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Abstract. This paper offers a novel variant to the existing Symbiotic Organisms Search
(SOS) algorithm to address the Optimal Power Flow (OPF) problems considering effects
of valve-point loading (VE) and prohibited zones (POZ). Problem formulation includes
minimization of cost, loss, Voltage Stability Index (VSI), Voltage Deviation (VD), and
simultaneous minimization of their combinations. Quadratic cost function, effects of VE,
and effects of both VE and POZ have been considered. OPF formulation considering
effects of both VE and POZ is not yet available in the literature. Efficacy of SOS in
resolving OPF is recognized in the literature. An opposition-based learning technique,
named quasi-reflection, is merged into existing SOS to enhance its prospects of getting closer
to superior quality solution. The proposed algorithm, named Quasi-Reflected Symbiotic
Organisms Search (QRSOS), is assessed for IEEE 30 and IEEE 118 bus test systems. It
shows promising results in reducing the objective function values of both systems by large
margins (78.98% in case of VD when compared to SOS and NSGA-II and 46.06% in case
of loss as compared to QOTLBO in IEEE 30 and IEEE 118 bus, respectively). QRSOS

also outperformed its predecessors in terms of convergence speed and global search ability.

(© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Power systems are designed to deliver power to the
loads in an efficient and economical manner. Due to
the ever-increasing load demands, the ever-changing
network parameters require existing systems to be more
robust. OPF helps tune the existing network param-
eters in order to overcome various challenges faced
by the system due to voltage instability, transmission
capacity augmentation, transmission loss due to insuf-
ficient reactive power sources, etc. after satisfying di-
verse equality and inequality bounds. Equality bounds
comprise power balance equations, whereas inequality
bounds state the range of dependent and independent
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variables. The OPF is a non-linear and bounded
optimization problem. A number of techniques for
resolving the OPF problem are available in the lit-
erature. Techniques based on classical methods [1-
8] include reduced gradient method, Newton-Raphson,
Lagrangian relaxation, linear programming, and inte-
rior point method, to name a few. The main problem
with classical optimization techniques is that they are
too unable to achieve feasible solutions without making
necessary approximations. However, approximations
result in sub-optimal solutions. To overcome the limi-
tations of classical methods, researchers have resorted
to applying evolutionary algorithms for solving the
OPF problem. The main advantage of evolutionary
algorithms is that they are easy to formulate and
are designed by studying the behavior of different
organisms in nature. Moreover, they can adapt them-
selves to the problem by updating their population
iteratively. Several heuristic algorithms have been
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projected for solving nonlinear OPF: Evolutionary
Programming (EP) [9], Genetic Algorithm (GA) [10],
Hybrid Evolutionary Programming (HEP) [11], Parti-
cle Swarm Optimization (PSO) [12], Differential Evo-
lution algorithm (DE) [13], tabu search [14], Chaotic
Ant Swarm Optimization Algorithm (CASOA) [15],
Biogeography-Based Optimization (BBO) [16], Bac-
teria Foraging Optimization (BFO) [17], Harmony
Search Algorithm (HSA) [18], Gravitational Search Al-
gorithm (GSA) [19], teaching-learning-based algorithm
(TLBO) [20], quasi-oppositional teaching-learning-
based optimization (QOTLBO) [21], etc. Their efficacy
has been proven.

For Multi-Objective Optimization (MOO), re-
searchers have applied high-end soft-computing tech-
niques with varying degrees of success. Abido [22]
in 2011 used PSO to resolve the MOO. Pareto-
based MOO techniques, such as TLBO and QOTLBO,
were implemented to find the best conceding solution
in [21]. In [23], a multi-objective genetic algorithm,
based on NSGA-II, was applied to minimize voltage
deviation, power loss, and the number of controls in
a transmission network. In 2010, Roy et al. [24]
implemented BBO algorithm for solving MOO OPF
in 9, 26, and IEEE 118-bus systems [21]. In [25],
Multi-Objective Harmony Search (MOHS) for the OPF
problem was framed as a non-linear problem with
constraints.  Bhatacharya and Chattopadhyay [26]
presented a Biogeography-Based Optimization (BBO)
technique to solve OPF problems of a power system
having generators with both non-convex and convex
fuel cost characteristics. Cheng and Prayogo [27]
proposed a new metaheuristic algorithm, named Sym-
biotic Organisms Search (SOS). In [28], Duman em-
ployed (SOS) to address OPF by considering VE and
POZ. Opposition-based learning was first proposed
by Tizhoosh [29] followed by the emergence of quasi-
opposition-based learning by Rahnamayan et al. [30]
which was found to give superior performance as com-
pared to its predecessor. Ergezer et al. [31] proposed
quasi-reflection-based learning that required the least
computational work as compared to other opposition-
based techniques. In [32] Zhang et al. proposed an
enhanced version of the Opposition-Based PSO known
as the Quasi-oppositional comprehensive learning PSO,
which employed Opposition-Based Learning (OBL) for
population initialization and selection. Instead of
opposition numbers, the algorithm used quasi-opposite
particles generated from the interval between the me-
dian and the opposite position of the particle. Appli-
cations of various evolutionary algorithms to OPF are
demonstrated in [33-53], few of which also considered
non-smooth cost functions. Wilcoxon [54] presented
ranking methods for individual comparison. In [55,56]
OPF considering POZs was solved. Abaci and Ya-
macli [57] used Differential Search Algorithm (DSA)

for solving MOO-OPF problems. In [58] IEEE 118 bus
data was presented. In [59-64] a solution to MOO-OPF
using different evolutionary algorithms was presented.
Ref. [65-70] dealt with solving OPF using incremental
variables, glowworm swarm optimization, DE, and also
with renewables including storage. In [71,72] reactive
and economic power dispatch problems were solved
using QOTLBO and BBO, respectively.

This paper presents a novel technique designated
as quasi-reflected symbiotic organisms search (QRSOS)
by applying opposition-based learning to the actual
SOS [27] to address the OPF problem for different
objectives. It is based on quasi-reflection, founded on
opposite numbers theory and has already been proven
mathematically of having the greatest possibility of
an existing near-optimum solution when compared to
all other opposition-based learning techniques [31].
To hasten the convergence of SOS, the present au-
thors have incorporated the opposition-based learning
scheme into the existing SOS.

The paper is divided into the following sections.
Section 2 discusses formulation of OPF in detail.
Section 3 presents a brief description of the existing
SOS. Section 4 details a formulation of the proposed
algorithm and its advantages over other meta-heuristic
algorithms. Section 5 presents the simulation results
and statistical analysis of the test results. Section 6
concludes the total work.

2. Coustruction of the OPF problem

The problem generally deals with defining the opti-
mal parameter settings to minimize the total cost of
fuel, subject to diverse equality as well as inequality
constraints. The following equations may be used to
express an OPF problem mathematically:

min C(r, $), (1)
subject to j(r,s) =0, (2)
and k(r,s) <0, (3)

where C' is the objective for optimization, and s and
r are vectors of independent and dependent variables,
respectively.

Vector r involving slack bus power Pg1, load bus
voltage V7, reactive power delivered by generator Q¢g;,
and transmission line loading Sy, can be represented as
follows:

rt = |:PG1aVL1’~~-’VLPQ7QG1-,-~-7QGPV7

SL17~~~7SLTL:|~ (4)

Vector of independent variables s involving generator
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real power output, Pg,;, excluding the slack bus, gener-
ator bus voltage, Vi, shunt VAR compensator output,
Qci, transformer tap setting, To;, can be represented
as follows:

T
s = PGQ, ceey f:)(;pv7 VG17 ceey VGPV7

Q017"'7QCNC7T17"'7TNT 9 (5)

where PQ,PV,NC,TL, and NT are the number of
load buses, generator buses, compensators, transmis-
sion lines, and tap changing transformers, respectively.

Equality constraints set g, demonstrating load
flow equations, may be stated as follows:

NBUS
Pg;—Pp;=V; Z Vi (Gir cos 0, + By, cos 0;1.), (6)
k=1

where 1 =1,2,3,..., NBUS.

NBUS
Qci—Qpi=V; Z Vi (Gik sin 0, +Bix, cos 0,1, (7)
k=1

where 1 =1,2,3,..., NBUS.

where Pg; and @Qg; are the real and reactive
powers injected into the network, Pp; and @ p; are the
real and reactive power demands at the ith bus, G
and B;, are conductance and susceptance, ;. is the
difference between the phase angles of the voltages at
the ith and kth buses, and NBUS is the overall number
of buses comprising the system.

The following equations are representative of the
set of inequality constraints h.

Generator limit constraints:
straints are described below [21]:

The generator con-

VER" < Vor <VE™, (8)

PRIn < Pop < PER*, k=1,2,3,..,PV, (9)

B < Qer < QX (10)

where PV is the total of generator buses counting the
slack bus.

Transformer constraints: The transformer con-
straint is indicated as follows [21]:
M < T <TP™, k=1,2,3,..,NT, (11)

where NT represents the number of tap changing
transformers.

Security constraints: These constraints involve
lower and upper limits on the voltages of PQ buses as
well as maximum line loadings and can be represented
as follows [21]:

Vi < Vi < VR k=1,23,.., PQ, (12)
Spp <SP |k =1,2.3,..,TL, (13)

where PQ and T'L represent the total of load buses and
transmission lines, respectively.

