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Abstract. Reliability improvement of electronic and mechanical systems is vital for
engineers in order to design these systems. For this reason, there are many researches in this
area to help engineers with real-world applications. One of the useful methods in reliability
optimization is Redundancy Allocation Problem (RAP). In most previous related works,
the failure rates of system components are considered to be constant based on negative
exponential distribution, whereas nearly all real-world systems have components with time-
dependent failure rates; in other words, the failure rates of system components will change
from time to time. In this paper, we have worked on an RAP for a system under k-out-
of-n subsystems that have components with time-dependent failure rates based on Weibull
distribution. In addition, the redundancy policy of the proposed system is considered as a
mixed strategy, and the optimization method is based on the simulation technique to obtain
the reliability function as an implicit function. Finally, a branch and bound algorithm has
been used to solve the model exactly.

© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

Reliability improvement is one of the most e�ective
strategies for improving the quality level of electronic
and mechanical systems. To this end, a common and
useful method is RAP. The aim of this problem is
to increase the redundant components in the system
under some constraints, such as weight, volume, cost,
etc., to help increase system reliability. Therefore,
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several studies have been carried out in this area. Fy�e
et al. [1] proposed a mathematical model for RAP
as the �rst research in this �eld and used dynamic
programming to solve the model. Then, Nakagawa and
Miyazaki [2] modi�ed the model presented in [1] by
considering the upper limit of system weight between
159 and 191. They showed that using a surrogate
constraints algorithm leads to solutions with higher
reliability in comparison with dynamic programming
that solves 33 problems.

One of the most e�ective factors in reliability
evaluation is component failure rates. In the literature
of RAP, the failure rates of components are considered
as follows:
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- Constant failure rates based on distributions such
as exponential, etc. (in which the failure rate of
components is constant over time);

- Time-dependent failure rates based on distributions
such as Weibull, etc. (in which the failure rate of
components is di�erent from initial value over time).

When failure rates of components are constant,
it is very easy to obtain the reliability function via
statistical and mathematical relations. Therefore, most
of research studies on RAP use this assumption for
system components. Misra and Sharma [3] considered a
system as series-parallel with k-out-of-n con�guration,
and assumed that the system could work as an active
policy. In addition, a zero-one programming model
was used to solve the model. Pham [4] solved RAP
for a system with a single k-out-of-n subsystem and
an active redundancy strategy to reduce the system
cost as part of the objective function of their model.
Considering multi-failure modes for components, Pham
and Malon [5] extended Pham's model. Moreover, since
it is proven that RAP belongs to the class of Np-hard
problems [6], heuristics or meta-heuristic algorithms
are essential to solve RAPs in large-scale problems. For
this reason, in many papers after 1992, the researchers
have used approaches based on heuristics or meta-
heuristics in order to solve RAP models. Ida et al. [7]
used Genetic Algorithm (GA) in a simple form for
the �rst time to solve RAP of series-parallel systems
with multiple failure state components. Painton and
Campbell [8] presented a series-parallel RAP under risk
and used GA to solve it. Coit and Liu [9] presented a
series-parallel RAP with k-out-of-n subsystems. They
considered both of active and cold-standby strategies as
prede�ned for the whole subsystems at the start time
of the process. Coit [10] proposed an optimal solution
for RAP and solved the model by applying a zero-
one integer programming. Moreover, the redundancy
strategy is considered as an additional decision variable
in RAPs for the �rst time in [10]. Moreover, Tavakkoli-
Moghaddam et al. [11] solved the model proposed
by Coit (2003) using GA with a new de�nition of
chromosomes, crossovers, and mutations. In addition,
there are many papers on RAP that use meta-heuristic
methods like [12-15]. Garg et al. [16] presented a
bi-objective reliability redundancy allocation problem
for a series-parallel system, where reliability of the
system and the corresponding designing cost are con-
sidered as two di�erent objectives. They converted
the developed fuzzy model to a crisp model to solve
the problem. In addition, they solved the script
optimization problem with swarm optimization. Garg
et al. [17] provided a methodology to solve the multi-
objective reliability optimization model. In their study,
the model parameters are considered as imprecise in
terms of triangular interval data. They converted

the uncertain multi-objective optimization model to a
deterministic one and used Particle Swarm Optimiza-
tion (PSO) and Genetic Algorithm (GA) to solve the
model. A penalty-guided-based biogeography-based
optimization model was used to solve the reliability re-
dundancy allocation problems of series-parallel systems
under various nonlinear resource constraints in [18].
Moreover, Garg [19] proposed a penalty-based Cuckoo
Search (CS) algorithm to achieve the optimal solution
to reliability-redundancy allocation problems (RRAP)
with nonlinear resource constraints.

