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Abstract. Although the literature of the supply chain abounds with the analysis of the
bullwhip e�ect, few studies regarding the impact of the bullwhip e�ect or demand distortion
on the supply chain pro�t have been done. Hence, the concept of Distance to Loss (DL) is
introduced, which is a function of the retailer's selling price, the manufacturer's wholesale
price, the end item's salvage value, the retailer's expected demand, and the retailer's
variance of demand. This concept can perfectly model both stock-out loss and overstocking
loss emanated by the bullwhip e�ect and combine both the newsvendor model and credit
risk concepts. Our �ndings are based on an experimental design and are profoundly in
line with previous research. In particular, our model indicates that variations in demand
parameters, retailer's selling price, and manufacturer's wholesale price impinge on the
retailer's DL, whereas a slight increase in the salvage value negligibly a�ects the retailer's
DL.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Presumably, the bullwhip e�ect, also known as de-
mand distortion, has generated many problems for the
members of the supply chain since its inception. It
negatively a�ects manufacturing cost, inventory cost,
transportation cost, and poor customer service level
because of weak product availability and longer lead
time [1-3]. On the basis of the bullwhip e�ect, the
pro�tability of the supply chain, due to factors such as
price uctuation, order batching, order rationing, and
di�erent forecasting methods, has signi�cantly been
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reduced [4-6]. In other words, as demand distortion is
intensi�ed when it passes from one member to another,
a tremendous stock-out loss and an overstocking loss
are generated for all members of a multi-echelon supply
chain [7-11]. Hence, �rst, this paper introduces the
concept of Distance to Loss (DL) by which we can
model both the stock-out loss and the overstocking loss,
generated by the bullwhip e�ect for a retailer. This
elegant concept combines the newsvendor model and
credit risk concepts. In the second place, this paper
investigates how variations in demand parameters as
well as pro�t function variables can a�ect the stock-
out loss and the overstocking loss.

In an e�ort to ascertain the retailer's pro�t, we
assume that the retailer has a highly uncertain demand,
attributed to high overstocking cost and stock-out cost,
and is to place his optimal order to a manufacturer
for a single selling season as extensively examined in
the context of the newsvendor model. Hence, the
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retailer's pro�t function is attained by striking the
balance between the overstocking cost and the stock-
out cost and composed of variables like the retailer's
order quantity, the retailer's expected demand, the
retailer's selling price (p), the manufacturer's wholesale
price (c), and the end item's salvage value (s). In
addition, the retailer's concave pro�t function includes
three critical points, q1, q2, and q3, see Figure 1.
Under points q1 and q3, the retailer's pro�t is zero.
We refer to points q1 and q3 as the Breakeven Point
(BP ). In contrast, under point q2, the retailer makes
an optimal pro�t. On the other hand, the stock-out
loss and the overstocking loss occur when expected
demand is greater than or less than q2, respectively,
and loss magnitude increases as the expected demand
approaches the BP s. As a result, for an expected
demand beyond q3 or less than q1 retailer has a negative
pro�t or a perfect loss.

The KMV model is a trademark of the KMV
Corporation, which was founded by Stephen Kealhofer,
John Mcquown, and Oldrich Vasicek in 1989 [12], and
is a renowned credit risk model that can estimate
�nancial loss exposure profoundly [13-22]. For the
sake of this paper, we have elicited the DL from the
KMV concepts since there is a promising similarity
between the DL model parameters and the bullwhip
e�ect parameters. Hence, we have carefully adjusted
the DL model to e�ectively capture the overstocking
loss and the stock-out loss, emanated by the bullwhip
e�ect. Our adjusted DL is a function of the expected
demand and the variance of demand, p, c, and s.
However, since the opportunity cost of a lost customer
is somewhat analytically intractable, we have addressed
the DL for the stock-out case.

