z),vy(2)) 2 € G
be a complex intuitionistic fuzzy set on G. Then, M
is said to be a Complex Intuitionistic Fuzzy subgroup
(CIF-subgroup) of G, if the following conditions hold
for all z,y € G:

(1) par(zy) > min{par (2), e (y) s
(i) vam(ry) < max{vm(z),vm(y)};
(iii) pear(2™") = g (2);

(iv) vum(z™") <vum(e)

Moreover, let M and N be two complex intuitionistic
fuzzy subgroups of G with M C N. In this case, M
is said to be a complex intuitionistic fuzzy subgroup of
N.

Definition 3.3. Let (F,E) € CIFSS(G). Then,
(f,E) is said to be a Complex Intuitionistic Fuzzy
Soft group (CIFS-group) on G if F(e) is a complex
intuitionistic fuzzy subgroup of G for all ¢ € Y(]—N', E).

In all that follows, CIFSG(G) denotes the collec-
tion of all complex intuitionistic fuzzy soft groups on a
group G, and (F, E) € CIFSG(G) denotes that (F, E)
is a complex intuitionistic fuzzy soft group on G.

Example 3.1. Consider the case where G is the
symmetric group of order 3, that is, G = S3 =
{1, (12),(23),(13),(123),(132)}. Next, consider a set of
parameters E = {a,b}. Herein, u; = 0.4el, py = 0.4e?,
ps = 0.7¢%; as well as 11 = 0.2¢4, vy = 0.1e4,
vs = 0.1e% are defined. Note that pu; < po < ps and
vy = ve = v3. Now, two CIFSSs of (G are considered,
which are defined as follows:

(i) (F,E) = {F(a), F(b)}, where:

(Lus, vs), (12), pa, 1),
Fla)=1  ((13),p1,21), ((28), 41, 11), ¢,

[ ((123), 112, 25), ((132), 12, 1) |
and:

((Lits, vs), ((12), 12, v5), ‘
Fy=14  ((13),m1,0),((28), p1,m1), ¢,

((123), 1, 1), ((132), 1, 1)

(ii) (av E) = {QN(a),g(b)}, where:

(17N17V1)7 ((12)7N27 V2)7

G(b) = ((13), pa,v2), ((23), p1, 1),

((123)7M17V1>7 ((132)7”’17l/1>

Accordingly, it can be verified that (F,E) €
CIFSS(G), whereas (G, E) ¢ CIFSS(G).

Definition 3.4. Let (1, Ey), (F,, Ey) € CIFSS(G).
Then, (}N'l,El) is said to be a Complex Intuitionistic
Fuzzy Soft subgroup ( CIFS-subgroup) of (}N'Q,Eg) if the
following conditions are satisfied:

(i) Ey C Ey;

(i) For all ¢ € Ey, Fi(e) is a complex intuitionistic

fuzzy subgroup of (Fze).

Proposition 3.1.  Let (F,E) € CIFSS(G) and 1¢
be the identity element of G. Then, the following results
hold for all e € E and for all x € G:

(i) HE( )(ﬁfl) = Nﬁ(g)(x) and V}’-(E)(ﬁfl) = V}:(E)(Z)a
(ii) ,uj;(s)(lg) > ,uﬁ(g)(:v) and l/]'_'-(s)(].(;) < V]“_:(E)(x).

™

Proof. Lete € Eand z € G. By Definition 3.3, F(¢)
is a CIFS-subgroup of G, which enables us to utilize
Definition 3.2 for proving both (i) and (ii):

(i) Both Nﬁ(s)(zil) Z Hﬁ(g)(fp) and Vf-(g)(xil) <
y];(g)(x) directly follow from Definition 3.2. Since
x € G, we also have 2! € G. Thus, it follows that:

—1y—1 —
B (@) = 1z ((I ") ) > pg) (@ Bk

and:

—1y—1 —
V}:(a)(x) = VFe) ((73 Y ) S VE(e (™),

due to Definition 3.2.