To keep the final output within operating bounds,
the inequality constraints on the dependent wvari-
ables are integrated within the objective function as
quadratic penalty terms. To consider the security con-
straints, objective function (1) is modified as follows:

Cmod =C + )\P (PGI — gC{und)Q

= bound 2
+ Ay (Vi = Vpemnd)

=1

PV )
+ A Z (Qri — Q™)

=1

TL
+/\SZ(5M = ST, (14)

=1

where Ap, Ay, Ag, and Ag are penalty factors, and
xPound g the limit value to which dependent variable x
is set when limit violation occurs. It can be defined as
follows:

:Ebound b (15)

xbound — zub when z > zub
=2'* when z < 2%

2.1. Objective functions

2.1.1. Single-objective functions

Generation cost minimization without VE and POZ
Generation cost represents the overall Fuel Cost (FC)
expressed as a quadratic function of power [21,26]:

Ng
C; =min (F(P)) = (Z F; (Pi)>

=1

Ng
(Z (a; +bP; + cin)> , (16)

where P; represents output power from generator i, and
F;(P;) denotes running cost of the ith generator; a;, b;,
and ¢; are the cost coefficients of the ith generating
unit, and N¢g is the number of generators committed.
Eqgs. (6) - (13) are the constraints on this objective.
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FC minimization considering VE

This case is further divided into Test case 2.1 and Test
case 2.2. In both case studies, the following equation
describes the VE [28]:

Ng
= (Z F; (Pi))

Cy = min (F(P

Ng
= (Z (a:i + b P; +C¢P1-2)) + |d;
i=1
« sin (e x (PR — Pg)) ’ a7

Cost minimization with POZ

POZs occur in thermal- or hydro-generating units
due to confines of various power system components.
Occurrence of POZ is mainly attributed to the shaft
bearing vibration [35]. Frequency of vibration may
equal the natural frequency causing resonance, thereby
damaging the components. Generating units having
POZ characterized by discontinuous input-output char-
acteristics and operation in those areas are avoided
for economic reasons. With reference to Figure 1, the
POZs can be mathematically explained as follows:

ijfk <P < p]Ufk, Viek=1,23,..n, (18)

where PJLB k Pmln PUB k
POZ of each generatlng unlt

This case optimizes the Quadratic Fuel Cost
(QFC) function in Eq. (16) considering POZs.

= pex, and n is the total

Cost minimization with VE and POZ
OPF problem is solved by considering effects of both
VE and POZ for the cost function in Eq. (17).

Active power loss minimization
The objective of Real power Transmission Loss (RTL)
is as follows [17]:
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Power output (MW)

Figure 1. Representation of fuel cost with prohibited
operating zones [56].

j and k; V; and V) represent, respectively,
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03 = mln(F(PL))

Nr,
=" G (V2 + V2 = 2V;Vj cos ), (19)

m=1

where G, is conductance of line m connecting buses
voltage
magnitudes at buses 7 and k; Np is the number
of transmission lines; and #,; represents the angle
difference between the two buses. Egs. (6)-(13) are the
constraints on this objective.

Voltage stability index (L-index) minimization
Mathematically, L-index of any node j can be ex-
pressed as follows [26,71]:

C4 = min(L;)
Ng
Vi
Li=1-S F,2, 20
i= (-2 Py (20)

where j =1,2,3,..., Nz, and Ny, is the number of load

buses:
Fji= -] '[Ya] 7,

where Fj; is the sub matrix attained after partially
inverting Ypys matrix. Egs. (6)-(13) represent con-
straints on this objective.

Voltage deviation minimization

Minimization of Voltage Deviation (VD) in all load
buses from the reference voltage of 1 p.u. can be
expressed as follows [26]:

=VD= Z — v, (21)

where N, denotes the total of load buses, VjTef is the
stated reference value of voltage magnitude at the jth
load bus and is commonly set to be 1.0 p.u. Egs. (6)-
(13) are the constraints.

Emission minimization

This objective considers minimizing the emission of all
types of pollutants in the atmosphere. A linear model
for emission minimization as provided in [21] has been
considered for the sake of comparison. The constraints
on this objective are (Eqgs. (6)-(13)).

Ng
Co=> 0P, (22)
k=1

where §; represents emission coefficient relating to the
kth generator.

2.1.2. Multi-objective functions (MOO)
Simultaneous minimization of QFC and RTL
This MOO is represented as follows:
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le :w1><01+(1—w1)><03. (23)

The objective function satisfies the constraints
represented by Eqgs. (6)-(13).

Minimization of FC along with RTL considering VE
This MOO function is represented by:

Cm2:w1><02+(1—w1)><03. (24)
Constraints of this case are presented in Eq. (6)-(13).

Minimizing FC along with RTL considering VE and
POZ

The MOO function is denoted by Eq. (24). Constraints
of this case are in Eqgs. (6)-(13).

Minimizing FC along with VSI while neglecting the
influence of VE and POZ

The MOO function in this case can be represented as
follows:

Cm3:w1><01+(1—w1)><04. (25)
Eqgs. (6)-(13) are the constraints on this objective.

Minimizing FC along with VSI considering VE.
The following equation represents the MOO function
in this case:

Cm4:w1 XCQ+(1—UJ1)XC4. (26)
Eqgs. (6)-(13) are the constraints of this objective.

Minimizing FC along with VSI considering VE and
POZ

This MOO is described by Eq. (26). Egs. (6)-(13)
represent constraints on this objective function.

Minimizing FC along with VD while neglecting the
effect of VE and POZ
This MOO function can be formulated as follows:

Cm5:w1><01+(1—w1)><05, (27)
where Eqs. (6)-(13) are the constraints.

Minimization of FC and VD considering the effect of
VE
This multi-objective function is formulated as follows:

Cine = w1 X Cy + (1 —wy) x Cs, (28)
where Eqgs. (6)-(13) are the constraints to be satisfied.

Minimizing FC along with VD considering effects of
VE as well as POZ
This multi-objective function is described using
Eq. (28) and satisfies the constraints of Eqs. (6)-(13).
In the above multi-objective formulations, w;
denotes weighting factor varying uniformly in the range
(0,1). In this paper, the initial value of w; is set to 0
and, then, increases in steps of 0.1, i.e., the total range
of (0,1) is divided into 10 intervals.

3. Symbiotic organisms search algorithm
(SOS)

SOS described by Cheng and Prayogo [27] exploits the
symbiotic relationship between organisms in nature.
Three types of symbiosis exist in nature: mutualism,
commensalism, and parasitism. The first relationship
involves organisms that are mutually beneficial to each
other; the second relationship involves organisms, in
which one benefits and the other remains neutral of
the association. In parasitism, one organism survives
at the cost of the other.

3.1. Mutualism phase

Organism X, matches the kth associate of the ecosys-
tem. A new organism X, is randomly chosen out of
the ecosystem to interact with organism X,. Both
organisms get engaged in mutualism. New candidate
solutions for the organisms after mutualism are calcu-
lated as follows [27]:

Xinew =Xk + (Xpost — Mutual _Vector « BFy)
xrand(0,1), (29)

Xinew =X; + (Xpest — Mutual_Vector + BFy)
xrand(0,1), (30)

X+ X;
Mutual -V ector = %, (31)

where rand(0,1) represents a vector whose elements
are random numbers. BF; and BF, denote the
benefit factors that each organism has above the other.
Mutual_Vector represents the mutualistic relation-
ship.

Organisms involved in mutualism do not derive
equal benefit from the association. One organism
obtains greater benefits than the other. Benefit factors
(BF; and BF5) are chosen randomly as 1 or 2, denoting
the degree of benefit to each organism, i.e., if an
organism attains full or partial benefits due to this
interaction.

3.2. Commensalism phase

Organism X is selected to interact with organism Xj
acquired from the mutualism phase. In this phase,
organism X tries to derive benefit from the interac-
tion, while X; remains neutral. X} is updated only
when its current fitness value is improved as compared
to the previous fitness. Fitness of X, is calculated as
follows [27]:

Xinew = Xk + (Xpest — Xj) *rand(—1,1). (32)

3.3. Parasitism phase
Organism X, creates a Parasite_Vector in the search
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region. It is created by replicating and altering the
dimensions of organism X}, with a random number. X
acts as the host and is chosen randomly out of the
ecosystem. Both Parasite_Vector and host X; try to
replace each other in the ecosystem; eventually, the
one with a higher fitness value survives and replaces
the other in the ecosystem.

4. Quasi-reflection-based learning

Quasi-reflection-based learning as proposed by Ergezer
et al. [31] is briefly discussed below.

If z is any real number lying within the interval
[a,b] and r = (a+b)/2 denotes the center of the interval,
then its quasi-reflected point z4,. can be expressed as
follows [31]:

Tgrer = rand (r,z), (33)
where rand(r,z) denotes a random number uniformly
dispersed between r and x.

In an n-dimensional search space, the quasi-
reflected point QRP(z{", 24", 23", ..., zl", ..., 27") of any
point P (x1,%2,23,..., Tk, -, Tn) may be defined as
shown below:

ax + by

ar _ d
z, ran ( 5

,xk> xy € [a, b

k=1,2,3,....n. (34)

4.1. Quasi-reflected symbiotic organisms
search algorithm (QRSOS)

QRSOS uses quasi-reflection-based learning for popu-
lation initialization as well as generation jumping into
SOS to accelerate the convergence rate. Jumping Rate
(JR) is a control parameter set to jump or skip the
creation of opposite population at certain generations,
thereby saving computational time. Reflection Weight,
RW | governs the amount of population reflection based
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on the solution fitness [72]. RW helps compare
the weakest individuals with their extreme possible
reflection, thereby reflecting the acceptable solutions
to a nearby point. After generating the quasi-reflected
population, the fitness function compares the present
ecosystem with quasi-reflected ecosystem to select the
fittest amongst them. The structure of the proposed
QRSOS algorithm is described below:

Step 1: Create ecosystem (E) with a dimension, Ny,
for specified ecosize and maximum function evalua-
tion (maz F E) randomly within their operating limits
based on Egs. (8), (9), (11), and (12). FEcosize is
determined by the number of generators, shunt com-
pensators, and tap changing transformers. Elements
of the ecosystem are identified as organisms, with
each one being the representative of a contending
solution to the problem. In addition, the ecosystem
for pre-specified ecosize is initialized;

Step 2: Create a Quasi-Reflected Ecosystem (QRE)
inside lower and upper bounds of control variables by
employing Eq. (34);

Step 3: Assess fitness function for each organism
set of the present ecosystem and the quasi-reflected
ecosystem;

Step 4: Select Ng (ecosize) organisms from the
present Ecosystem (E) as well as the quasi-reflected
Ecosystem (QRE) based on their fitness;

Step 5: Update the ecosystem in each phase of SOS
by Eqgs. (29)-(32) using the concept of quasi-reflected
opposition-based learning;

Step 6: By using Jumping Rate (JR), generate the
quasi-reflected ecosystem for the ecosystem updated
in Step 5 as described in Box I [72];

Step 7: Evaluate the fitness function of modified £
and its QRE;

if rand < JR

fitness of an individual.

forp=1:Ng
forg=1:Ny
if £, 4 < Median
QRE,, = Epq+ (5% = Bpy) x RW
else
QRE, , = %TMI + (Ep,q - @) x RW
end
end
end
end

// Find the absolute of minimum, maximum, and median for the total ecosystem in the current generation.
// Create reflection weight RW at the interval [0, 1], which determines the amount of reflection based on the

Box I
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Step 8: Select Ngp number of the fittest organisms
from E and QRE;

Step 9: Obtain best fitness and best organism.
Best fitness denotes minimum of the fitness function
assessed for each solution set, and best organism
denotes the solution set for which best fitness is
obtained;

Step 10: Go to Step 5 and repeat until mazFFE is
predefined. Store best fitness value in an array, iden-
tify the Pareto-optimal set, and store best organism
in another array;

Step 11: For multi-objective formulations from
Eqgs. (23)-(28), change the value of weighting factor
wy from 0 to 1 in steps of 0.1 and repeat Steps 1 to
10 till the value of w; reaches 1.