This paper contributes to the literature of the
bullwhip e�ect and the supply chain by rendering the
following contributions. First, we have introduced an
elegant concept that includes not only the variance
of demand as extensively examined in the literature,
but also other key related factors, such as selling
price, wholesale price, and salvage value. That is, the
DL concept highlights other aspects of the bullwhip
e�ect by employing other pertinent factors of demand
distortion, such as variations in selling price, wholesale
price, and salvage value, in addition to the mean and

Figure 1. The retailer's pro�t curve.

the variance of demand. Second, our rendered model is
capable of capturing both stock-out loss and overstock-
ing loss generated by the bullwhip e�ect. Third, our
rendered model is very likely to be generalized to the
di�erent echelons or supply chains since many supply
chains include our model parameters. At last, our
model can easily be used by practitioners to magnify
the e�ects of demand distortion on both stock-out loss
and overstocking loss.

To arrive at our conclusion, an experimental
design is applied to the DL model for a stock-out
case. Our �ndings are mostly in line with previous
�ndings in the bullwhip literature. Our results, �rstly,
indicate that any increase in the expected demand and
the variance of demand makes the DL attenuate, which
implies a higher likelihood of stock-out loss. Secondly,
any decrease in p can result in a lower DL and, im-
plicitly, a higher stock-out loss. That is, under a price-
dependent demand, low prices induce the demand, and
subsequently, lead to a higher likelihood of stock-out.
By the same token, an increase in wholesale price is
followed by a higher DL and a higher likelihood of
stock-out loss. Intuitively, a higher wholesale price
implies less retailer pro�t margin and a lower level of
product availability. Nevertheless, one unit increase in
variable s does not a�ect the DL and the stock-out
loss, yet increases the retailer's pro�t. It indicates that
a slight increase in s can both enhance the coordination
in the supply chain without having an e�ect on the
stock-out loss and improve the retailer's pro�t.

This paper is organized as follows. Section 2
concisely reviews the bullwhip e�ect and succinctly
delineates KMV concepts. Section 3 models the re-
tailer's DL. Sections 4 and 5 include the experimental
design and results, respectively. Section 6 presents the
conclusion and future research.

2. Literature review

2.1. Bullwhip e�ect
One of the main consequences of bullwhip e�ect is
excess inventory ow. In fact, when customer's demand
passes from one downstream member to an upstream
member due to poor communication, the original
customer's demand is highly inated when it reaches
the last upstream member. This problem is emanated
whenever each supply chain member forecasts based
on incoming orders. As a result of order ination or
mismatch between demand and supply, some members
end up with overstocking loss, whereas others incur
stock-out loss and experience poor customer service.
Furthermore, other detrimental consequences of bull-
whip e�ect such as excess or inadequate capacity along
with cost and time of capacity setup, unstable produc-
tion planning, and higher transportation, ordering, and
holding cost can be seen, too [8,23].
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With respect to bullwhip e�ect, di�erent ap-
proaches have been utilized to manifest the structure
of bullwhip e�ect and how it negatively a�ects the
supply chain. Simulation-driven studies were origi-
nated by Forrester [24,25] and followed by Towill [26]
and Wickner et al. [27]. They basically investigated
how structure, policies, and communication within a
supply chain result in bullwhip e�ect. In particular,
Kim et al. [28] used a simulation model \SISCO"
to investigate how stochastic lead times, information
sharing, and quality of information a�ect the supply
chain under a periodic order-up-to inventory policy.
The second approach, \Beer Game" pioneered by Ster-
man [29] and followed by Croson and Donohue [30,31],
Haines et al. [32], and Sarkar and Kumar [33] has
been mainly used to address the behavioral aspect of
bullwhip e�ect. The third approach initiated by Lee
et al. [4,5] introduced four main causes of bullwhip
e�ect such as demand forecast updating (also, [34-
37] provide more elaborate analysis about forecasting
methods), order ination or order rationing, order
batching, and price uctuation, and concluded that
these factors methodically impaired the performance
of supply chains. In addition, Paik and Bagchi [38]
identi�ed other four causes of bullwhip e�ect such as
material delays, information delays, purchasing delays,
and levels of echelons; however, only the last one is
followed by a very signi�cant statistical result. Lee and
other authors also pinpoint some remedies like uniform
and integrated information sharing, order aggregation,
and consistent discount programs like Every Day Low
Price (EDLP) programs as currently prevalent in many
industries in an e�ort to mitigate the problem. The
fourth approach is control system engineering. This
approach was addressed by Dejonckheere et al. [8],
Sourirajan et al. [39], Salcedo et al. [40], Fu et
al. [41], and Wang and Disney [42]. Nonetheless,
Miragliotta [43] provided a more elaborate literature
review regarding bullwhip e�ect.