Recently, a new redundancy strategy for reliabil-
ity optimization problems, which has a combination
of active and standby strategies, was presented by
Ardakan and Hamadani [20]. In this strategy, each
subsystem can have di�erent levels of active and cold-
standby redundancies so that some components can
be active, while others are kept in standby mode.
This strategy is called \mixed strategy" and leads
to higher system reliability in comparison to systems
with active or standby strategy. Moreover, Ardakan
et al. [21] used a mixed strategy in a Multi-Objective
RAP (MORAP) as a nonlinear integer programming
model and applied NSGA-II to solve the model. In
addition, Gholinezhad and Hamadani [22] presented
a new mathematical model for RAP with component
mixing and mixed redundancy strategy considering the
choice of a redundancy strategy as a decision variable.

In addition, if the failure rates of system compo-
nents are constant based on an exponential distribution
since this distribution has memory-less property, it
is possible for researchers to use Markov process to
obtain di�erential equations of a system to calculate its
reliability function. Nourelfath et al. [23] proposed a
combined method based on Markov processes, Genetic
algorithm, and universal moment generating function
in order to calculate multi-state systems availability.
Pourkarim Guilani et al. [24] used Markov process
to obtain di�erential equations that lead to reliability
calculation of non-repairable three-state systems. Kim
and Kim [25] proposed a new Markov chain approach
to the standby RRAP problem. They used a Parallel
GA to solve di�erent test problems and showed the
advantage of the proposed Markov-based approach in
�nding better structures. Chang and Kuo [26] con-
sidered Generalized Redundancy Allocation Problem
(GRAP) in which a traditional RAP was extended to
a more realistic situation where the system under con-
sideration has a generalized network structure. They
also proposed a partition-based simulation optimiza-
tion method to solve GRAP. However, in the real-
world problems, there are not many systems whose
components are CFR. Therefore, it is more realistic for
the failure rates of system components to be considered
as time dependent. Azimi et al. [27] proposed a non-
exponential redundancy allocation problem in series-
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parallel k-out-of-n systems with repairable components
and used simulation techniques to estimate the system
reliability.

One of the most applied distributions in reliability
theory to model the real-world applications is Weibull
distribution. This distribution is a good tool to formu-
late time-dependent failure rates due to its exibility
property to �t real-world stochastic events. However,
when the components' failure rates are considered as
time-dependent events, it is impossible for researches
to evaluate system reliability through Markov process
and di�erential equations, because, in this situation,
the failure rates of components do not have memory-
less property. The simulation technique is a powerful
tool to model the stochastic events with any kind of
distribution functions. This is the main reason why this
technique is used in this research to model the objective
function. However, using the simulation technique will
not provide a closed form of the objective function;
however, the simulation model is replaced instead of the
mathematical form of the objective function (implicit
form).

Ardakan et al. [28] proposed RAP considering
time-dependent reliability of components. The relia-
bility of components was considered as a function of
time in their paper, and the RAP was reformulated
by introducing \mission design life", de�ned as the
integration of the system reliability function during the
mission time.

In the case where the components' failure rates
are time dependent, having an explicit function of
the system reliability via mathematical and statistical
relations is not possible. Therefore, in these circum-
stances, using the simulation technique is the only way
to calculate the system reliability. Pourkarim Guilani
et al. [29] proposed a RAP for a system with Increasing
Failure Rates (IFR) based on the Weibull distribution.
In their work, they used the simulation in order to
estimate reliability function as implicit functions. The
redundancy strategy for their proposed system was
variable between active and cold-standby. A summary
of literature review is provided in Table 1.

In this paper, it is intended to model a RAP
for a system with k-out-of-n subsystems that have
components with time-dependent failure rates based
on the Weibull distribution. Moreover, the redun-
dancy strategy for this system is mixed in accordance
with [20], and a benchmark is provided to compare
the present paper to the current literature. The
innovation of this research is that, for the �rst time,
a RAP under k-out-of-n con�guration is considered in
which the components' failure rates are time dependent
based on the Weibull distribution, and the redundancy
strategy is mixed simultaneously. With respect to
many electronic and mechanical devices failed based
on hazard function of the Weibull distribution during

their lifetime, this study can achieve reliable results for
managers and engineers.

The rest of this paper is organized as described
below. In Section 2, the parameters, the variables,
and the model of the problem are presented. Section 3
deals with the simulation approach along with a brief
description about the Weibull distribution. The solu-
tion methodology is provided in Section 4. Numerical
examples are given in Section 5 to demonstrate the
veri�cation of the suggested methodology. Finally, con-
clusions and directions for future research are presented
in the last section.

2. Problem de�nition

In this section, a RAP for a system as series-parallel
with k-out-of-n subsystems demonstrated in Figure 1
is studied, in which mixed strategies can be chosen
for each subsystem. The basic assumptions of the
proposed problem are listed as follows.

2.1. Problem assumptions
� System components are binary states (working or

failed);
� The components' failure rates are time dependent

based on the Weibull distribution;
� The redundancy strategy is mixed;
� Each subsystem is working as k-out-of-n;
� System components are non-repairable;
� The failed components will not damage the whole

system;
� All parameters for components, including costs,

weights, etc., are deterministic.