After altering the ecosystem in Steps 5 and 6, its
feasibility should be tested, i.e., whether they satisfy
the constraints given by Egs. (8), (9), (11), and (12).
If the organism set obtained is infeasible, they need to
be mapped to a set of viable solutions in the following
manner.

Let Hp be the kth control of OPF problem. If
H®® and H™" denote respectively the upper and
lower limits of the kth control variable. Then, the
operating limit constraints are satisfied as mentioned
below.

If output of the kth control variable H, > H ¥,

set  Hy = H™.
If output of the kth control variable Hy < Hmin
set M), = HM".

After executing all three stages of QRSOS, if the de-
pendent variables are found to violate their respective
operational limits, then that organism set is discarded,
and the three phases are reapplied to the old value till
the operation limits and other constraints, if any, are
satisfied.

For MOO functions, to attain the set for best
compromise solution, fuzzy membership functions are
analyzed to obtain the satisfactory non-dominated
solution set. Membership function py, can be defined
as follows [38]:

lifk =1 fk < f;;nin
AEn e < f< e
O fk 2 flinax
k=1,2,3,..,n, (35)

where f™" and f"** denote respectively minimum and
maximum objective function values. The effectiveness

of each solution in satisfying the objectives is measured
by calculating the total of the membership function
values for all objectives. Normalization of membership
functions is done in order to rate the efficacy of each
non-dominated solution set with respect to all other
non-dominated solution sets (m) and is calculated as
follows:

-z 1w
W= # (36)
Z1 k21 u;"
Jj=1k=

The solution set with the maximum normalized
membership p? value is considered as the best non-
dominated solution set.

5. Results and discussion

The algorithm is coded using MATLAB R2014a and
is executed with a PC equipped with Intel Core i7
processor clocked at 3.4 GHz and 2GB RAM. An
ecosize of 30 is chosen to simulate the OPF program
using QRSOS algorithm. Plots of fitness values of
different objective functions are obtained over a span of
100 iterations in each case to analyze the convergence
characteristics of QRSOS.

5.1. Description of the test system; IEEE 30
bus test system

Data and constraints of this system are obtained

from [33-36]. Two sets of generator data and the

corresponding prohibited zones (Tables 1 and 6 of

Ref. [28]) have been used for analyzing the test cases.

5.2. Analysis of the results obtained using
QRSOS

Results achieved using QRSOS are analyzed in detail

in this sub-section. Bold fonts are used to represent

the objective function values and the CPU time for

computation.

5.2.1. Single-objective optimization for IEEE 30 bus
test system

Test case 1: OPF problem neglecting effect of VE and
POZ

Test case 1 considers the minimization of QFC de-
scribed by (16) as its objective. Simulation results are
demonstrated in Table 1. The optimized fuel cost using
QRSOS is attained as 798.9299 §/hr. A comparative
study of Test case 1 as shown in Table 2 reveals that
QFC obtained using the proposed technique is lower
than the best value of 801.5733 $/hr, as obtained using
SOS [28]. In addition, the result obtained using the
proposed algorithm is better than that obtained using
other recently applied algorithms, such as Backtracking
Search Algorithm (BSA), Artificial Bee Colony (ABC)
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Table 1. Optimum control variable values for various test cases.
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Control variables

Test case

Test case

Test case

Test case

Test case

1 2.1 2.2 3 4
PG1 177 219.82 199.6 179.2 219.8
PG2 48.664 27.851 20 45 27.96
Generator real PG5 21.347 15.837 22.13 21.585 15.76
power output (MW) PGS 21.062 10 27 22.889 10
PG11 11.906 10 12.2 12.49 10
PG13 12 12 12.36 11.533 12
VG1 1.1 1.0813 1.0778 1.0746 1.0811
VG2 1.0881 1.05 1.05 1.05 1.05
Generator output VG5 1.0628 1.0232 1.0247 1.0244 1.0237
voltage (p.u.) VG8 1.0694 1.0314 1.0366 1.0332 1.0316
VG11 1.072 1.1 1.0995 1.1 1.0999
VG13 1.1 1.05 1.0497 1.05 1.05
T6-9 0.98641 1.0998 1.0384 1.097 1.0997
Transformer tap T6-10 1.0111 0.9191 0.9926 0.9063 0.9182
ratio T4-12 0.99402 0.9882 0.9949 0.9732 0.987
T27-28 0.96114 0.9634 0.9694 0.9584 0.9634
Total fuel cost ($/hr) 798.9299  825.2541 920.1125 801.7593 825.276
Real power loss (MW) 8.5836 12.1087 9.8959 9.3009 12.1128
Voltage stability index (p.u.) 0.1062 0.1292 0.1298 0.1279 0.1291
Voltage deviation (p.u.) 2.0338 0.5703 0.5686 0.6818 0.5775
Simulation time (s) 42.7342 87.5921 110.3562  120.4958 84.3752

Table 2. Comparative study of Test case 1.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)
GA [41] 804.1000 HBMO [48] 802.2110
SA [41] 804.1000 EGA [38] 802.0600
GA-OPF[44] 803.9100 FGA [39] 802.0000
SGA [45] 803.6900 MHBMO [48] 801.9850
EP-OPF [44] 803.5700 SFLA [37] 801.9700
EP [46] 802.6200 PSO [36] 801.8900
ACO [47] 802.5700 Hybrid SFLA-SA [37]  801.7900
IEP [43] 802.4600 MPSO-SFLA [36] 801.7500
NLP [34] 802.4000 ABC [35] 801.7100
DE-OPF [42] 802.3900 BSA [35] 801.6300
MDE-OPF [42]  802.3700 SOS [28] 801.5730
TS [49] 802.2900 QRSOS 798.9152
MSFLA [40] 802.2870
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Figure 2. Convergence characteristic of Test case 1.

optimization, Modified Shuffle Frog Leaping Algorithm
(MSFLA), etc., as available in the literature listed in
Table 2. Figure 2 portrays the convergence characteris-
tic of Test case 1. The algorithm converged in less than
twenty iterations, showing faster convergence than its
predecessor does.

Test case 2: OPF problem considering VE.

Test case 2.1

The result obtained for Test case 2.1 is provided in
Table 1, which is derived by employing the generator
cost coefficients as given in Table 1 of Ref. [28]. The
cost function for this objective is formulated using
Eq. (17). It is seen that the obtained FC considering
VE and using QRSOS algorithm is 825.2541 $/hr.
Comparative study of this test case has been done, as

26 (2019) 1664-1689

Fuel cost ($/hr)

0 10 20 30 40 50 60 70 80 90 100
Iterations

Figure 3. Convergence characteristic of Test case 2.1.

shown in Table 3. QRSOS provides better result than
the previously obtained best value of 825.2985 §/hr,
as achieved by SOS in [28]. Figure 3 depicts the
convergence characteristics of this test case, and it is
found to converge in less than thirty iterations.

Test case 2.2

Results of this test case are given in Table 1. The
attained FC is 920.1125 $/hr considering valve effect,
using QRSOS algorithm, and generator cost coefficients
as provided in Table 6 of Ref. [28]. The cost function is
described by Eq. (17). Comparative study is provided
in Table 4, which substantiates that the proposed
algorithm achieves better result than others to which
it is compared. Figure 4 depicts the convergence
characteristics of this case, and it is found to converge

Table 3. Comparative study of Test case 2.1.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)
RCGA [50] 831.0400 Hybrid SFLA-SA [37] 825.6921

GA [50] 829.4493 ABC [35] 825.6000

SA [37] 827.8262 BSA [35] 825.2300
PSO [37] 826.5897 SOS [28] 825.2985

DE [37] 826.5400 QRSOS 825.2541
SFLA [37] 825.9906

Table 4. Comparative study of Test case 2.2.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)
GA [51] 996.0369 ABC [53] 928.4370
GA-APO [51] 996.0369 PSO [54] 925.7581
NSOA [51] 984.9365 MSG-HS [54] 925.6410
ITS [43] 969.1090 TABC [55] 921.8265
TS-SA [43] 959.5630 TABC-LS [55] 921.8235
EP [43] 955.5080 BSA [35] 921.3570
IEP [43] 953.5730 SOS [28] 921.3288
SADE-ALM [52] 944.0310 QRSOS 920.1125
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833
in about thirty iterations, which is less than one-sixth 832
of that required by SOS [28].
831
Test case 3: OPF considering POZ = 430
£ ,
Generator cost coeflicients as provided in Table 1 of ®
Ref. [28] and QFC of Eq. (16) are considered. Obtained 3 829 1
results of this test case are provided in Table 4. Table 5 T 828 ]
provides a comparative study of this test case. QRSOS =
reduces objective function value to 801.7593 $/hr from 821 I
the previously obtained best value of 801.8398 §/hr 826/
in [28]. Figure 5 depicts the convergence characteristics 425
of this method that shows faster convergence in less 0 10 20 30 40 50 60 70 80 90 100

than 45 iterations, which is nearly 36.36% of that
required by SOS in [28].

Test case 4: OPF problem considering both VE and
POZ

Generator cost coeflicients provided in Table 1 of [28§]
and cost function as described by Eq. (17) are consid-
ered. The result of this case is tabulated in Table 1.