An extensive e�ort has been exerted by a few
researchers such as Metters [44] and Chen et al. [7,45],
Kim et al. [28], Frangoo and Wooters [10], Chen and
Lee [46], Isaksson and Seifert [47], George and Pil-
lai [48], Sodhi et al. [49], and Ma and Bao [50] to quan-
tify the bullwhip e�ect. Metters [44] highlighted how
demand seasonality and forecast error could negatively
a�ect the supply chain pro�tability under di�erent
levels of demand distortion. He used a dynamic pro-
gramming model as previously addressed by Zipkin [51]
similar to our model, which uses an experimental design
to conclude that the bullwhip e�ect has a negative
e�ect on the supply chain's pro�tability. However, he
does not make a distinction between overstocking loss
and stock-out loss generated by the bullwhip e�ect.
Hence, our paper has developed the Metters's work by
introducing a new elegant concept, DL, into his work

to arrive at a better distinction between overstocking
loss and stock-out loss made by the bullwhip e�ect. In
fact, none of the aforementioned studies has made a
clear distinction between overstocking loss and stock-
out loss, or even rendered an approach to capture them.

This research combines the classic newsvendor
model with credit risk concept, based on KMV model,
to model stock-out loss and overstocking loss in the
presence of bullwhip e�ect. There are many papers
on KMV methodology or quantifying bullwhip e�ect,
which were reviewed. However, to the best of our
knowledge, these two probabilistic models are com-
bined to study the behavior of retailers in a supply
chain for the �rst time.

2.2. KMV model
On the basis of the KMV methodology, amount of
loss exposure in credit risk through some key concepts,
such as Distance to Default (DD), Expected Default
Frequency (EDF), and Actual Distance to Default
(ADD), can be obtained. However, for the sake of this
paper, we mainly focus on the DD. That is, we have
concisely delineated the concept of DD. In addition,
due to profound similarity between KMV model and
bullwhip e�ect structure (stock market volatility and
demand distortion), we have elicited the DL from
the DD. Below depicts how KMV model and DD are
elicited.

As shown in Figure 2, the KMV model includes
six variables determining the default probability of a
�rm over a time horizon up to H as follows [52]:

1. The extant asset value;
2. The distribution of the asset value at time H;
3. The volatility or variance of the future asset value

at time H;
4. The level of the default point, which is the book

value of the liabilities;
5. The anticipated rate of growth in the asset value

over the time horizon;
6. The length of the time horizon, H.

Figure 2. Anatomy of KMV model.
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However, by some intermediate calculations, the
KMV model follows the probabilities of default, or
so-called the Distance to Default (DD) (the distance
between the expected asset value in one year and the
default point). The DD is the number of standard
deviations between the mean and default point. It can
be calculated as shown in Eq. (1) [52]:

DD =
MVA�DPT
MV A� V A ; (1)

where:
DPT Default Point (or critical threshold);
MVA Market Value of Asset (or current asset

value);
V A Volatility of Asset (or variance of

asset).