(i) Note that 1g = axz~!; thus, the conditions
17 (le) 2 min{uz (@), pz . (271}, and vz
(1g) < max{y]j.(s)(a:),y];(s)(x_l)}, follow from
Definition 3.2. By (i), we have:

min {U]T-(E)(x)’ FFe) <I_1) }
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and:
max {y];(s)(x), VEe) (x_l) }

= max {V}:(E)(x), I/JT-(E)(JZ)} = U]T-(E)(JZ).
This completes the proof. O
Proposition 3.2.  Let (F,E) € CIFSS(G). Then,

(F,E) € CIFSG(G) if and only if the following condi-
tions are satisfied for all e € E and for all x,y € G:

(i) pzeyley™) > min{pz (@), nz, @)}
(ii) Vf(g)(fU97 ) < maX{Vy?(g)(l")» }‘-(E)(y)}'
Proof. (=) Suppose that (F, E) € CIFSG(G).
Let e € E and z,y € G. Then, y~! € G too, and

based on Definition 3.3, F(¢) is a CIF-subgroup of G.
The conditions:

Nﬁ(s)(xyil) 2 mln{p’ﬁ‘(g)(‘x)?Mﬁ(g)(yil)}a
and:
Vf‘(e)(xy_l) < maX{yf(E)(a:)7y]?(s)(y_l)h

directly follow from Definition 3.2. Similarly, we have

Mf-(s)(y_l) Z N]?(E)(?/) and Vf(s)(y_l) < VJT-(E)(ZJ)’
which implies that:

min {u]t-(s)(l’)a FFe) (yil) }

> min {uf(g)(iﬁ)aﬂfr(g)(y)} )

.

Thus, conditions (i) and (ii) now hold.

(<) Suppose that conditions (i) and (ii) are
satisfied for all € € E and for all z,y € G.

By considering the case x = y, we have:

nio(le) = g (y7")

> min {pz) W) 170 @) | = 17 ®),

These imply that:

PE () (y™') = KE () (Ley™)

> min {uﬁ(g)(lG)Jlﬁ(g)(y)} = Mﬁ(s)(y)’
and:

Vi W) = Vi (ley™)
< max {V];(E)(lg), uﬁ(s)(y)} = Vﬁ(s)(y)~

By considering y ! € G, it follows that:

HE mm{ (5) “f(e (v _1>}
Z min M]T-(g) N]:(g)( )}’
Vi (@) < max {vz ) (@) vz, (7))

< max {Vf(e)(x)v ”f(s)(y)} '

Thus, f(s) is proved to be a CIF-subgroup of G for all
¢ € E; hence, it follows that (F, E) € CIFSG(G). O

Proposition 3.3. Let (F,E) € CIFSG(G), and
a,B € Or. If (F,E)q,p) is non-null, then it is a soft
group of G.

Proof. The proof is straightforward. O

Proposition 3.4. Let S be a non-null subset of G
and (F,E) € CIFSS(G), where (F, E) is characteristic
over S. IF (F,E) € CIFSG(G), then S is a classical
subgroup of G.

Proof. Let xz,y € S. Then, by Definition 2.21,
{M]T-(E) :e € E} = pp and {1/]_.(5) c e € E} =,
in which there exist a,3 € Op, with a > [, such
that uo(x) = po(y) = o and wo(x) = woly) = J.
Thus, it follows that z,y € F, g (c) for all e € E,
which further implies that ]—N'(a 5)( £) is not empty for all
¢ € E. Therefore, we have ,5’(? E)(a,3 = E. Since
S (F, E)(a,p) is not empty, (F, E)(a,p) is non-null, and
(F, E)(a,p) 18, therefore, a soft group of G.

Take ¢y € E. Based on Definition 3.1, it follows
that F(.5)(c0) is a subgroup of G; therefore, we
have xy~! € J%(a 3)(€0). Then, by Definition 2.20,
/uaﬁ(go)(:pyfl) > aand vy, )(:vyfl) < B

Recall that {uf(g) e € E} = o and {Z/]'_:(E) te €
E} = vy. Asaresult, po(zy 1) > a and vo(zy 1) < 6.
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We now show that both pg(zy!) = a and
vo(zy~t) = B, which in turn implies that zy~! € S.
We write @ = rel and § = 7e'¥, for some r,7 €
[0,1] and w,? € (0,2x]. Then, w + ¢ € {2m, 47}
follows because of Definition 2.21. Furthermore, recall
that » + 7 = 1 (and, thus, |o| + |5 = 1) due to
Proposition 2.1.