Iterations

Figure 6. Convergence characteristic of Test case 4.

Comparative study of this objective is presented in Ta-
ble 6, demonstrating competitiveness of the proposed
algorithm to achieve lower cost. Figure 6 shows a faster
convergence curve of this test case when compared to
SOS [28].

Table 5. Comparative study of Test case 3.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)
GA [37] 809.2314 ABC [35] 804.3800
SA [37] 808.7174 BSA [35] 801.8500
PSO [37] 806.4331 SOS [28] 801.8398
SFLA [37] 806.2155 QRSOS 801.7593
Hybrid SFLA-SA [37] 805.8152

Table 6. Comparative study of Test case 4.

Technique Fuel cost ($/hr) Technique Fuel cost ($/hr)
GA [37] 838.1727 ABC [35] 831.6500
SA [37] 836.5364 BSA [35] 826.3700
PSO [37] 835.4785 SOS [28] 825.3705
SFLA [37] 834.8165 QRSOS 825.2760
Hybrid SFLA-SA [37] 834.6339
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Table 7. Comparative study of Test case 5.
Control variables QRSOS QOTLBO [21] TLBO [21] MOHS [25] DSA [57]

PG1 51.244 51.3093 52.1027 52.5327 51.0945
PG2 79.999 80 79.9387 79.5432 80
Generator real power PG5 50 49.9794 49.9617 49.8152 50
output (MW) PGS 35 34.9959 34.5287 34.7403 35
PG11 30 29.9988 29.9721 29.7884 30
PG13 40 40 39.8304 39.948 40
VG1 1.1 1.087 1.0798 1.0754 1.0605
VG2 1.0981 1.0825 1.0742 1.0728 1.0566
Generator output VG5 1.0803 1.0632 1.0557 1.054 1.0378
voltage (p.u.) VG8 1.0872 1.0707 1.0641 1.0637 1.0453
VG11 1.0712 1.0998 1.0976 1.0991 1.1
VG13 1.1 1.0989 1.0989 1.0967 1.0474
QC10 2.81E-05 0.0495 0.0498 0.0499 0.05
QC12 0.0499 0.0499 0.0498 0.0486 0.05
QC15 0.0498 0.0297 0.0497 0.0493 0.05
QC17 0.0498 0.0499 0.0498 0.0488 0.05
Shunt compensator
injection (p.u.) QC20 0.0421 0.0387 0.0403 0.0442 0.05
QC21 0.0499 0.05 0.0496 0.0499 0.05
QC23 0.0213 0.0273 0.0267 0.0411 0.0422
QC24 0.0312 0.05 0.0497 0.0499 0.05
QC29 0.0235 0.0207 0.0212 0.0317 0.0303
T6-9 1.0199 1.0309 1.0171 1.0022 1.0329
Transformer tap T6-10 0.9773 0.9024 0.9 0.9078 0.9993
ratio T4-12 0.9864 0.9689 0.9681 0.9593 0.9913
T28-27 0.9741 0.9584 0.9527 0.9533 0.9786
Cost($/h) 967.0473 967.0371 965.7677 964.5121 967.6493
Transmission loss (MW) 2.8436 2.8834 2.9343 2.9678 3.0945
Voltage stability index (p.u.) 0.1074 0.1262 0.1264 0.1154 0.12604

Test case 5: OPF problem with the objective of RTL S —
minimization 5.6
z 35

Objective of this test case is formulated using Eq. (19). =Y
Table 7 lists the optimal control variables of this 2
objective. P 330

The suggested algorithm is capable of bringing £ 3.2 1
down loss to 2.8423 MW, which is lower than that ; 310 |
obtained using QOTLBO, TLBO, MOHS, and DSA 5
in the literature. In addition, the result obtained using < 30 |
QRSOS is 1.42% lower than the previous best result 2.9¢ 1
of 2.8834 MW [21]. For this case, QRSOS took less 2.8

j . o 0 20 40 60 80 100 120 140 160 180 200
than 35 iterations to converge, which is lower than that Tterations

observed in [21] as depicted in Figure 7.

Figure 7. Convergence characteristic of Test case 5.
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Table 8. Comparative study of Test case 6.
Control variables QRSOS QOTLBO [21] TLBO [21] MOHS [25] DSA [57]

PG1 157.54 134.2408 76.788 92.6114 64.0725
PG2 40.938 61.8427 63.3618 67.5094 67.5711
Generator real power PG5 15 15 45.7092 48.8891 50
output (MW) PG8 10 10 33.8121 34.8663 35
PG11 29.994 29.9687 29.9842 29.7139 30
PG13 39.965 39.6304 37.4921 14.134 40
VG1 1.0705 1.0832 1.0601 1.0993 1.06
VG2 1.0444 1.0666 1.0463 1.0986 1.0549
VG5 0.9894 1.0426 1.043 1.0973 1.0316
Generator output
VGS8 1.0603 1.0389 1.0443 1.0998 1.0399
voltage (p.u.) ) )
VG11 1.1 1.0938 1.0986 1.0984 1.0778
VG13 0.9695 1.0976 1.0926 1.0996 1.0709
QC10 0.0499 0.0492 0.0463 0.0499 0.0393
QC12 0.0499 0.0499 0.0487 0.0492 0.05
QC15 0.0498 0.0369 0.0497 0.0496 0.05
QC17 0.05 0.05 0.0426 0.0499 0.05
Shunt compensator
e L. QC20 0.0499 0.0187 0.0437 0.05 0.05
injection (p.u.)
QC21 0.05 0.0042 0.0434 0.0497 0.05
QC23 0.0485 0.0009 0.0193 0.0494 0.0406
QC24 0.0499 0.0005 0.0051 0.0494 0.05
QC29 0.0178 0.0011 0.0406 0.0496 0.0286
T6-9 1.0999 0.9288 0.9646 0.9027 0.9989
Transformer tap T6-10 1.0985 0.9 0.9602 0.9001 1.0046
ratio T4-12 1.1 0.9442 0.92 0.9036 1.0368
T28-27 0.9002 0.9082 0.9256 0.9011 0.9792
Cost ($/h) 843.8153 844.1237 912.5914 895.6223 944.4086
Transmission Loss (MW) 10.0412 7.2826 3.7474 4.3244 3.24373
L-index (p.u.) 0.092613 0.0994 0.1003 0.1006 0.12734

Test case 6: OPF for L-index minimization 0.100 i ' g ' '
This case considers lowering L-index value to improve 0.099.
voltage stability of the system using Eq. (20). Control
parameters of this case are listed in Table 8. 0.098;
It can be observed that the proposed methodology < ol
lowers the value of this objective function to 0.092613 &
p.u., which is the lowest of those obtained using _Z'j 0.096!
QOTLBO, TLBO, MOHS, and DSA. In addition, it % o005

lowered the L-index value by 6.82% from the previous
best-reported value of 0.0994 p.u. [21]. Figure 8 shows 0.094)

a quicker rate of convergence for this case, too.
0.093}

Test case 7: Voltage Deviation (VD) minimization 0.092
This test case considers improving the load voltage
profile of the system using Eq. (21). Optimal control
parameters attained for this case are listed in Table 9.

10 20 30 4l0 50 60 70 80 90 100
Iterations

Figure 8. Convergence characteristic of Test case 6.
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Table 9. Comparative study of Test case 5.
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Control variables

QRSOS NSGA-II [23]

PG1 0.5247 X
PG2 0.8 X
Generator real power PG5 0.5 X
output (MW) PGS 0.35 x
PG11 0.2978 X
PG13 0.4 X
VG1 1.0009 1.03
VG2 1.0016 1.03
Generator output VG5 1.0179 1
voltage (p.u.) VGS8 1.0084 1
VG111 0.9767 1.02
VG13 1.0059 1.04
QC10 0.9897 x
QC12 0.9697 X
QC15 0.9855 X
QC17 0.9758 x
Shunt compensator
injection (p.u.) QC20 0-0021 x
QC21 0.027 x
QC23 0.0499 X
QC24 0 x
QC29 0.05 x
T6-9 0.0448 1
Transformer tap T6-10 0.049 1.01
ratio T4-12 0.0499 1
T28-27 0.0341 1.04
Voltage deviation (p.u.) 0.0798 0.38
Transmission loss (MW) 3.8676 5.3513
QRSOS lowered the VD value to 0.079866 p.u. 0.22
by a high margin of 78.98% as compared to NSGA-II 0.90
in [23]. The transmission loss is also reduced to a great
extent. The algorithm converged within 25 iterations - 0.18
for this test case as observed in Figure 9. % 0.16
g
5.2.2. Single-objective optimization for IEEE 118 bus % 014
test system E 0.12
To check the competence of the offered algorithm in a S
large system, IEEE 118 bus test system is taken into 010
consideration for studying different test cases. Data 0.08
of the system are obtained from [58]. Penalty factors 0.06 S
10 20 30 40 50 60 70 80 90

have been assigned to the objectives as per Eq. (14) to
handle the possible constraint violations of this large
system. The penalty factors are considered in the range

Figure 9. Convergence characteristic of Test case 7.

Iterations

100
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Figure 10. Convergence characteristic of Test case 8

obtained using QRSOS.

of [10000 100000], and tuning has been done in steps
of 10000. Results of all penalty factors are not shown
here for page limitations. Optimum results have been
obtained for a penalty factor of 30000 assigned to the
objectives, which are tabulated in the subsequent test
cases:

Test case 8: OPF problem for QFC minimization
Optimal results are obtained for a penalty factor of
30000 assigned to the objective. The results and their
comparisons are provided in Table 10.

As can be observed from Table 10, QRSOS
effectively reduced the fuel cost by a large margin of
14.30% from 55,968.14 $/hr [21] to 47,960 $/hr. In ad-
dition, it effectively reduced the emission from 410.9816
Ib/hr [21] to a much lower value of 342.635 1b/hr
in the case of single-objective optimization itself. It
achieved better results than those of QOTLBO and
TLBO in [21]. The proposed algorithm showed rapid
convergence in less than 20 iterations, as seen in
Figure 10.

Test case 9: OPF problem for real power transmission
loss minimization

This test case minimized the real power loss occurring
during transmission using Eq. (18). A penalty factor of
30000 assigned to the loss minimization objective gave
optimum results, which are listed in Table 11.