3. Modeling retailer's DL

In an e�ort to introduce theDL concept, a combination
of the pro�t function and the KMV approach is applied.
To measure the e�ect of demand distortion on retailer's
loss, this paper has recourse to the pro�t function as
a proxy to capture the retailer's loss. To arrive at
a perfect pro�t function, we assume that the retailer
incurs high demand uncertainty attributed to both
the high overstocking cost and the stock-out cost
when retailer selects an optimal order quantity for a
single selling season. Hence, the retailer selects an
optimal order quantity by striking a balance between
the stock-out cost and overstocking cost as seen in the
newsvendor model. In fact, our newsvendor model is
very similar to the dynamic programming model used
by Metters [44] and Zipkin [51]. Furthermore, the
stock-out occurs when the expected demand exceeds
an optimal order quantity, whereas the overstocking
occurs when the expected demand is less than an
optimal order quantity.

The net retailer's pro�t is determined by sub-
tracting both the overstocking cost and the stock-
out cost from the total pro�t. Hence, by virtue of
a calculated trade-o� between the stock-out cost and
the overstocking cost, pro�t equation (Eq. (2)) (the
proof is included in Appendix A) as a function of
order quantity, stock-out cost, overstocking cost, and
demand parameters is determined.

x 2 [a; b]; a; b > 0; and a 6= b;

E(x) =
a+ b

2
; V ar(x) =

(b� a)2

12
; and

f(x) =
1

b� a;
0 < s < c < p and p > 2c� s;

(x� q)+ = maxfx� q; 0g; and

(q � x)+ = maxfq � x; 0g;
(x� q) = (x� q)+ � (q � x)+;

�q = total pro�t-stock-out cost-overstocking cost;

�q=(p�c)E(x)�(p�c)E(x�q)+�(c�s)E(q�x)+;

�q = cuE(x)� cuE(x� q)+ � coE(q � x)+;

�q=cu
�
a+b

2

�
� 1

2(b�a)
�
cu(q�b)2+co(q�a)2� :

(2)

In fact, we assume that the demand is stochastic
and follows a uniform distribution. Further, model
notations employed in the rest of the paper are de�ned
as follows:

Notations
p Per unit retailer's selling price
c Per unit manufacturer's wholesale

price
x Demand
f(x) Uniformly distributed function of

demand
a Minimum demand
b Maximum demand
q Retailer's order quantity
E(x) Expected demand
V ar(x) Variance of demand
s Per unit item's salvage value
cu Stock-out cost
co Overstocking cost
q2 Optimal order quantity
q1 Breakeven point related to overstocking
q3 Breakeven point related to stock-out

The retailer's pro�t function, Eq. (2), has a
concave curve as shown in Figure 1. According to this
curve, the retailer has optimal pro�t at the point q2,
and zero pro�t at points q1 and q3. Hence, we refer to
points q1 and q3 as Breakeven Points (BP ), also known
as the default points under KMV model.

When an expected demand is greater than q2, the
retailer faces a stock-out, whereas, when an expected
demand is less than q2, the retailer faces an overstock-
ing. However, as the expected demand approaches
points q1 and q3, the likelihood of the overstocking
loss and the stock-out loss increases, respectively.
In essence, when the expected demand moves either
beyond point q3 or below point q1, the retailer makes



M. Zanddizari et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 1913{1924 1917

a perfect loss. That is, the demand distortion, also
known as bullwhip e�ect, makes the expected demand
(or order quantity when it passes to an upstream
member) approach either q1 or q3. To arrive at a
perfect loss estimation, the retailer should judiciously
calculate points q1, q2, and q3 based on Eqs. (3)-(5) as
follows (proofs are included in Appendix A).

�q = 0;

q1 = (cub+ coa)�
s

(cub+ coa)2

(cu + co)3 � a2; (3)

q3 =

s
(cub+ coa)2

(cu + co)3 � a2 + (cub+ coa); (4)

��q
�q

= 0;

q2 =
cub� coa
cu � co : (5)

In addition, Eq. (6) includes the optimal pro�t function
under q2 quantity.