(a) By Definition 2.21, it is either po(zy=!) = a or
po(zy~1) =1 ~ a. Suppose that pg(xyt) =1~
o; then, 1 ~a > a. Since 1 ~ a = (1 —r)e >
relY = q, it follows that [3| =1 —|a| = |1 ~a| >
|| > |8]. This further implies that |1 ~ a| = |¢/
and, therefore, 1 — r = r. Therefore, we now have
l~a= rei‘“’, and there are two cases to consider:

(i) If w = 27, then v’ = w and, therefore, 1 ~
a =re =reé = qa. Hence, po(zy™!) =
follows;

(if) If w < 27w, we have both o' = (27 — w) and
w + 1 = 2x. Note that w > 9 because of
a > 3. As a result, w > 7 follows. On the
other hand, since 1 ~ a = rel27%) > pelv =
a, we have (27 — w) 2 w, which implies that
7 2 w. Thus, we now have w = =, resulting
inw = 7 = w and, therefore, 1 ~ a = rel*’ =

iw

re = a. Hence, pio(zy~') = a again follows.

(b) Based on Definition 2.21, it is either vo(zy 1) = 8

or vo(zy~t) = 1 ~ B. Suppose that vo(zy ') =

1 ~ 8; then, 1 ~ 3 < 8. Sincel ~ g = (1—

) < rel¥ = 3, it follows that |a| = 1 — |8| =

|1 ~ 8| < |B] € |a|. This further implies that

|1 ~ 8| = |8| and, therefore, 1 — 7 = 7. Thus, we

now have 1 ~ 3 = rel?’ ; there are two cases to

consider:

(i) If ¢ = 2x, then ¢’ = ¢ and, therefore, 1 ~
B =7 =16 = B. Hence, vo(zy ) = 8
follows;

(ii) If ¢ < 27w, we have both ¢' = (27 — %) and
w~+ 1 = 27. Note that w < ¢ because of 8 <
a. As a result, ¢ < « follows. On the other
hand, since 1 ~ 3 = 7l %) > rel¥ = g
(27 —1) <+ which implies that 7 < 4. Thus,
we now have ¢ = 7, resulting in ¢’ =7 =9
and, therefore, 1 ~ 8 = 7ei¥’ = rel¥ = 3.
Hence, vo(zy 1) = 3 again follows.

Therefore, we obtain 2y ' € S whenever 2,y € S. As

such, it can be concluded that S is a classical subgroup
of G. O

Theorem 3.1.  Let S be a_non-null subset of G and
(F,E) € CIFSS(G), where (F, E) is characteristic over
S. Then, (F,E) € CIFSG(G) if and only if S is a
classical subgroup of G.

Proof. In Proposition 3.4, it has already been proved

that S is a classical subgroup of G whenever (F, E) €
CIFSG(G). Therefore, it suffices to prove that (F, E)
€ CIFSG(G) whenever S is a classical subgroup of G.

Since (F,E) € CIFSS(G) and (F,E) is charac-
teristic over S, by Definition 2.21, we have {Nﬁ(g) 1€ €
E} = pp and {1/]7.(5) e € E} = vp, in which:

() rel, €S
x) = i
fo l~rev, z2e€U-S

and:

(@) Tel?, z€S
o\ ) = .
0 l~7el?, 2€U-S

with w + ¥ € {27,447} and rel* > rel¥.

Now, let ¢ € FE and z,y € G._ Then bofch:
{uf(s)(ﬂc),u]t-(s)(y),u]t-(s)(xyfl)} C {re,1 ~ rev}
anfi {l/ﬁ(s)(z%Vﬁ(g)(y)7l/ﬁ(5)(zyil)} < {Te“ﬁ,'l ~
rel¥}.  Furthermore, by Proposition 2.1, relv >
1 ~ re® and 7¢" < 1 ~ 7€', which imply that
min{re,1 ~ re®} = 1 ~ re and max{re',1 ~
eV} = 1 ~ 7el¥ | respectively.

Without loss of generality, suppose that = €
G — S.. Then, uj:_(g)(a:) =1~ re™ and yj:_(g)(a;) =
1~ 7.'el¢ which causes min{uz. (), pz.) ()} =1
~ re" and max{yf(g)(x),z/f(s)(y)} =1 ~ T7e?¥,
respectively. Since uﬁ(f)(xy’l) € {re“, 1 ~ rel“} and
Vﬁ(s)(xy’l) € {rel?,1 ~ 7e'¥}, we conclude that:

HF(e) (f”y_l) 2 min {rei“ﬂ 1~ Tei“’} — 1 ~ e

= min {uf(g)(f)aﬂf(g)(y)} )
and:

Vi (vy™") <max{7e” 1~ 7e!V} =1~ 7e"

= max {V}:(E)(I), Vj-(g)(y)} .