2.2. Notations of the model
The variables and parameters used in the mathematical
model are listed as follows.
nij Number of the jth available component

in subsystem i, i = 1; 2; :::; s,
j = 1; 2; :::;mi;

cij Cost for the jth available component
in subsystem i;

Figure 1. The system structure.
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Table 1. A summary of literature review.

Authors Failure rates Description Solving method
Fy�e et al.

(1968)
Constant Presented RAP for the �rst time Dynamic programming

Nakagawa and
Miyazaki (1981)

Constant Model of Modi�ed Fy�e et al. Surrogate constraint

Misra and
Sharma (1991)

Constant
Considered a series-parallel system with

k-out-of-n subsystems under
active redundancy policy

Zero-one programming

Pham
(1992)

Constant
Proposed RAP for systems with a single

k-out-of-n subsystem
under active redundancy

Mathematical and statistical relations

Pham and
Malon (1994)

Constant Considered multi-failure
mode for components in Pham (1992)

Mathematical and statistical relations

Chern
(1992)

Constant Proved that RAP is Np-hard Mathematical and statistical relations

Ida et al.
(1994)

Constant Proposed RAP of series-parallel systems
with multiple failure state components

Genetic algorithm

Painton and
Campbell (1995)

Constant Presented a series-parallel RAP under risk Genetic algorithm

Coit and
Liu (2000)

Constant Proposed RAP with k-out-of-n subsystems
under active and cold-standby redundancy

Zero-one integer programming

Coit
(2003)

Constant Considered redundancy strategy as a
decision variable for Coit and Liu (2000)

Integer programming

Tavakkoli-Moghaddam
et al. (2008)

Constant
Assumed that, the redundancy strategy

for each subsystem is predetermined and �xed
(active or cold-standby)

Genetic algorithm

Keshavarz Ghorabaee
et al. (2015)

Constant Presented BORAP for a system with k-out-of-n
subsystems and non-identical components

Genetic algorithm and NSGA-II

Zhang and
Chen (2016)

Constant Worked on reliability redundancy allocation
problems modeled in an interval environment

Particle swarm optimization algorithm

Teimouri et al.
(2016)

Constant Developed an electromagnetism to solve RAP Memory-based electromagnetism-like
mechanism algorithm

Pourkarim Guilani
et al. (2017)

Constant Proposed MORAP for three-state systems
with k-out-of-n subsystems using Markov

NSGA-II and SPEA-II
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Table 1. A summary of literature review (continued).

Authors Failure rates Description Solving method
Garg et al.

(2014)
General Presented a BORAP in fuzzy environment Swarm optimization

Garg et al.
(2014)

General Provided a MORAP in fuzzy environment Genetic algorithm and particle
swarm optimization

Garg (2015) General Proposed a RRAP under the various
nonlinear resource constraints

Biogeography based optimization

Garg
(2015)

General Presented a RRAP with nonlinear
resource constraints

Cuckoo search

Ardakan and
Hamadani (2014)

Constant Proposed RAP with the mixed
redundancy strategy

Genetic algorithm

Ardakan et al.
(2015)

Constant Proposed MORAP with the mixed
redundancy strategy

NSGA-II

Gholinezhad and
Hamadani (2017)

Constant
Proposed RAP in which the redundancy strategy

(active, cold standby, or mixed)
is considered as a decision variable

Genetic algorithm

Nourelfath et al.
(2012)

Constant Used Markov and UGF to obtain
multi-state system reliability

Genetic algorithm and Tabu search

Pourkarim Guilani
et al. (2014)

Constant Used Markov to obtain reliability function of
three-state systems

Di�erential equations

Kim and Kim
(2017)

Constant Proposed a new Markov chain
approach for standby RRAP

Genetic algorithm

Chang and Kuo
(2018)

Constant Considered generalized redundancy
allocation problem

Simulation-based optimization

Azimi et al.
(2017)

Time-dependent Proposed a non-exponential redundancy
allocation problem in k-out-of-n systems

Meta-heuristic and simulation

Ardakan et al.
(2017) & Constant

Time-dependent The reliability of components considered
as a function of time

Genetic algorithm

Pourkarim Guilani
et al. (2016)

Time-dependent Used simulation to obtain reliability
function as implicit

Genetic algorithm and
random search

Current paper Time-dependent Used simulation to obtain reliability
function as implicit

Integer programming
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wij Weight for the jth available component
in subsystem i;

ki The minimum requirement amount of
components that must be working in
each subsystem (n � k);

naij Number of the jth available component
in subsystem i working as active;

ncij Number of the jth available component
in subsystem i working as cold-standby;

nmax;i The upper bound on the assigned
number of components in subsystem i;

zij A binary variable equals 1 if the
jth available component is placed in
subsystem i and zero otherwise;

A Shape parameters of the Weibull
distribution;

B Scale parameters of the Weibull
distribution;

t Mission time.