��q2 =cu
�
a+b

2

�
� 1

2(b�a)
�
cu(q2�b)2+co(q2�a)2� :

(6)

Once the above three quantity points are elicited
from the retailer's pro�t function, the derivation of
DL becomes possible. That is, as shown in Figure 3,
as the demand distortion highly varies, the likelihood
of migrating to the loss zones increases. Demand
distortion is measured by the variance of demand when
it passes from one member to another; in addition,
under the uniform distribution, the demand range
(b� a) is a good indicator of the demand distortion.

Conceivably, the retailer places an optimal order
quantity, q2, to the manufacturer well in advance of
selling season. The manufacturer produces q2 and
ships it to the retailer before the actual demand is
realized. However, once the actual demand is realized,
the retailer compares an actual demand with a pre-
de�ned BP and arrives at the pertinent DL evaluation.
In other words, by accruing the sale quantity on the

Figure 3. The retailer's BP s and q2 versus demand
parameters.

monthly basis in a single selling season and comparing
it with pre-de�ned BP , the retailer can attain a perfect
and adequate insight into his pro�t performance. If the
DL is attenuating toward the end of selling season, in
the case of exposure to the overstocking loss, it is the
best strategy for the retailer to either make more e�ort
in the forms of promotions or decrease the price tabs
to get the left-over sold. In contrast, in the response
to exposure to the stock-out loss, the retailer, at best,
can slightly mark up the price tabs to retain his pro�t
margin throughout the selling season.

According to the KMV model, the DL is the
distance between the expected demand (E(x)) and
BP s. When we take account of q1 (Eq. (3)) as BP ,
DL can capture the overstocking loss, also denoted by
DLo, as mentioned in Eq. (7):

DL =
E(x)�BP
E(x) � V ar(x)

;

DLo =
E(x)� q1

E(x) � V ar(x)

=
a+b

2 �
�

(cub+ coa)�
q

(cub+coa)2

(cu+co)3 � a2
�

a+b
2 � (b�a)2

12

:
(7)

In other words, in the case of overstocking, DL is
always positive. By contrast, when we assign q3
(Eq. (4)) as BP , DL captures the stock-out loss, also
denoted by DLu, as mentioned in Eq. (8):

DLu =
E(x)� q3

E(x) � V ar(x)

=
a+b

2 �
�q

(cub+coa)2

(cu+co)3 � a2 + (cub+ coa)
�

a+b
2 � (b�a)2

12

:
(8)

Expectedly, under the stock-out loss, DLu is always
negative. By the same token, it is very likely for the
retailer to observe both DLo and DLu throughout the
selling season if he incurs an uncertain demand.

On the basis of Eqs. (7) and (8), both DLo and
DLu are a function of the following variables: the
expected demand (a or the minimum demand and b or
the maximum demand), the variance of demand, the
stock-out cost (cu includes selling price and wholesale
price), and the overstocking cost (co includes wholesale
price and salvage value). That is, DL models include
both the key variables of pro�t function and the
demand distortion variables so as to profoundly model
the e�ect of demand distortion on the retailer's loss.

The expected demand is an average of the ex-
pected minimum and the maximum demand and di-
rectly a�ects the retailer's pro�t. Likewise, the range
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of expected demand as the di�erence between the
maximum and minimum demands is a perfect indicator
of the variance of demand under uniform distribution.
Hence, the larger expected demand range the retailer
has, the smaller is his DL. Nonetheless, this paper
is chiey focused on DLu model or Eq. (8) because
of two plausible reasons. First, the opportunity cost
of lost customers is somewhat analytically intractable;
in addition, the best of our knowledge, few studies
regarding the e�ect of demand distortion on the stock-
out loss have been done. Second, all the steps taken
to arrive at DLu model are the same as the those to
achieve DLo model or Eq. (7). Hence, in the next
section, an experimental design is presented to evaluate
DLu model.

4. Experimental design

In order to highlight the e�ect of demand distortion
on DLu, the retailer's optimal pro�t, and the retailer's
BP , an experiment composed of �ve factors is designed.
The factors and corresponding levels are presented
in Table 1. These factors are key variables in DLu
function and pro�t function as reviewed in the last
section. Likewise, three levels for the minimum and
the maximum of demand are chosen to not only reect
more explicit demand distortion but also render a more
variegated set of expected demand.