Now, let x,y € S. Since S is a classical subgroup of G,
a2y~ ! € S; therefore, it follows that:

{“ﬁ(s)(w)vﬂﬁ@)(y)a#ﬁ@) («Ty*l)} C {re},
and:

{Vf(e)(x)”’f(e)(y)”’f(g) (97?/71)} C {re™}.
As a result, we have:

o (ay™") = e = min{uz.) (@), nz (1)}

and:
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i _

Vf(s)(fpyil) =T¢€ max{l/ﬁ(g)(fp)a’/f(g)(y)}

Hence, the conditions:
HE () (xyil) 2 min {/L]’:(E)(x)aﬂf-(s)(y)} )
and:
-1
VEe) (zy~') < max {l/f(s)(x), V]‘_:(s)(y)} ,

are shown to be satisfied for all ¢ € E and z,y € G.
This proves that (F, E) € CIFSG(G).

Theorem 3.2. Let (F,E) € CIFSS(G), where
(F,E) is non-null. Then, the following statements are
equivalent:

(i) (F,E) e CIFSG(G);
(i) For all o, B € Oy, either (F, E)(a,p) is null, or
(F, E)(a,p) is a soft group of G.

Proof.

(i)=(ii) Take any arbitrary «, € O;. By Proposi-
tion 3.3, if (}N',E)(aﬁ) is non-null, then it is
a soft group of G. Thus, statement (ii) is
proved true;

(ii)=(i) Let ¢ € E and z,y € G, and note that
/»4]?(5)(37)711]?(5)(?/)7Vf(s)(x)al/]?(g)(y) € O1.

Take a = min{,uf(s)(x),,uf(s)(y)} and f = max{
yf(g)(x),yf(g)(y)}. Then, we have u]?(g)(a:),uj;(a)(y)
> «a and 1/}:(5)(17),1/]7.(6)(3/) < B, which means that
x,y € f(a,ﬁ)(e). This implies that (]T',E)(a’ﬂ) is not
null; therefore, it is a soft group of G. Thus, we now
have F(4,5)(¢) < G and, therefore, xy~t e Fla,p)(€);
which in turn implies that:

iz ey ) > a=min {uz (@) 0z W)}
and:
—1 _
Vi (ay™!) < 8 = max {vz (@), vz W)}

Hence, by Proposition 3.2, statement (i) now follows.
O

Theorem 3.3.  Let (F1, Er), (Fy, EBy) € CIFSG(G).
Then, (fl,El)ﬁ(fz,Ez) € CIFSG(G) too.

Proof. The proof is straightforward by Defini-
tion 2.19 and is, therefore, omitted. O

Remark. This property also holds for the restricted
intersection operation between CIFSSs.

Definition 3.5. Let Uy, Us be two universal sets, o :
Uy — Us be a function, E, B be two sets of parameters:

(T.E) € CIFSS(U1) and (F, B) € CIFSS(U,). Define
(¢(T), E) € CIFSS(Us) and (¢ (F), B) € CIFSS(U;)
as follows:

(i) (o(7),E) is such that for all y € U and ¢ € E:

Ho(T)(e) (Y)

=min {{V%(E)(u):uEUl,ap(u):y}U{l}} .

(ii) (¢~Y(F), B)is such that, for all z € U; and s € B,
Po1(F)(s) (@) = 17 (0(2)) and vy 7)) (@) =
Vﬁ(s)(¢(fﬁ))~

Theorem 3.4.  Let p: G — G' be a surjective group
homomorphism. Let (T, E) € CIFSG(G) and (F,B) €
CIFSG(G"). Then:

(i) (o(7),E) € CIFSG(G') provided that:

PgeEG }

max{min{ﬂi(g)(p)’ “%(s)@}’ e(p)=z,p(q)=y

2 min {MT(E) (r), BT (y)}
and:

pg€G }

min{max{yf—(s)(p), V%(E)(Q)} o(p)=z, ¢(q)=y

< max {y%(s)(x), Vi(s)(y)} )

for all x,y € G';

(ii) (¢~Y(F),B) € CIFSG(G).

Proof.
(i) Let z,y € G’ and ¢ € E. Then, by Defini-

tion 3.5, we have (o(7),E) € CIFSS(G'), where
Mg,(%)(g)(x?/_l) = max{{ﬂf(g)(u) ru € Gop(u) =

2y~ '} U {0}}. Since ¢ is surjective, we have:
max{{,ui(s)(u) cu € G p(u) = xy_l} u {0}}

= max {,uqz(s)(u) cu € Gyolu) = xyil} .