2.3. Mathematical model
The optimization model of the redundancy allocation
problem is presented as follows:

MaxR =
sY
i=1

f(nij ; naij ; ncij ; zij ; t; �); (1)

s.t.:
nX
i=1

miX
j=1

cijnij � C; (2)

nX
i=1

miX
j=1

wijnij �W; (3)

nij � zijnmax;i 8i = 1; :::; s; 8j = 1; :::;mi; (4)

miX
j=1

zij = 1 8i = 1; :::; s; (5)

ncij = nij � naij 8i = 1; :::; s; 8j = 1; :::;mi;
(6)

ki � naij � nij 8i = 1; :::; s; 8j = 1; :::;mi; (7)

zij 2 f0; 1g ; (8)

naij ; ncij ; nij 2 int: (9)

Eq. (1) is the objective function of the model
which maximizes the system reliability. This function
is obtained via the simulation replications as implicit
for each subsystem based on several variables and pa-
rameters such as the number of available components,

the number of components working in active and cold-
standby modes, the type of selected components in
subsystems, the mission time, and the error (�) asso-
ciated with estimating this function via the simulation
technique. Finally, the reliability of system is obtained
by multiplication of subsystem reliabilities. As previ-
ously mentioned, the components' failure rates are time
dependent; therefore, calculating the system reliability
is not an easy task. Thus, a simulation model is used
to estimate the objective function. Inequalities (2)
and (3) are cost and weight constraints, respectively.
Constraint (4) puts an upper bound on the number
of components of the subsystems if the jth available
component is placed in subsystem i. Relation (5)
ensures that there will be one type of components
in each subsystem. In addition, Constraints (6)-(9)
represent the conditions on model variables.

3. Simulation

In this section, a brief description of the Weibull
distribution is provided. Then, the simulation steps
are explained.

3.1. Weibull distribution
Weibull is one of the continuous probability distribu-
tions that has been widely used in modeling of system
reliability. Time-dependent failure rates of system
components can be modeled properly through this
distribution. The hazard function of this distribution is
h(t) = AtB . This hazard function can be used for both
Increasing Failure Rate (IFR) and Decreasing Failure
Rate (DFR) of system components so that if A > 0
and B > 0, then the hazard function is equal to an
increasing function of t (the distribution is proper for
modeling of the systems with IFR); if A > 0 and B < 0,
then the hazard function is equal to an decreasing
function of t (the distribution is proper for modeling of
the systems with DFR) [29]. If the failure rates during
time are considered as in the following function:

h(t) =
B
A

�
t
A

�B�1

; B > 0; A > 0; t � 0; (10)

then this hazard function belongs to the Weibull
distribution; thus, its relationships such as reliability
function, cumulative distribution function, and proba-
bility distribution function are calculated as follows:

R (t) = e
� tR
y=0

h(y):dy
= e
� tR
y=0

B
A ( yA )B�1:dy

= e
�
�
t/A
�B

; B > 0; A > 0; t � 0; (11)

F (t)=1� e�
�
t/A
�B

; B > 0; A > 0; t � 0;
(12)
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f (t) = R (t)� h (t) =
B
A

�
t
A

�B�1

e
�
�
t/A
�B

;

B > 0; A > 0; t � 0: (13)

In all of the above equations, B is the shape parameter,
and A is the scale parameter of the Weibull distribu-
tion. In order to see further studies on the Weibull
distribution, [30,31] are recommended.

3.2. Simulation implementation
As previously mentioned, the simulation has been
always used to calculate reliability function of a sub-
system with time-dependent components, explicitly.
Therefore, the reliability function for a subsystem via
simulation is estimated; then, the estimated function
will be used for the whole system reliability. Since the
redundancy policy is considered as the mixed one for
a k-out-of-n system, number of components (n), min-
imum number of requirement component (k), number
of active components (na), and number of cold-standby
components (nc) of each subsystem are required during
each iteration of the simulation process. Because these
variables are dependent on each other, in order to
satisfy this dependency and create feasible designs for
simulation, two new auxiliary variables are de�ned as
follows: k0 and na

0
, both of which are between 0 and 1.

We know that in a k-out-of-n system, the amount of k
should be between 1 and n (1 � k � n). In addition, k
value is between 1 and n at all experiment levels; thus,
it can be derived from Eq. (14):

k = round (1 + k0 � (n� 1)) : (14)

According to Eq. (14), for di�erent values of k0 between
0 and 1, k can be between 1 and n. In addition, we
know that in a k-out-of-n system, at least k components
should work actively. Therefore, in each subsystem, we
will have k � na � n. Therefore, for di�erent values of
na
0

between 0 and 1, na is between k and n in Eq. (15):

na = round
�
k + na0 � (n� k)

�
: (15)

Then, the number of cold-standby components in each
subsystem is calculated by nc = n � na. The pseudo
code and the owchart of simulation are shown in
Figures 2 and 3, respectively, and all the steps involved
in the simulation experiments are coded in MATLAB
10 software.

As shown in Figures 2 and 3, details of the simu-
lation experiments are described as follows. At �rst,
the input parameters are added. These parameters
include n, na

0
, k0, A, B, and t. Then, by Eqs. (14)

and (15), the values of na and k are obtained. Then,
for each iteration, a number of the components working
as active are inserted in w, and a number of the
components reserved as cold-standby are inserted in st.