QRSOS is proficient in reducing the transmission
loss to 16.27 MW, nearly half of that of 35.3191 MW
and 36.8482 MW obtained respectively by QOTLBO
and TLBO, as reported in [21]. Simultaneously, it
is also able to reduce the emission by 6.5127 1b/hr
compared to that obtained by QOTLBO. Figure 11
shows rapid convergence in less than 20 iterations.

Test case 10: OPF problem for minimizing L-index

L-index of large IEEE 118 bus has been considered
to improve voltage profile using Eq. (19). Since it
is very difficult to maintain the voltage stability in
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Active power loss (MW)
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Figure 11. Convergence characteristic of Test case 9.
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Figure 12. Convergence characteristic of Test case 10.

case of a large system, a penalty factor of 30000 has
been assigned to the objective to handle inequality
constraints. Optimum control parameters obtained for
this test case are listed in Table 12.

Optimal value of VSI is obtained as 0.0433 p.u.,
which denotes a stable system. Figure 12 shows the
convergence characteristic of Test case 10. Convergence
is achieved in less than 15 iterations.

Test case 11: OPF problem for emission minimization
objective

This test case considers minimizing emission of pollu-
tants to the atmosphere. The objective is formulated
using Eq. (21). A penalty factor of 30000 assigned to
the objective provided optimal results while effectively
handling the constraints. Optimal parameters of this
test case are listed in Table 13.

QRSOS provided the lowest emission value when
compared to those obtained using QOTLBO and
TLBO. It effectively reduced the emission from
176.1666 1b/hr in [21] to 164.5 1b/hr, i.e., by a margin
of 6.62%. In addition, it reduced the fuel cost by
3.29% from 65,601.64 $/hr [21] and transmission loss
by 7.58% from the previously reported best value of



1678 A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ... 26 (2019) 1664-1689

Table 10. Comparative study of Test case 8.

Control variables QRSOS QOTLBO [21] TLBO [21] Control variables QRSOS QOTLBO [21] TLBO [21]
PG1 29 5.0513 5.0374 VG26 1.0278 1.0596 1.0518
PG4 5 5.0223 5.0318 VG27 1.0825 1.0512 1.0406
PG6 5.0254 5.0187 5.1436 VG31 1.0494 1.0575 1.049
PG8 150.01 150.3032 150.7002 VG32 1.0588 1.0394 1.0329
PG10 100.06 169.3889 171.3829 VG34 0.9608 1.0389 1.03
PG12 10.001 10.0213 10.0116 VG36 0.9537 1.0323 1.0271
PG15 25.055 25.2916 25.1637 VG40 0.9163 1.0366 1.0374
PG18 5.0034 5.0674.0 5 VG42 0.937 1.0291 1.0417
PG19 5.0016 5 5.0182 VG46 1.0096 1.0412 1.0551
PG24 100.01 120.1963 120.4126 VG49 0.9627 1.0237 1.0453
PG25 349.91 349.5982 349.7829 VG54 0.9388 1.0197 1.0424
PG26 8.0025 8.0623 8.0728 VG55 0.9347 1.0206 1.0431
PG27 9.6979 8.0846 8.1045 VG56 0.9368 1.0241 1.046
PG31 25.003 25.0722 25.1863 VG59 0.9439 1.0309 1.0533
PG32 8.0045 8.0192 8.1232 VG61 1.01 1.0288 1.0513
PG34 99.985 25.1262 25.1527 ? VG62 0.999 1.0699 1.0696
PG36 8.0117 8.0206 8.0528 e VG65 1.0506 1.0431 1.061
PG40 8.0038 8.0448 8.2236 g VG66 0.9829 1.038 1.0362
PG42 25.325 25.0537 25.3548 g VG69 0.9426 1.053 1.0525
~ PG46 50.015 249.6018 249.0325 I VGT70 0.9884 1.0572 1.0542
3 PG49 50.514 249.9137 248.1637 : VGT72 1.0406 1.042 1.0399
3 PG54 25 25.2048 25.1607 2, VGT3 1.0245 1.0243 1.0217
2 PG55 25 25.0768 25.4524 = VG74 0.9591 1.0194 1.0163
B« PG56 50.004 199.9312 198.7935 g VGT76 0.9568 1.0327 1.0271
g PG59 50 199.7859 199.8001 ,g VGT7 1.009 1.0423 1.0343
5 PG61 25.002 25.042 25.5916 g VG80 1.0496 1.0886 1.0892
2 PG62 100.01 327.0837 326.3556 g VG85 1.0316 1.0199 1.02
a PG65 420 319.6931 314.8521 &} VG87 1.0619 1.0897 1.0898
= PG66 30.043 30.1746 30.2394 VG89 1.0423 1.0366 1.0266
g PG69 29 110.9331 115.4795 VG90 1.0231 1.0305 1.0185
5 PG70 10.003 10.0207 10.2128 VGI1 1.0311 1.0363 1.0256
E PG72 5.0124 5.0423 5.1262 VG92 1.0348 1.0386 1.0286
g PGT73 5 5.0288 5.0132 VG99 0.9697 1.0545 1.0456
é’ PG74 25.003 25.3524 25.1628 VG100 0.9993 1.0402 1.0296
PG76 25.125 25.0485 25.1246 VG103 0.9971 1.0346 1.023
PGT77 299.95 150.3722 150.6738 VG104 1.0084 1.0297 1.019
PG80 25.054 25.0812 25.0102 VG105 1.0113 1.0278 1.0161
PG85 10.002 10.0242 10.1632 VG107 1.0315 1.0215 1.0087
PG87 100.04 183.8538 183.7419 VG110 0.97 1.0346 1.0243
PG89 50.084 97.2006 95.8227 VG111 0.981 1.0411 1.0298
PG90 8.0001 8 8.0211 VG112 0.9261 1.0345 1.0256
PGI1 47.302 20.0123 20.1013 VG113 0.9519 1.0615 1.0501
PG92 214.8 103.6475 104.3625 VG116 1.1 1.0679 1.0677
PG99 100 100.0325 100.1091 QC34 0.0901 0.0663 0.2668
PG100 100.05 114.7707 113.6624 QC44 0.2995 0.0516 0.0507
PG103 8.0138 8.0188 8.0586 § - QC45 0.1203 0.2169 0.2236
PG104 25.084 25.0423 25.3061 g 5 QC46 0.2285 0.0086 0.2494
PG105 25.001 25.2536 25.1527 5 & QC48 0.2964 0.0846 0.081
PG107 8.0026 8.0091 8.0143 g g QC74 0.2678 0.1156 0.1583
PG110 25 25.0222 25.2862 8 = QC79 3.13E-06 0.2996 0.298
PG111 25.123 25.0547 25.0384 = &’_)A QC82 0.2927 0.2997 0.2998
PG112 25.368 25.0117 25.2232 f: k= QC83 0.0176 0.0979 0.1099
PG113 25.003 25.1642 25.2035 n QC105 0.2996 0.0989 0.1729
PG116 25.001 25.0107 25.0643 QcC1o07 0.1983 0.1616 0.0879
VG1 1.083 1.0607 1.0496 QC110 0.1892 0.1008 0.1388
- VG4 0.9625 1.0546 1.0413 T8-5 0.9369 1.0042 1.0121
a —_ VG6 0.9661 1.0857 1.0841 % T26-25 1.0599 1.0999 1.0998
= 5 VG8 0.9945 1.0895 1.09 : T30-17 1.0922 1.0182 1.0275
S ) VG10 1.1 1.0524 1.0419 g 9 T38-37 1.0731 1.0265 1.0315
8 & VG12 0.9735 1.0467 1.0352 5 " T63-59 1.0534 1.0378 1.0159
g g VG15 0.9531 1.0505 1.0385 E " T64-61 0.9342 1.0311 1.0086
g g VG18 0.9384 1.0452 1.0343 S T65-66 1.0379 0.9002 0.9
0] VG19 0.9459 1.0712 1.0658 = T68-69 0.9 0.9961 0.9945
VG24 1.0839 1.09 1.0897 T81-80 0.9 1.0042 1.0113
VG25 1.0419 1.09 1.0896 Fuel cost ($/hr) 47,960 55,968.14 55,989.87

Emission (Ib/hr) 342.635 410.9816 410.5538




A. Saha et al./Scientia Iranica, Transactions D: Computer Science & ...

Table 11. Comparative study of Test case 9.
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Control variables QRSOS QOTLBO [21] TLBO [21]

Control variables

QRSOS QOTLBO [21] TLBO [21]