Moreover, since ¢ is also a homomorphism, we
have:
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max {HT(E)(“) cu € G pu) = I?Jil}
> max{ui(s) (pa™") :p,q € G,¢(p)

nysa(Q)zy}

Since (T,E) € CIFSG(G), 17 (pat) > min{

ui(s)(p),,uﬂg)(q)} for all p,q € G. This implies
that:

maX{MT(g) (pa™t): p,qeG,w(p)zx,w(q)zy}
> max{min{uf—(s)(p)vMf—(g)(Q)} ‘D, q
€ G, o(p) =z,0(q) = y}

2 min {N?(E)(Z)v M%(g)(y)} .

Similarly, for the non-membership function, we
have the following:

V() ()
:min{{yﬂs)(u) :ueG,go(u):xy*l}u{O}}
— min {U,T(E)(u) u€ G p(u) = acy_l}
<minfvz (00 ), 1€ G, o(p) =1, o(a) =y}
< min{max {vz, (), 7, (@) } :p.a
€ G,olp) = v, 0(a) =y}

< max {V%(E)(x), u:;(s)(y)} .
(i) Let 2,y € G and s € B. Then, (¢~*(F),B) €
CIFSS(G) by Definition 3.5. As (F,B) €

CIFSG(G'"), by applying Proposition 3.2, along-
side with Definition 3.5, we obtain the following:

Hom1(F)0 (7) = 1z (0 (2y7)
= 1z (P(@) (@) ™)
> min { iz, (0(2): 1z (0(0) }
= min {/,L(p,l(]f-)(s)(x),H¢71(f‘)(5)(y)}

Vi (F) o) (@) = VR (0 (2971))
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= vz, (p@)(e))™)
< max {V}*—(S)(QO(I)), V]?(S)(W(y))}

= max {1/@_1(5;)(5)(56), V¢—1(ﬁ)(s)(y)} .

This completes the proof. O

4. Normal complex intuitionistic fuzzy soft
groups

In this section, the notion of CIFS-groups is extended
by adding the normality condition to the existing
conditions.  Aygunoglu & Aygun [20] introduced
the conditions for normality in the context of fuzzy
soft sets. Here, these conditions are generalized for
normality to be compatible with the CIFSS model;
subsequently, these conditions are used to define the
notion of normal CIFS-groups.

The conditions for intuitionistic fuzzy soft nor-
mality are described in Lemma 4.1, whereas the notion
of a normal CIFS-group is proposed in Definition 4.1.

Lemma 4.1. Let (F,E) € CIFSG(G) and ¢ € E.
Then, the following statements are equivalent:

(1) pzeleyz™) > pge)ly) and ve  (zya) <
Vg E)(y), for allz,y € G;

(ii) Nﬁ(g)(xyfpil) = N]?(E)(y) and V]?(E)(xyxil) =
V]_’:(E)(y), forallxz,y € G;

(iii) Nﬁ(g)(l’y) = N]T-(E)(?JI) and V]T-(E)(xy) = V}”-(E)(W?)a
forallz,y € G.
Proof.

(i)=(ii) Let z,y € G. Then, y =z~ (wyx~1)(x=1)71,
and both x ! zyz~! € G. As a result, we
have:

17 W) = g (@™ (@yz ™) (@)™
> ng)(vya™h),
and:

Vi (Y) = vE (@ @y ™) (@)™

< V]T-(E)(I?Jx_l)~
Hence, statement (ii) now follows;

(ii)=(iii) Let x,y € G. Then, zy = z(yx)r ! and yx €

G. As a result, we now have:

and:
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Vﬁ(g)@y) = Vﬁ(g)(fU(yx)xil) = Vﬁ(s)(y$)~

Hence, statement (iii) now follows;

(iii)=(i) Let z,y € G. Then (z71')(zy) = y, where
2y, 2z~ " € G. Thus, we obtain:

g (@y)a™) =pg ) (e @y) = ng) (),

and:

vz (@y)a™) =vz (27 (wy) =vz., (1).

Hence, statement (i) now follows. O
Definition 4.1. Let (F,E) € CIFSG(G). Then
(F,E) is said to be a Normal Complex Intuitionistic

Fuzzy Soft Group on G ((F,E) € NCIFSG(@)), if the
conditions:

nEEye™) = g ),
and:
I/J;(E)(:pyxfl) < V]‘_:(E)(y),
are satisfied for all ¢ € F and =,y € G.