Figure 2. Pseudo code of simulation experiments.

In addition, random numbers are generated based on
the Weibull distribution with parameters A and B for
the number of active components and are inserted in f .
In the simulation process, (Tsys) is the life time of the
given subsystem. In this process, if Tsys > t, the given
subsystem is working safely and there is no problem.
However, when Tsys < t, it means that the system
needs to be investigated. Indeed, when Tsys < t,
the system performance has a problem that must be
eliminated. While the subsystem life time (Tsys) is less
than t and w is more than k, the minimum amount of
f will be selected. This amount eliminates f and adds
to Tsys. Therefore, one of the active working objects
is reduced. Now, one of the cold-standby components
will be deleted from st and added to w. To put it more
delicately, if there is at least one component as reserved,
this component enters the circuit. At the same time,
a random number is generated based on the Weibull
distribution with parameters A and B, and this number
joins the existing values of set f .

This procedure continues until w < k, and there
are some cold-standby components marked as reserved.
In addition, if Tsys > t, it means that the subsystem
works safely. At the end, the subsystem reliability
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Figure 3. Flowchart of simulation experiments.

is estimated as the number of running loop processes
divided by the number of iterations (num/iter).

3.3. Experiments of simulation
To estimate the objective function of the mathemat-
ical model presented in Section 2, it is required to
conduct several experiments. For this purpose, a
Box-Behnken design is performed in order to create

di�erent scenarios to estimate the reliability function in
MINITAB 16 software. Here, six factors are considered
in each scenario. The factor levels considered in the
simulation experiments are demonstrated in Table 2,
most of which have been adopted from Pourkarim
Guilani et al. [29]. In addition, six central points were
added in order to test a possible curvature involved
in the response function. Moreover, the number of
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Table 2. The lower and upper bounds of input
parameters for numerical examples.

Lower bound Upper bound
n 1 7
A 100 200
B 0.8 1.25
k0 0 1
na
0

0.8 1.25
t 100 200

replications is 30 for each design. The values of factors
in each experiment and their results are shown in
Table 3. Moreover, the estimated regression coe�cients
for reliability function of a subsystem are provided in
Table 4. In all designs, R� sq = 91:46%, showing that
the results are reliable.

According to the results in Table 3, the subsystem
reliability function is estimated by implementing a non-
linear regression in MINITAB 16 software as Eq. (16):

R =1:79229� 0:09272� n� 0:17104� na0

� 0:48286� k0 � 0:01287�A� 1:04362

�B + 0:00468� t+ 0:00695�n� n+0:16938

� na0 � na0 + 0:42872� k0 � k0 + 0:00005

�A�A+ 0:69108�B �B � 0:00002

� t� t� 0:00002� n� na0 � 0:16599

� n� k0 + 0:00015� n�A+ 0:08017

� n�B + 0:00042� n� t+ 0:00010� na0

� k0 � 0:00020� na0 �B + 0:00002� na0

� t� 0:06533� k0 �B � 0:00003� k0

� t+ 0:00040�A�B � 0:00359�B � t: (16)

Therefore, Eq. (16) resulting from the simulation repli-
cations is used as the objective function (reliability
function) in the mathematical model of the problem.
The solution methodology will be presented in the next
section.

4. Solution methodology

The presented model in Section 3 is an Integer Non-
linear Programming Model (INLP), and solving this
problem via exact method is impossible [6]. However,
it is possible to transform the problem to an Integer
Linear Programming (ILP) based on [10]. Thus, the
problem is linearized by taking the logarithm of the

objective function to provide conditions to apply in-
teger programming algorithms. Some new parameters
and variables are de�ned in the following in order to
change variables of the �rst RAP model, presented in
Subsection 2.3.
p An index that takes value between ki

and nmax;i;
aijp The cost of deployment p components

of type j in subsystem i;
bijp The weight of deployment p

components of type j in subsystem i;
ijpq Logarithm of the reliability of p

components of type j in subsystem i,
in which q components are active and
p� q components are cold-standby;

yijpq A binary variable equals 1 if p
components of type j used in
subsystem i and zero otherwise, in
which q components are active and
p� q components are cold-standby.

In addition, aijp, bijp, and ijpq are expressed
as functions of speci�ed components and problem
parameters. These values are obtained as follows:

aijp = cij � p 8i = 1; :::; s;

8j = 1; :::;mi 8p = ki; :::; nmax;i; (17)

bijp = wij � p 8i = 1; :::; s;

8j = 1; :::;mi 8p = ki; :::; nmax;i; (18)

ijpq = Ln
�
Rsim(p; q; p� q; zij ; t)	

8i = 1; :::; s; 8j = 1; :::;mi;

8p = ki; :::; nmax;i; 8q = ki; :::; p: (19)

Finally, the new ILP is formed as follows:

Max R =
sX
i=1

miX
j=1

nmax;iX
p=ki

pX
q=ki

ijpqyijpq;

s.t.

sX
i=1

miX
j=1

nmax;iX
p=ki

pX
q=ki

aijpyijpq � C;

sX
i=1

miX
j=1

nmax;iX
p=ki

pX
q=ki

bijpyijpq �W;

miX
j=1

nmax;iX
p=ki

pX
q=ki

yijpq = 1 8i = 1; :::; s;

yijpq 2 f0; 1g :
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Table 3. Experimental results obtained via simulation.