In fact, under uniform distribution, the mean and
variance of the demand are de�ned by Factors 1 and 2
as mentioned in Table 1. In addition, di�erent combi-
nations of Factors 1 and 2 are accompanied by di�erent
mean and variance of demand as presented in Table 2.
The ratio between the lowest and the highest demands
is 50:1 with variance 200 which reects the high level
of demand distortion, versus 5:20 with variance 18.75,
where the retailer faces the lowest demand distortion.

We have also varied the retailer's selling price (p)
and manufacturer's wholesale price (c) so as to examine
how the promotions and the quantity discount a�ect

Table 1. The experimental factors and levels.

Order Factors Levels

1 Minimum demand (a) 1, 3, 5
2 Maximum demand (b) 20, 35, 50
3 Retailer's selling price (p) 8, 9
4 Manufacturer's wholesale price (c) 3, 4
5 Item's salvage value (s) 1, 2

the retailer's DLu, the retailer's optimal pro�t, and
the retailer's BP . Promotion decisions are made by
the retailer to induce the demand since any decrease in
the prices can generate demand under price-dependent
market. In contrast, the manufacturer's wholesale
price (c) can a�ect the quantity and frequency of
orders placed by a retailer to a manufacturer. This
issue is extensively examined in the context of trade
promotion, forward buying, and quantity discount in
the supply chain literature.

At last, the value of s is changed slightly to
examine how the end item's salvage value (s) a�ects
the retailer's DLu, the retailer's optimal pro�t, and
the retailer's BP . Conceivably, the higher salvage
value is o�ered by the manufacturer, the greater is
the likelihood of order rationing by the retailers as
seen in the context of buy-back contracts. In other
words, as s increases, the overstocking loss for the
retailer reduces conspicuously (the overstocking loss
migrates to the manufacturer); in addition, due to
higher product availability, the retailer's stock-out loss
reduces, too. Hence, it is of high importance to include
s among our factors.

For the sake of this paper, 72 experimental cells
related to 9 combinations of demand ranges (based on
Table 2) times 2 combinations of selling price (based
on Table 1) times 2 combinations of wholesale price
(based on Table 1) times 2 combinations of salvage
value (based on Table 1) are replicated 20 times and
examined in the Minitab software to calculate the
average of the measures in interest such as retailer's
DLu, retailer's optimal pro�t, and retailer's BP . The
highlights of our results are presented in the next
section.

5. Results

Our results report how variations in experimental fac-
tors a�ect the following measures: retailer's DLu, re-
tailer's optimal pro�t (Eq. (6)), and retailer's BP (q3).
That is, this paper is to investigate how variations in
the following factors, i.e., demand parameters, selling
price, wholesale price, and salvage value, respectively,
discussed in the following sections, can a�ect the above
measures.

5.1. Variations in the range of expected
demand

Intuitively, as the range of expected demand decreases,

Table 2. Combinations of demand ranges and related mean and variance.

(a,b) (1,20) (1,35) (1,50) (3,20) (3,35) (3, 50) (5,20) (5,35) (5,50)
E(x) 10,5 18 25.5 11.5 19 26.5 12.5 20 27.5

Var(x) 30 96 200 24 85 184 18.75 75 168.75
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Figure 4. Changes in the retailer's DLu due to variations
in demand parameters.

Figure 5. Changes in the retailer's optimal pro�t due to
variations in demand parameters.

Figure 6. Changes in the retailer's BP (q3) due to
variations in demand parameters.

the variance of demand decreases. Reduction in
the variance of demand results in an increase in the
retailer's DLu as seen in Figure 4.