Example 4.1. Consider the example described in
Example 3.1. We define an (H,E) € CIFSS(G) as

(H, E) = {H(a), H(b)}, where H(a) = F(a), and F(a)
is as defined in Example 3.1. and:

(17u37y3)7((12)“u,1’1/1)’ ((13)’/1/171/1)’

H(b) = ((23), p1,v1), ((123), pa, v1),

((132), a1, 1)

Then, (H,E) € CIFSG(G) and it also satisfies the
conditions for normality described in Definition 4.1.
Hence, (H, E) € NCIFSG(G).

Theorem 4.1.  Let (F,E) € CIFSG(G). Then, the
following statements are equivalent:

(i) (F,E) e NCIFSG(G);

(i) ﬂ}"-(g)(x?ﬂ’_l) 2 N]T-(g)(y) and V]?(g)(xyl’_l) <
(), foralle € E and 2,y € G;

(i) pze)(eye™) = nz @) and vy (zyz™") =
(), foralle € E and x,y € G;

,u]f.(s)(y:p) and V];(E)(xy)
y];(g)(yx), foralle € E and xz,y € G.

Proof.
(i)=(ii) This follows directly from Definition 4.1;
(ii) = (iii) and (iii) = (iv) These follow directly from
Lemma 4.1;

(iv)=(i) Statement (ii) follows directly from Def-
inition 4.1 and, therefore, statement (i)
follows by Lemma 4.1. O

Proposition 4.1.  Let (F,E) € NCIFSG(G) and
0 C DCE. Then (F,D) € NCIFSG(G) as well.

Proof. Let x,y € G. By Theorem 4.1, it follows that
N]T-(E)(m/l’_l) Z Nﬁ(g)(y) and V]?(g)(l’yx_l) < V_%(E)(?J)’
for all e € E. Since § C D C E, such statement holds
for all € € D too. This completes the proof. O

Theorem 4.2.  Let:

(F1, Er), (Fa, Es) € NCIFSG(G).
Then:

(Fr, EV)O(Fo, Es) € NCIFSG(G).

Proof. The proof is straightforward by Defini-
tions 2.14 and 4.1. O

Remark. Similar to Theorem 3.3, this property also
holds for the restricted intersection operation between
CIFSSs.

Theorem 4.3. Let ¢ : G — G’ be a surjective
group homomorphism. Let (T,E) € NCIFSG(G) and

(F,B) € NCIFSG(G"). Then:

(i) (p(7),E) € NCIFSG(G') provided that:

pg€EG }
“p(p)=z,0(q)=y

and:

min{max{l/f—(g)(p)7 Vi’(s)(Q)} : Z’(%)Ezg @(@Z?J}

< max {Vj'—(g)(x)a Vj"(s)(y)}
for all x,y € G,

(ii) (p='(F),B) € NCIFSG(Q).

Proof. The proof can be derived from Theorem 3.4,
Lemma 4.1, and Definition 4.1. O

5. Conclusion

This paper presented the initial theory of complex
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fuzzy algebra. We defined and developed the algebraic
structures pertaining to groups and subgroups for the
Complex Intuitionistic Fuzzy Soft Set (CIFSS) model.
The notions of CIF-subgroups, CIFS-groups, and nor-
mal CIFS-groups were introduced. The fundamental
properties and structural characteristics of these al-
gebraic structures were then examined and verified.
All of these were accomplished by carefully defining
some important concepts pertaining to the structure
of the CIFSS model and also carefully generalizing
some of the well-known operations and relations that
exist between intuitionistic fuzzy soft sets to be made
compatible with the structure of the CIFSS model, in
which the membership and non-membership functions
are defined in terms of complex numbers. Furthermore,
in this paper, we contextualized the phase term by
using it to represent the different cycles of alternating
groups, thereby proposing a new way of interpreting
the phase term.

6. Further direction of this work

Our research in this area is still ongoing. We
are currently in the midst of extending the CIFSG
structure introduced in this paper to introduce more
advanced algebraic structures, such as CIFS cyclic
groups, abelian groups, dihedral groups, symmetric
groups, and alternating groups, using the concepts and
theory developed in this paper. The work presented in
this paper can also be used as a basis to develop other
algebraic theories of complex fuzzy based models.
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