Exp. n na
0

k0 A B t R Exp. n na
0

k0 A B t R

1 1 0 0.5 100 1.025 150 0.2217 82 7 0.5 0.5 200 0.8 150 0.7872
2 7 0 0.5 100 1.025 150 0.5459 83 1 0.5 0.5 100 1.25 150 0.1885
3 1 1 0.5 100 1.025 150 0.2199 84 7 0.5 0.5 100 1.25 150 0.6645
4 7 1 0.5 100 1.025 150 0.5442 85 1 0.5 0.5 200 1.25 150 0.4953
5 1 0 0.5 200 1.025 150 0.4736 86 7 0.5 0.5 200 1.25 150 0.962
6 7 0 0.5 200 1.025 150 0.9021 87 4 0 0.5 150 0.8 100 0.4222
7 1 1 0.5 200 1.025 150 0.4747 88 4 1 0.5 150 0.8 100 0.4219
8 7 1 0.5 200 1.025 150 0.903 89 4 0 0.5 150 1.25 100 0.6334
9 4 0 0 150 0.8 150 0.9636 90 4 1 0.5 150 1.25 100 0.6374
10 4 1 0 150 0.8 150 0.9633 91 4 0 0.5 150 0.8 200 0.1535
11 4 0 1 150 0.8 150 0.0182 92 4 1 0.5 150 0.8 200 0.1525
12 4 1 1 150 0.8 150 0.0187 93 4 0 0.5 150 1.25 200 0.2035
13 4 0 0 150 1.25 150 0.9926 94 4 1 0.5 150 1.25 200 0.2041
14 4 1 0 150 1.25 150 0.9927 95 1 0.5 0 150 1.025 100 0.516
15 4 0 1 150 1.25 150 0.0184 96 7 0.5 0 150 1.025 100 1
16 4 1 1 150 1.25 150 0.0179 97 1 0.5 1 150 1.025 100 0.5183
17 4 0.5 0 100 1.025 100 0.9831 98 7 0.5 1 150 1.025 100 0.01
18 4 0.5 1 100 1.025 100 0.0188 99 1 0.5 0 150 1.025 200 0.2607
19 4 0.5 0 200 1.025 100 0.9983 100 7 0.5 0 150 1.025 200 0.9997
20 4 0.5 1 200 1.025 100 0.1399 101 1 0.5 1 150 1.025 200 0.2625
21 4 0.5 0 100 1.025 200 0.8618 102 7 0.5 1 150 1.025 200 0.00006
22 4 0.5 1 100 1.025 200 0.00037 103 4 0.5 0.5 150 1.025 150 0.3128
23 4 0.5 0 200 1.025 200 0.9823 104 4 0.5 0.5 150 1.025 150 0.3125
24 4 0.5 1 200 1.025 200 0.0181 105 4 0.5 0.5 150 1.025 150 0.3143
25 1 0.5 0.5 100 0.8 150 0.2512 106 4 0.5 0.5 150 1.025 150 0.314
26 7 0.5 0.5 100 0.8 150 0.4224 107 4 0.5 0.5 150 1.025 150 0.3162
27 1 0.5 0.5 200 0.8 150 0.4524 108 4 0.5 0.5 150 1.025 150 0.3158
28 7 0.5 0.5 200 0.8 150 0.7885 109 1 0 0.5 100 1.025 150 0.219
29 1 0.5 0.5 100 1.25 150 0.1932 110 7 0 0.5 100 1.025 150 0.5462
30 7 0.5 0.5 100 1.25 150 0.6651 111 1 1 0.5 100 1.025 150 0.2214
31 1 0.5 0.5 200 1.25 150 0.4974 112 7 1 0.5 100 1.025 150 0.547
32 7 0.5 0.5 200 1.25 150 0.9609 113 1 0 0.5 200 1.025 150 0.4772
33 4 0 0.5 150 0.8 100 0.4242 114 7 0 0.5 200 1.025 150 0.9029
34 4 1 0.5 150 0.8 100 0.4199 115 1 1 0.5 200 1.025 150 0.4728
35 4 0 0.5 150 1.25 100 0.635 116 7 1 0.5 200 1.025 150 0.9018
36 4 1 0.5 150 1.25 100 0.6343 117 4 0 0 150 0.8 150 0.9626
37 4 0 0.5 150 0.8 200 0.1502 118 4 1 0 150 0.8 150 0.9636
38 4 1 0.5 150 0.8 200 0.1521 119 4 0 1 150 0.8 150 0.0177
39 4 0 0.5 150 1.25 200 0.2025 120 4 1 1 150 0.8 150 0.0182
40 4 1 0.5 150 1.25 200 0.2044 121 4 0 0 150 1.25 150 0.9919
41 1 0.5 0 150 1.025 100 0.5164 122 4 1 0 150 1.25 150 0.9922
42 7 0.5 0 150 1.025 100 1 123 4 0 1 150 1.25 150 0.0179
43 1 0.5 1 150 1.025 100 0.5155 124 4 1 1 150 1.25 150 0.0184
44 7 0.5 1 150 1.025 100 0.0101 125 4 0.5 0 100 1.025 100 0.9825
45 1 0.5 0 150 1.025 200 0.2598 126 4 0.5 1 100 1.025 100 0.0189
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Table 3. Experimental results obtained via simulation (continued).