Likewise, as the range of demand migrates from
a low range to a high range like (1,20) to (1,50),
or (3,20) to (3,50) or (5,20) to (5,50), the retailer's
DLu dramatically reduces. This reduction in the
retailer's DLu implies a higher likelihood of stock-
out loss. Hence, the retailer's DLu model perfectly
highlights the e�ect of demand distortion on the stock-
out loss. Figures 5 and 6 show how the retailer's
optimal pro�t and the retailer's BP react to the vari-
ations of the demand range, respectively. According
to Figure 5, surprisingly, the level of retailer's optimal
pro�t decreases in spite of an increase in the retailer's

Figure 7. Changes in the retailer's DLu due to variations
in p, c, and s.

DLu as the demand range is attenuated. There are
two plausible reasons that can explain the behavior of
retailer's optimal pro�t. First, as the expected demand
reduces, the retailer's BP reduces accordingly as shown
in Figure 6, which has counter-productive e�ect on the
retailer's DLu. Second, conceivably, as the range of
demand decreases, the range of expected sale decreases,
accordingly. Hence, under a lower demand range, the
retailer makes less pro�t.

It is of high importance to strike the balance
between risk and return. That is, under the high range
of demand, the retailer is exposed to high demand
uncertainty, but at the expense of apparently higher
sale or pro�t. This trade-o� can easily be tracked
in Figures 4 and 5. These results indicate that
the retailer's DLu is a reliable indicator of demand
distortion since it includes two key factors such as the
variance of demand and the expected demand.

5.2. Variations in the retailer's selling price
(p)

Presumably, one of the main causes of the demand
distortion or the bullwhip e�ect is the price uctuation
engendered by the retailer. In essence, the initiation
of unilateral promotions by the retailer makes lumpy
demand attributed to the forward buying behavior of
�nal customers. Consequently, this lumpy demand is
ampli�ed when it is passed to the upstream members.
As shown in Figure 7, an increase in the price, from $8
to $9, can lead to a higher retailer's optimal pro�t as
shown in Figure 8, and lowering retailer's DLu, mainly
due to an increase in the retailer's BP, as shown in
Figure 9. Lowering retailer's DLu, mainly due to an
increase in the retailer's BP , Presumably, our results
shed light on the inverse relationship between selling
price and stock-out loss and direct relationship between
selling price and retailer's pro�t. That is, as long as
market has the price-dependent demand, higher prices
end up with tremendous loss for the retailer toward
the end of selling season. In practice, the retailer can
mark up his prices at the outset of selling season and
reduce them gradually toward the end of selling season
to retain an appropriate level of pro�t.
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Figure 8. Changes in the retailer's optimal pro�t due to
variations in p, c, and s.

Figure 9. Changes in the retailer's BP (q3) due to
variations in p, c, and s.

5.3. Variations in the manufacturer's
wholesale price (c)

It stands to reason that a lower wholesale price implies
a higher retailer's pro�t margin. Wholesale price has
extensively examined in the context of supply chain
contracting for the sake of channel coordination. In
particular, under the trade promotion and quantity
discount contacts, the manufacturer is willing to o�er
a lower wholesale price for the retailer in an e�ort to
entice the retailer to sell through. However, the retailer
makes forward buying as extensively seen in commodity
products. The forward buying or sell-in can intensify
the demand distortion. In other words, a decrease in
wholesale price from $4 to $3 leads to a lower retailer's
DLu (or a lower likelihood of stock-out) as shown in
Figure 7, a higher retailer's optimal pro�t as shown
in Figure 8, and a higher level of retailer's BP , as
shown in Figure 9. It means that the large reductions in
wholesale price result in sell-in rather than sell-through
and, consequently, lead to the demand distortion.

5.4. Variations in the end item's salvage value
(s)

Salvage value is de�ned as a fraction of wholesale price
by the manufacturer. That is, the manufacturer is will-
ing to buy back the left-over at the end of selling season
by paying a fraction of end item's wholesale price to
the retailer. The higher fraction means the higher
willingness to share the risk by the manufacturer and
implicitly the lower stock-out loss and the overstocking

loss for the retailer. That is, an increase in salvage
value implies that the manufacturer is willing to take
on some risks associated with the demand uncertainty,
leading to an increase in the retailer's pro�t.