PG1 29.728 29.8931 14.1548 vVGar 0.9477 1.0344 0.9982

PG4 17.57 20.7667 23.0473 VG31 0.9472 1.0399 0.9874

PG6 5.0015 23.5384 25.2495 VG32 0.9476 1.0247 1.0123

PG8 150 160.8306 161.4631 VG34 0.9713 1.025 1.0166

PG10 298.92 105.1021 202.4847 VG36 0.9653 1.0138 1.0136

PG12 10.387 29.1323 29.1093 VG40 0.9586 1.0387 1.0146

PG15 41.455 87.5141 94.3115 VG42 0.9713 1.0371 1.0554

PG18 5.8168 8.1933 23.9002 VG46 0.99 1.0337 1.0439

PG19 5 23.0788 15.1346 VG49 0.9874 1.039 1.0544

PG24 100.01 147.7714 113.9182 VG54 0.9954 1.0454 1.0525

PG25 100.09 126.8438 100.3799 VG55 0.9932 1.0399 1.0529

PG26 8.0177 22.9912 22.1332 VG56 0.9933 1.0382 1.0199

pPG27 8.0197 28.5314 27.1458 VG59 0.9635 1.0544 1.0123

PG31 54.483 78.2105 87.9738 VG61 1.0046 1.0527 1.008

PG32 18.793 20.1445 29.6566 —_ VG62 0.9987 1.0538 1.0512

PG34 43.155 83.2007 78.1281 :! VG65 1.0354 1.0462 1.027

PG36 29.929 24.6842 28.9505 2 VG66 0.9854 1.0162 1.0134

PG40 29.853 20.4124 29.0852 g VG69 1.0152 1.0277 1.0175

PG42 99.967 94.9384 87.2005 8 VG770 1.0413 1.0367 1.0061

E PG46 75.876 58.6024 127.8746 —g' VGT72 1.0281 1.0244 1.0065
PG49 173.17 236.2374 93.3376 - VGT73 1.0693 1.0039 1.0032

?, PG54 99.992 80.436 59.2742 a VGT74 1.0232 1.0077 1.0056
5 PG55 68.862 97.7809 71.2112 1 VGT76 1.0049 1.0107 0.989
& PG56 168.52 77.1155 136.8644 2 VGT7 1.0061 1.0191 1.0036
g PG59 199.99 179.9903 97.9237 8 VG80 0.9958 1.0069 0.9844
& PG61 25.004 76.5748 58.1055 g VG835 1.0382 1.0126 1.0103
2 PG62 100 185.5016 336.6485 -] VG87 1.0998 1.0818 1.0797
a PG65 419.48 192.6547 142.6236 (j” VG89 1.0539 1.0387 1.0511
= PG66 30.345 78.8729 79.8481 VG0 1.0393 1.0382 1.0438
2 PG69 29.728 80.0818 95.1218 VGI1 1.038 1.0407 1.0497
5 PG70 29.898 10.9715 10.1947 VG92 1.0418 1.0357 1.0369
be PGT72 5.001 20.1172 19.8263 VG99 0.9898 1.0393 1.051
E PG73 18.818 19.9734 10.6108 VG100 0.9915 1.0273 1.043
< PGT74 99.348 89.9006 97.7145 VG103 0.9894 1.0193 1.0661
© PGT76 99.571 88.5942 31.0182 VG104 0.9818 1.0113 1.0361
PGT7T7 274.26 227.4576 185.5746 VG105 0.9876 1.0094 1.0323

PG80 100 30.4116 44.2247 VG107 0.968 1.0078 1.0318

PG85 26.926 14.0215 11.3845 VG110 1.0205 1.0155 1.0311

PG87 100.32 100.1543 107.1638 VG111 1.0208 1.0198 1.0368

PG89 50.911 57.9964 61.6745 VG112 1.0421 1.0219 1.0349

PG90 19.989 12.4839 10.6637 VG113 0.9515 1.0347 1.0207

PGI1 44.355 24.0536 23.5206 VG116 1.0138 1.0505 1.072

PG92 273.51 100.3382 115.7448 QC34 0.2718 0.117 0.105

PG99 100.04 105.0007 119.2147 o QC44 0.0036 0.0404 0.0019

PG100 100.07 107.3321 105.7234 S QC45 0.2997 0.2089 0.2249

PG103 12.4 11.9027 8.1071 8 :1 QC46 0.2272 0.274 0.1187

PG104 25 27.5847 40.6412 5 G QC48 0.0053 0.0744 0.0558

PG105 99.627 28.8382 45.4382 E‘ g QC74 0.1768 0.0844 0.1757

PG107 11.383 13.3147 18.1017 e QC79 0.231 0.2919 0.2922

PG110 50 31.3725 29.1604 = 'i QC82 0.0235 0.2949 0.245

PG111 25 25.2184 25.2835 - 8 QCs83 0.1119 0.0931 0.1293

PG112 74.902 35.8435 31.7249 ﬁ QC105 0.0027 0.155 0.1657

PG113 59.328 56.6809 80.6904 QcC1o07 0.298 0.1093 0.0988

PG116 49.523 49.2005 44.257 QC110 0.0087 0.0965 0.0926

VG1 0.9809 1.051 1.0202 T8-5 0.9484 0.9941 1.0113

VG4 1.005 1.0434 1.0214 % T26-25 1.0418 0.9026 1.0515

= VG6 0.9951 1.0701 1.0499 : T30-17 0.9649 1.0364 1.0292
E‘ ’; VG8 0.9735 1.0755 1.0557 g 9 T38-37 1.0303 1.0087 1.0112
é’ a VG10 1.0416 1.0367 1.0148 5 = T63-59 1.0664 1.0081 1.0128
5 \w/ VG12 0.9824 1.0221 1.0188 E = T64-61 0.9674 0.9929 1.0674
% %’3 VG15 0.955 1.0265 1.0159 a T65-66 1.0576 0.9045 1.0588
g :o VG18 0.9431 1.0181 1.0133 ; T68-69 0.9682 0.9881 1.033
g > VG19 0.9461 1.0468 1.0063 T81-80 0.9884 1.0138 1.0538
0 VG24 1.0096 1.0541 1.0088 Fuel cost ($/hr) 70,963 63,693.91 63,515.12
VG25 0.9889 1.0897 1.0756 Emission (1b/hr) 373.2768 379.7895 318.0176

VG26 0.9686 1.0413 0.994 Transmission loss (MW) 16.27 35.3191% 36.8482

*The unit of the result obtained using QOTLBO for loss minimization in [21] is given as kW, whereas the real value comes as

35.3191 MW after calculation using the parameters provided by the authors.
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Table 12. Optimal parameter settings for Test case 10.
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Control variables QRSOS Control variables QRSOS Control variables QRSOS
PG1 20.977 PG100 133.29 VG176 0.985
PG4 24303 § PCG103 19.349 VGTT 1.0591
PG6 13.342 % g PG104 87.283 VG80 1.083
PGS 22714 5§ PG105 82.227 VG85 0.989
PG10 169.09 &< PG107 11.192 VG8T 0.9
PGI12 24.426  § ‘é PG110 50 VG89 1.0385
PG15 60.884 8§ 2 PG111 99.971 & VG90 1.0265
PG18 17.269 & © PG112 99.609 A~ VG91 1.0421
PG19 22526 (9 PG113 25.009 2 Z VG92 1.0391
PG24 100.01 PC116 37.44 55 VG99 0.9857
PG25 100.03 VG1 0.0859 % ¥ VG100 1.0148
PG26 17.521 VG4 1.0128 E = VG103 1.0162
PG27 8 VG6 10283 8 > VG104 1.0262
PG31 83.334 Va8 1.005 VG105 1.0343
PG32 11.171 VG10 1.1 VG107 1.088
PG34 25 VG12 1.0256 VG110 1.0014
PG36 8.3366 VG15 1.0251 VG111 0.983
. PG40 29.907 VG18 1.0362 VG112 1.0011
g PG42 95.503 VG19 1.0185 VG113 1.0364
g g PG46 146.37 VG24 0.9331 VG116 1.0147
<5 PG49 249.95 VG25 1.0085 QC34 0.1929
S PG54 97.799 VG26 1.0144 QC44 0.3
5 ‘i PG55 72.019 VG27 0.9639  § QC45 0.3
R PG56 199.95 & Va3l 0.9814 & 5 QC46 0.2573
e 0 PG59 75.556 B VG32 0.9754 5§ & QC48 0.0075
3 PG61 35.641 2 g_ VG34 0.9809 g‘ g QCT74 0.1588
PG62 177 5 VG36 0.9769 8 2 QCT9 0.2771
PG65 41218 £ @ VG40 0.9 s 8 QC82 0.2923
PG66 139.44 g = VG42 10999 2 & QCs83 0.0084
PG69 20977 9 > VG46 1.1 2 QC105 0.2824
PGT0 16.165 VG49 1.0782 QC107 0.0997
PGT2 12.618 VG54 0.9683 QC110 0.1069
PGT3 12.863 VG55 0.978 T8-5 0.9364
PG74 42.698 VG56 0.9785 & T26-25 1.0443
PGT6 26.457 VG59 Lowoa ¥ T30-17 0.9246
PGTT 210.27 VG61 0.9983 & o T38-37 1.1
PGS0 28.485 VG62 1.0093 & % T63-59 0.9553
PGS85 25.111 VG65 1.0592 “g = T64-61 1.0221
PG87 178.32 VG66 1.025 g T65-66 1.0498
PG89 83.092 VG69 1.0341 T68-69 0.9643
PG90 19.851 VGT70 0.9909 T81-80 0.9555
PGI1 49.548 VGT2 0.9385 Fuel cost ($/hr) 72,309
PG92 204.51 VGT73 0.9767 Transmission loss (MW)  103.81
PG99 108.94 VGT74 0.9908 L-index (p.u.) 0.0433
450
150.9366 MW [21], simultaneously. Figure 13 shows
the convergence for this case. 400 |
5.2.3. Bi-objective results for IEEE 30 bus test system F 350
Nine different case studies have been carried out on the g
TEEE 30 bus test system for diverse MOO functions, g 300
and their pareto-fronts have been studied. .
A Pareto optimal solution is defined as the finest & 250, .
solution set selected from numerous solution sets in
which all objectives are equally compromised with 200+ 1
respect to one another. Each solution set is defined as
150 .

a non-dominated solution set. There can be an infinite
number of Pareto solution sets for a multi-objective
optimization problem.

0 10 20 30

Figure 13. Convergence

40 50 60 70 80 90 100

Iterations

characteristic of Test case 11.
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Table 13. Comparative study of Test case 11 for QRSOS.
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Control variables QRSOS QOTLBO[21] TLBOJ[21]

Control variables

QRSOS QOTLBO[21] TLBO|[21]

Generator real power

Generator output

output (MW)

voltage (p.u.)