Exp. n na
0

k0 A B t R Exp. n na
0

k0 A B t R

46 7 0.5 0 150 1.025 200 0.9995 127 4 0.5 0 200 1.025 100 0.9986

47 1 0.5 1 150 1.025 200 0.2608 128 4 0.5 1 200 1.025 100 0.1397

48 7 0.5 1 150 1.025 200 0.00011 129 4 0.5 0 100 1.025 200 0.8609

49 4 0.5 0.5 150 1.025 150 0.3119 130 4 0.5 1 100 1.025 200 0.00031

50 4 0.5 0.5 150 1.025 150 0.3138 131 4 0.5 0 200 1.025 200 0.9822

51 4 0.5 0.5 150 1.025 150 0.311 132 4 0.5 1 200 1.025 200 0.018

52 4 0.5 0.5 150 1.025 150 0.3133 133 1 0.5 0.5 100 0.8 150 0.2506

53 4 0.5 0.5 150 1.025 150 0.3151 134 7 0.5 0.5 100 0.8 150 0.4206

54 4 0.5 0.5 150 1.025 150 0.3112 135 1 0.5 0.5 200 0.8 150 0.4532

55 1 0 0.5 100 1.025 150 0.2183 136 7 0.5 0.5 200 0.8 150 0.7877

56 7 0 0.5 100 1.025 150 0.5473 137 1 0.5 0.5 100 1.25 150 0.1902

57 1 1 0.5 100 1.025 150 0.2188 138 7 0.5 0.5 100 1.25 150 0.665

58 7 1 0.5 100 1.025 150 0.5444 139 1 0.5 0.5 200 1.25 150 0.498

59 1 0 0.5 200 1.025 150 0.4752 140 7 0.5 0.5 200 1.25 150 0.9606

60 7 0 0.5 200 1.025 150 0.9023 141 4 0 0.5 150 0.8 100 0.4231

61 1 1 0.5 200 1.025 150 0.4739 142 4 1 0.5 150 0.8 100 0.4238

62 7 1 0.5 200 1.025 150 0.9019 143 4 0 0.5 150 1.25 100 0.637

63 4 0 0 150 0.8 150 0.9629 144 4 1 0.5 150 1.25 100 0.6333

64 4 1 0 150 0.8 150 0.9634 145 4 0 0.5 150 0.8 200 0.1497

65 4 0 1 150 0.8 150 0.0181 146 4 1 0.5 150 0.8 200 0.1528

66 4 1 1 150 0.8 150 0.019 147 4 0 0.5 150 1.25 200 0.2021

67 4 0 0 150 1.25 150 0.9926 148 4 1 0.5 150 1.25 200 0.2012

68 4 1 0 150 1.25 150 0.9927 149 1 0.5 0 150 1.025 100 0.5151

69 4 0 1 150 1.25 150 0.0179 150 7 0.5 0 150 1.025 100 1

70 4 1 1 150 1.25 150 0.0183 151 1 0.5 1 150 1.025 100 0.5191

71 4 0.5 0 100 1.025 100 0.9827 152 7 0.5 1 150 1.025 100 0.0098

72 4 0.5 1 100 1.025 100 0.0192 153 1 0.5 0 150 1.025 200 0.2601

73 4 0.5 0 200 1.025 100 0.9986 154 7 0.5 0 150 1.025 200 0.9996

74 4 0.5 1 200 1.025 100 0.1384 155 1 0.5 1 150 1.025 200 0.259

75 4 0.5 0 100 1.025 200 0.8596 156 7 0.5 1 150 1.025 200 0.00005

76 4 0.5 1 100 1.025 200 0.00027 157 4 0.5 0.5 150 1.025 150 0.311

77 4 0.5 0 200 1.025 200 0.9832 158 4 0.5 0.5 150 1.025 150 0.3131

78 4 0.5 1 200 1.025 200 0.0178 159 4 0.5 0.5 150 1.025 150 0.3182

79 1 0.5 0.5 100 0.8 150 0.253 160 4 0.5 0.5 150 1.025 150 0.3135

80 7 0.5 0.5 100 0.8 150 0.4211 161 4 0.5 0.5 150 1.025 150 0.3142

81 1 0.5 0.5 200 0.8 150 0.4503 162 4 0.5 0.5 150 1.025 150 0.3115

Since the second model is linear and is in the form
of a standard zero-one integer programming, there are
several algorithms to solve it exactly. In this paper, a
Branch and Bound (B&B), as an exact algorithm, is
used to solve the proposed model based on [10].