Nonetheless, the retailer can take advantage of
a higher salvage value by placing inated orders to
the manufacturer. This issue has been extensively
discussed in the context of quantity exibility contract
and buy-back contract where the manufacturer de�nes
a set of competitive s in the hope of coordinating the
supply chain. However, a higher salvage value o�ered
to the retailer means less overstocking loss and a higher
level of product availability for the retailer. Hence,
these conspicuous bene�ts of a higher salvage value
induce the retailer to inate his orders above the real
expected demand and bring on the demand distortion
in the supply chain.

As salvage value increases from $1 to $2, the
retailer's optimal pro�t increases, as shown in Figure 8.
However, the levels of the retailer's BP and the
retailer's DLu are the same in both salvage values,
as shown in Figures 9 and 7, respectively. In fact,
a negligible change in the retailer's DLu and the
retailer's BP stems from a slight increase in salvage
value. Hence, it indicates that a slight increase in
salvage value is innocuous for the supply chain while
it improves the retailer's pro�t.

6. Conclusion

This study introduced an e�cient approach to model
both the stock-out loss and the overstocking loss in
the presence of bullwhip e�ect. To have our model
pro�ciently reect the retailer's loss due to the bullwhip
e�ect, we have recourse to both the newsvendor model
and well-established credit risk concepts. Hence, we
arrived at three important models such as the retailer's
pro�t function, the retailer's BP , and the retailer's
DL; most variables embedded in our models are in
connection with bullwhip e�ect context.

This paper contributes to the literature of bull-
whip e�ect and the supply chain by �rst including not
only the mean and variance of demand, but also other
key related factors such as selling price, wholesale price,
and salvage value in our models. Second, our models
are capable of capturing both the stock-out loss and
the overstocking loss generated by the bullwhip e�ect.
Third, our models are very likely to be generalized to
di�erent supply chain settings due to our applicable
model parameters. At last, our models can easily
be used by the practitioners to pinpoint the e�ect of
demand distortion on both their stock-out loss and the
overstocking loss.

Our �ndings are reported based on an experimen-
tal design and are mostly in line with previous �ndings
in the bullwhip literature. Our results indicate, �rstly,
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that any increase in the expected demand and the
variance of demand makes the retailer's DL attenuate,
which implies a higher likelihood of stock-out loss.
Secondly, a decrease in selling price can result in a
lower retailer's DLu and implicitly a higher stock-out
loss. Likewise, a decrease in wholesale price is followed
by a lower DLu of the retailer and a lower likelihood
of stock-out loss. Intuitively, a higher wholesale price
implies a less retailer's pro�t margin and a lower level
of product availability. Nevertheless, one unit increase
in salvage value barely a�ects the retailer's DLu and
the retailer's stock-out loss, but increases the retailer's
pro�t. It indicates that a slight increase in salvage
value can both enhance the coordination in the supply
chain without having e�ect on the stock-out loss and
improve the retailer's pro�t.

Since this paper has mainly focused on the intro-
duction of DL into the context of bullwhip e�ect and
supply chain, there are some conspicuous potentials
for the future research. Firstly, we merely examined
the retailer's loss rather than tracking a multi-echelon
supply chain loss by comparing the DL of one member
with another. Hence, applying the DL concept in a
multi-echelon supply chain will be a creditable future
research subject. Secondly, another track of research
is to examine the impact of bullwhip e�ect on DLo
and compare the �ndings with our paper results.
Thirdly, for the sake of simplicity, we used a uniform
distribution for the demand that might di�er from
real demand distributions attributed to high skewness.
Therefore, the examination of lognormal distribution
or worst-case distribution (for highly volatile demands)
instead of uniform distribution can accompany more
realistic results.
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Appendix A

Below are the proofs of Eqs. (2)-(5):
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