PG1 29 30 13.1937 VG2t 1.0882 1.0272 1.0426
PG4 11.361 29.9302 28.7162 VG31 1.0442 1.0338 1.0469
PG6 29.983 29.8782 18.4882 VG32 1.0657 1.0395 1.0453
PGS 150 299.8738 270.3844 VG34 0.9849 1.0375 1.0397
PG10 100.64 142.7617 264.8307 VG36 0.978 1.0249 1.0496
PG12 29.714 22.0728 29.1476 VG40 0.9348 1.0278 1.0571
PG15 91.021 44.0345 35.9218 VG42 0.9203 1.037 1.0694
PG18 5 5 5 VG46 0.9708 1.0373 1.0714
PG19 5 5.0111 5 VG49 0.9947 0.9948 1.0702
PG24 100 100.4435 100.4172 VG54 0.9451 1.049 1.0877
PG25 100 100.4082 100 VG55 0.9471 1.0261 1.0736
PG26 8.1201 26.9576 29.3547 VG56 0.9471 1.0526 1.0845
PG27 8.7412 12.112 28.2438 VG59 0.9598 1.0403 1.0883
PG31 67.54 97.9324 83.8513 VG61 1.012 1.031 1.0674
PG32 8 8.0141 8.0142 VG62 1.0163 1.0648 1.0663
PG34 25 25.0213 25.0202 VG65 1.0287 1.0456 1.0851
PG36 8 8 8.0134 VG66 0.9994 1.0304 1.0203
PG40 8 8 8.0283 = VG69 0.9454 1.039 1.0349
PG42 32.46 99.6537 26.8744 & ’:T VGT70 0.9681 1.0406 1.042
PG46 249.95 179.4485 126.7132 g a, VGT72 1.053 1.0333 1.0233
PG49 50 50.0503 50.0483 5 \; VGT73 1.0027 1.0143 1.0106
PG54 25 25.0728 25.1737 % %P VGT74 0.9424 1.0193 1.0072
PG55 25 25.0137 25.4218 E :o VG76 0.951 1.0386 1.0291
PG56 50 50.0234 50.3506 v ? VG777 1.0113 1.0629 1.0351
PG59 199.99 123.5961 132.1043 © VG80 1.0464 1.0899 1.0842
PG61 38.07 84.2513 33.5485 VG85 1.0087 1.0146 1.0199
PG62 420 173.6788 254.15 VG87 1.063 1.0898 1.0871
PG65 80 80 80 VG89 1.0419 1.0428 1.0291
PG66 30 30.331 32.3293 VG90 1.0971 1.0415 1.0244
PG69 29 80.0753 107.9949 VGal 1.0322 1.0524 1.0381
PG70 10 10.2342 10.1963 VG92 1.0337 1.0537 1.0424
PGT72 5 5.4008 10.5836 VG99 0.9764 1.0281 1.0883
PGT73 5 5.6437 5.3809 VG100 1.0075 1.0706 1.0706
PG74 25 27.8556 25.5065 VG103 1.0086 1.0791 1.0743
PG76 25 27.6722 30.1247 VG104 1.0215 1.0631 1.043
PGT7T7 240.34 272.0213 237.3293 VG105 1.0206 1.062 1.0447
PG80 84.397 70.0576 63.4527 VG107 1.0566 1.0513 1.0255
PG85 13.542 28.1374 19.2557 VG110 0.9757 1.0824 1.0256
PG87 179.01 181.63 299.4339 VG111 1.0213 1.0798 1.0492
PG89 113.86 144.6645 155.9003 VG112 0.9107 1.0865 1.0417
PG90 15.976 16.9528 19.6379 VG113 0.9662 1.0522 1.053
PGI1 45.96 44.9324 41.5361 VG116 1.0521 1.0805 1.0739
PG92 196.58 147.4587 114.5003 QC34 0.2999 0.1784 0.29
PG99 265.61 172 131.9728 QC44 0.1811 0.0462 0.0421
PG100 246.91 213.1142 175.3218 E R QC45 0.1032 0.2032 0.1844
PG103 11.754 19.4834 15.8526 g 3 QC46 0.0029 0.057 0.0233
PG104 74.106 80.2192 95.8003 5 \C_J-/ QC48 0.0438 0.0766 0.0679
PG105 67.72 73.9628 83.2438 g‘ o QC74 0.1116 0.1794 0.2857
PG107 14.257 19.7113 18.4581 8 E QC79 0.0336 0.2993 0.297
PG110 48.915 48.6485 46.4433 4 i QC82 0.3 0.2925 0.0962
PG111 31.689 85.3081 99.9002 2 = QC83 1.57E-06 0.2999 0.287
PG112 83.836 83.2133 90.2355 n QC105 0.0627 0.0487 0.197
PG113 33.722 67.1145 95.4081 QcC1o07 0.1428 0.2225 0.2103
PG116 34.93 41.9238 29.7641 QC110 0.0007 0.0043 0.1421
VGl 1.0597 1.0327 1.0191 T8-5 0.987 1.0119 1.017
VG4 0.9347 1.0254 1.0222 % T26-25 0.9243 1.0989 1.0992
VG6 0.9593 1.072 1.0606 t T30-17 1.0706 1.0134 1.0133
VG8 1.0014 1.0788 1.0775 E 9 T38-37 1.0145 1.0021 0.989
VG10 1.0859 1.0208 1.0258 3 " T63-59 0.961 0.9761 1.0046
VG12 0.9831 1.0373 1.0333 E = T64-61 0.9181 1.0315 0.9929
VG15 0.9674 1.0342 1.0374 < T65-66 1.0442 0.9612 0.9003
VG18 0.9569 1.0319 1.036 ﬁ T68-69 0.9417 1.0321 1.0927
VG19 0.962 1.0449 1.0446 T81-80 0.9003 1.0116 1.0368
VG24 1.0996 1.0529 1.0583 Fuel cost ($/hr) 63,441 65,601.64 65,037.34
VG25 1.1 1.0766 1.078 Emission (1b/hr) 164.5 176.1666 182.9609
VG26 1.0156 1.0319 1.0311 Transmission loss (MW) 139.49 150.9366 188.5034
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Test case 12: OPF problem for simultaneously
minimizing QFC and RTL

This objective function is described using Eq. (23), and
results are presented in Table 14. The comparative
study, as depicted in Table 15, showed that the algo-
rithm achieved better result than those obtained using
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26 (2019) 1664-1689

MO-DEA, QOTLBO, TLBO, MOHS, and NSGA-II
in the literature. Compared to MO-DEA, QRSOS
lowered the transmission loss from 5.5949 MW [64] by
1.69% to 5.5002 MW. However, at the same time, the
total FC increased by a small margin of 0.071%. It
was observed that VSI value improved simultaneously,

Table 14. Optimum control variable settings for different test cases for bi-objective functions.

Control variables Casel2

Casel3 Caseld4 Casel5 Casel6 Casel7 Casel8 Casel9 Case20

Tg _; PG1 1.2849 1.9356 2.1982 1.7688 1.9456 2.1981 1.7658 1.9249 2.1903
: & - PG2 0.517 0.4513 0.2756 0.4873 0.4899 0.2842 0.4895 0.4677 0.2861
% g B PG5 0.2967 0.2067 0.1609 0.2138 0.1862 0.1557 0.2154 0.1986 0.1688
E g \E_, PG8 0.35 0.1183 0.1 0.2114 0.1 0.1 0.2218 0.1425 0.1
é’ g PG11 0.2448 0.1 0.1 0.1186 0.1 0.0974 0.1191 0.1 0.1246
PG13 0.1958 0.12 0.1202 0.12 0.12 0.12 0.12 0.12 0.098
"5 VG1 1.1 1.1 1.081 1.1 1.1 1.0813 1.0485 1.0186 1.029
%? VG2 1.0904 1.0824 1.05 1.0873 1.0791 1.05 1.0289 1.0047 1.0282
2 e VG5 1.0673 1.0566 1.0233 1.0615 1.0632 1.0234 1.0062 1.0181 1.0191
% %} VG8 1.0773 1.064 1.0316 1.069 1.0562 1.0316 1.0049 1.0093 0.9959
E ﬁO VG111 1.0813 1.0926 1.0985 1.0768 1.1 1.1 0.9857 1.0001 1.0593
8 > VG13 1.1 1.1 1.05 1.1 1.0582 1.05 0.9859 0.9976 1.0219
QC10 0.0125 0.0125 — 0.05 0.05 — 0.05 0.0023 —
S QC12 0.0498 0.05 — 0.05 0.0427 — 0 0.0346 —
§ ;\ QC15 0.05 0.0499 — 0.05 0.0446 — 0.05 0.05 —
g 2 QC17 0.05 0.05 — 0.05 0.0367 — 0 0 —
g E QC20 0.0429 0.0442 — 0.05 0.0066 — 0.05 0.05 —
i :‘D—; QC21 0.05 0.0499 — 0.0499 0.0447 — 0.0294 0.0434 —
E g QC23 0.0183 0.022 — 0.0223 0.0233 — 0.045 0.0469 —
2 QC24 0.0383 0.0402 — 0.0427 0.0144 — 0.05 0.05 —
QC29 0.0234 0.0243 — 0.0201 0 — 0.02 0.0345 —
g 9 T6-9 1.0102 1.0772 1.0997 1.0429 1.0368 1.1 1.002 1.0145 1.086
é E T6-10 0.9812 0.9032 0.9168 0.9493 1.0976 0.9127 0.9889 0.9712 0.9
% % T4-12 0.9756 0.9677 0.987 0.9712 1.0997 0.9832 0.9439 0.9652 0.9586
g; * T27-28 0.9645 0.9579 0.9625 0.9574 0.9038 0.9572 0.968 0.9804 0.9419
Fuel cost ($/hr) 821.4655 833.3756825.2938799.0175 835.2983 825.4182803.3138842.5288 832.7439
Real power loss (MW) 5.5002 9.7887 12.0904 B.7768 10.7703 12.1405 10.0139 11.97 4 13.3898
Voltage stability index (p.u.) 0.1185 0.1081 0.129 0.1067 0.1072 0.1277 0.1446 11.974 0.135
Voltage deviation (p.u.) 1.6125 1.9877 0.5796 1.5026 0.9079 0.6268 0.0991 0.0832 0.1461
Simulation time (s) 59.6103 62.566 72.4231 52.352 68.203 76.5432 59.246 63.2024 61.0255
Table 15. Comparative study of Test case 12.
Technique Fuel cost Real power loss Voltage stability index
($/hr) (MW) (p-u.)
MOHS [25] 832.6709 5.3143 NA
NSGA-IT [23] 823.8875 5.7699 NA
TLBO [21] 828.5300 5.2883 0.1259
QOTLBO [21]  826.4954 5.2727 0.1255
MO-DEA [64] 820.8802 5.5949 NA
QRSOS 821.4655 5.5002 0.1185
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Figure 14. Pareto front for Test case 12.

thereby increasing the voltage stability margin. Fig-
ure 14 depicts the Pareto-front obtained for the above
objective.

Test case 13: OPF for simultaneously minimizing FC
and RTL considering VE

Generator cost coefficients provided in Table 1 of [28§]
are used for this objective described using Eq. (24).
Results are presented in Table 14. The total FC
attained using QRSOS is 833.3756 $/hr, which is 0.98%
higher than that of Case 2.1, and the RTL is 9.7887
MW, which is 19.16% lower than that of Case 2.1.
Figure 15 represents the Pareto front obtained for
Test case 13. No existing results are available in the
literature for doing comparative study.

Test case 14: OPF for minimizing FC along with
RTL considering both VE and POZ

Generator cost coefficients and the POZs, as provided
in Table 1 of Ref. [28], are used in Eq. (24). Based
on Table 14, it can be witnessed that total FC is
825.2938 §/hr and the RTL is 12.0904 MW. The total
FC increased with a slight margin of 0.002% and RTL
reduced by 0.18% when compared to single-objective
minimization of Test case 4. Figure 16 represents the
Pareto-front for this test case. No existing results are
available in the literature for doing comparative study.
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Figure 16. Pareto front for Test case 14.

Test case 15: OPF for simultaneously minimizing
QFC and L-index neglecting VE and POZ

This objective function is described using Eq. (25).
Table 14 demonstrates results obtained for this bi-
objective function. According to Table 16, QRSOS
reduced the total QFC to 799.0175 § /hr, which is lower
than those obtained using QOTLBO, TLBO, NSGA-
II, and MOHS, and recently applied BSA and MO-
DEA in the literature. Based on the comparison of
the result with those of the latest algorithms such as
BSA [63] and MO-DEA [64], it is observed that QRSOS

Table 16. Comparative study of Test case 15.

Technique Fuel cost Real power loss Voltage stability index Voltage deviation

(8/hr) (p-u.) (p-u.) (p-u.)

MOHS [25] 799.9401 NA 0.1075 NA

NSGA-IT [23] 800.3170 NA 0.1083 NA

TLBO [21] 799.8564 8.8592 0.1270 NA

QOTLBO [21] 799.3415 8.7050 0.1256 NA

BSA [63] 800.3340 8.4904 0.1259 1.9855

MO-DEA [64] 799.6912 8.602 0.1249 2.0498

QRSOS 799.0175 8.7768 0.1067 1.5026
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lowers the QFC value by 0.0803%. Simultaneously,
it can lower the VSI value to 0.1067 p.u. by 15.25%
from the latest MO-DEA [64], thereby ensuring a stable
system. Figure 17 represents the Pareto front for this
bi-objective function.

Test case 16: OPF for simultaneously minimizing FC
and VSI considering VE

Generator cost coefficients as provided in Table 1
of [28] are used for this case described by Eq. (26).
Results attained for this test case are tabulated in
Table 14. Figure 18 shows the Pareto-front for this
objective function. Overall, the FC for this bi-objective
function came out to be 835.2938 $/hr and the VSI
as 0.1072 p.u. The FC increased by a negligible
margin of 1.21% and the VSI reduced by 17.70% when
compared to single-objective minimization of Test case

Voltage stability index (p.u.)

Figure 19. Pareto front for Test case 17 obtained using
QRSOS.

2.1. No existing results are available in the literature
for comparison.

Test case 17: OPF for simultaneously minimizing FC
and VSI considering VE and POZ

Generator cost coefficients and POZs as provided in
Table 1 of [28] are used for test case described by
Eq. (26). Results obtained for this test case are
demonstrated in Table 14. QRSOS achieved FC of
825.4182 $/hr and VSI of 0.1277 p.u. The total FC
increased by a negligible margin of 0.017%, whereas the
VSI improved by a margin of 1.08% when compared to
single-objective minimization of Test case 4. Figure 19
represents the Pareto-front for this case. No existing
results are available in the literature for comparison.

Test case 18: OPF for minimizing QFC along with
VD

This objective function is defined using Eq. (27).
Results obtained for this test case are demonstrated
in Table 14. VD obtained using QRSOS is 0.0991 p.u.
which is 94.09% lower, and the total FC is 803.3138
$/hr which is 0.55% higher when compared to single-
objective minimization of Test case 1. In addition,
when compared to the recently applied techniques, such
as BSA [63] and MO-DEA [64], it is observed from
Table 17 that QRSOS lowers the FC as well as VD by
0.074% and 14.42%, respectively. Figure 20 depicts the
Pareto front for this test case.

Test case 19: OPF to minimize FC along with VD
considering VE
Generator cost coefficients from Table 1 of [28] are

Table 17. Comparative study of Test case 18.

Technique  Fuel cost ($/hr) Voltage deviation (p.u.)
BSA [63] 803.4294 0.1147
MO-DEA [64] 803.9116 0.1158
QRSOS 803.3138 0.0991
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used for the case described using Eq. (28). Results
obtained for this test case are demonstrated in Table
14. The total FC achieved using QRSOS is 842.5288
$/hr, which is 2.05% higher than that in Test case 2.1,
and VD is achieved as 0.0832 p.u., which is 85.41% less
than that obtained for single-objective minimization of
Test case 2.1. Figure 21 represents the Pareto-front
for this case. No existing results are available in the
literature for comparison.

Test case 20: OPF for minimizing FC along with VD
considering VE and POZ
Generator cost coeflicients and POZs in Table 1 of [28§]
are used for the case described using Eq. (28). Results
are presented in Table 14. The total FC achieved using
QRSOS is 832.7439 $/hr, which is 0.904% higher, and
VD is achieved as 0.1461 p.u., which is 74.70% lower
when compared to the single-objective minimization
of Test case 4. Figure 22 represents the Pareto-front
for this case. No existing results are available in the
literature for carrying out a comparative study of this
case, too.

Analyses of the aforementioned case studies prove
the supremacy of the proposed technique over other
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Figure 22. Pareto front for Test case 20.

algorithms such as QOTLBO, TLBO, MOHS, NSGA-
IT, ABC, BSA, PSO, DE-PSO, EP, IEP, GA, IABC,
SA, SFLA, MSFLA, NLP, TS, ACO, Hybrid SFLA-
SA, and SOS available in literature for achieving an
optimum solution to the OPF problem. QRSOS pro-
duces superior solutions to other algorithms mentioned
above for the cases studied. Pareto fronts obtained for
each of the multi-objective functions depict solution
sets well distributed in the search space, signifying a
non-dominated solution.

6. Determining the best parameter settings for
QRSOS

To determine the best parameter setting for QRSOS
to deliver efficient results, population sizes of 10, 20,
30, 40, and 50 have been taken into consideration. For
each population size, jumping rate JR is augmented
from 0.1 to 0.9 in steps of 0.1, as shown in Table 18.
Performance of QRSOS in Test case 4 is analyzed
considering all the aforementioned combinations. Fifty
different trials have been carried out with 100 iterations
for each trial. Based on Table 18, it is observed that a
population size of 30 and a Jumping Rate (JR) of 0.3
give the best fuel cost value of 825.2760 $/hr, which is
less than previous best reported value of 825.3705 $/hr.

7. Statistical analysis of test results

Statistical analysis is done on 50 trial data sets to
assess the performance of QRSOS. For this purpose,
one trial data set, as obtained from the solution sets
of the proposed algorithm, is tested using Wilcoxon
Signed Rank Test (WSRT). A p-value (probability
value) below 0.05 obtained from this test is considered
as conclusive proof to counter the null hypothesis. p-
values obtained using this test for Test cases 1-4 along
with minimum, maximum, average values and standard
deviation are tabulated below.
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Table 18. Best parameter setting for QRSOS.

Popl{lation Jumping Rate (JR)
size
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 826.5956 826.5543 826.5142 826.5492 826.6166 826.6473 826.6759 826.6921 826.7051 826.7149
20 826.4182 826.3762 826.3651 826.4960 826.6253 826.6395 826.6627 826.6863 826.7127 826.7248
30 825.5214 825.4075 825.2760 825.3153 825.3752 825.4242 825.4621 825.4875 825.5023 825.6942
40 825.5193 825.4695 825.4473 825.4752 825.4763 825.4954 825.5121 825.5274 825.5331 825.5781
50 825.5403 825.5325 825.4620 825.4854 825.4891 825.4902 825.5123 825.5179 825.5194 825.5344

Table 19. Statistical analysis of QRSOS for single objectives using Wilcoxon signed rank test against 50 trials.

Test .. . No. of hits to Standard
Minimum Average Maximum p-value

cases minimum solution deviation
Case 1 798.9152 798.9439 799.0110 35 0.0443 1.12E-10
Case 2.1 825.2541 825.2866 825.4346 41 0.0700 3.66E-11
Case 2.2 920.1125 920.1514 920.3242 40 0.0828 5.96E-11
Case 3 801.7593 801.7668 801.8001 40 0.0160 5.96E-11
Case 4 825.2769 825.2785 825.2865 38 0.0045 6.92E-11

As observed in Table 19, p-value in every case
is well below the desired value of 0.05 establishing
statistical significance of the results. Moreover, the
standard deviation values obtained for QRSOS are
much lower than those obtained by its predecessor [28]
for all the cases.

Conclusion

This study aimed to introduce a novel technique des-
ignated as quasi-reflected symbiotic organisms search
algorithm (QRSOS) to solve the OPF problem. The
technique was successfully applied to the OPF problem
to solve both single-objective and bi-objective func-
tions. Twenty different test cases were solved with
and without considering the VE and POZs. Outputs
obtained using QRSOS were compared with those
obtained by SOS, QOTLBO, TLBO, MOHS, NSGA-
II, DE, and PSO; several other techniques are reported
in the literature. Results obtained demonstrate the
efficiency and robustness of the offered technique in
handling OPF problem for both small- and large-scale
test systems. Results showed a remarkable improve-
ment for QRSOS when compared to other available
techniques. It passed the Wilcoxon signed rank test
with very low p-values and established its statistical
significance. It was simultaneously observed that this
algorithm acquired very fast convergence in all cases
when matching other techniques. Henceforth, it may
be deduced that QRSOS algorithm is promising, and
there is a possibility for future research in this direction
considering other aspects of power system.

Future scope

The proposed technique has effectively handled both
linear and non-linear objectives. Since QRSOS was
shown as able to solve the OPF problem successfully,
it might be further applied to solve OPF, considering
renewables and uncertainty due to load demands under
different contingency scenarios.
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