Of course, it is worth mentioning that in large-
scale problems where integer programming approaches

are ine�cient, heuristic and meta-heuristic approaches
are the best ways to achieve the near-optimum
solutions.

5. Numerical example

In this section, a numerical example is presented to
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Table 4. Estimated regression coe�cients for R.

Term Coef. SE Coef. T P

Constant 1.79229 0.74675 2.4 0.018

n -0.09272 0.048069 -1.929 0.056

na
0

-0.17104 0.261405 -0.654 0.514

k0 -0.48286 0.282734 -1.708 0.09

A -0.01287 0.00347 -3.71 0

B -1.04362 0.916778 -1.138 0.257

t 0.00468 0.003481 1.344 0.181

n� n 0.00695 0.002177 3.193 0.002

na
0 � na0 0.16938 0.078386 2.161 0.032

k0 � k0 0.42872 0.078386 5.469 0

A�A 0.00005 0.000008 5.981 0

A�B 0.69108 0.387093 1.785 0.076

t� t -0.00002 0.000008 -1.927 0.056

n� na0 -0.00002 0.014814 -0.002 0.999

n� k0 -0.16599 0.014814 -11.205 0

n�A 0.00015 0.000105 1.431 0.155

n�B 0.08017 0.032919 2.435 0.016

n� t 0.00042 0.000148 2.825 0.005

na
0 � k0 0.0001 0.088882 0.001 0.999

na
0 �A 0 0.000889 -0.005 0.996

na
0 �B -0.0002 0.139664 -0.001 0.999

na
0 � t 0.00002 0.000889 0.019 0.985

K0 �A 0 0.000889 0.003 0.998

K0 �B -0.06533 0.197515 -0.331 0.741

K0 � t -0.00003 0.000628 -0.051 0.959

A�B 0.0004 0.001975 0.201 0.841

A� t 0 0.000009 0.019 0.985

B � t -0.00359 0.001975 -1.816 0.072

S = 0:108858, PRESS = 2:40531, R� Sq = 91:46%,

R� Sq(pred) = 87:06%, R� Sq(adj) = 89:73%.

demonstrate the veri�cation of the proposed method-
ology. A system with 14 subsystems is considered, in
which the subsystems are connected serially to each
other. The input parameters of the model are taken

from [29]. The number of available types of components
and the minimum requirement amount of components,
which have to be working in each subsystem, are
provided in Table 5. Moreover, the two parameters
of the Weibull distribution of the available components
in each subsystem are demonstrated in Tables 6 and 7.
The cost and weight of each component are presented
in Tables 8 and 9, respectively. In addition, the switch
reliability is 1.

In addition, the maximum cost for the system
is 300, the maximum system weight is 400, and the
upper bound on the assigned number of components in
each subsystem (nmax i) is 5. In this system, the mixed
strategy for each redundancy is used. The number of
decision variables for the second model of this system
is obtained from Eq. (20).

� =
sY
i=1

mi(nmax;i � ki + 1)2: (20)

Therefore, the total exact number of feasible and
infeasible solutions is 2�.

The problem is coded in MATLAB 10, and a
Pentium IV computer with a core 2 CPU 2.4 GHz and
3 GB RAM under Windows 7 operating system is used
in order to run the program. After solving the problem
using a B&B algorithm, the results are summarized in
Table 10.

In this table, the �rst column presents the type
of selective component; the second column indicates
the number of selective component in each subsystem.
The third and fourth columns show the number of
active and cold-standby components in each subsystem,
respectively. Moreover, according to Table 10, the
system reliability is 0.4779. In addition, sensitivity
analysis has been carried out in order to investigate the
e�ect of the number of components in each subsystem
(nmax i) on reliability function. For this purpose, 10
test problems are used to study the sensitivity analysis
while keeping the other parameters stable, and the
results are listed in Table 11 and Figure 4. As results
show, any increase in nmax;i leads to an increase in
system reliability, which shows a rational fact.

6. Conclusion and future researches

In many real-world systems, the components do not
have a constant failure rate. Indeed, the components'
failure rates change occasionally. Therefore, systems
with time-dependent failure rates are considered more

Table 5. Number of available components for each subsystem.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

m 4 3 4 3 3 4 3 3 4 3 3 4 3 4
k 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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Table 6. The scale parameter (A) of the Weibull distribution for each type of components in each subsystem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Components Type

1 114 143 196 183 144 149 174 162 169 143 103 107 148 193
2 176 174 169 107 119 198 110 121 175 124 148 188 148 155
3 155 102 182 126 171 140 200 142 197 186 106 175 181 191
4 159 - 163 - - 176 - - 166 - - 146 - 129

Table 7. The shape parameter (B) of the Weibull distribution for each type of components in each subsystem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Components Type

1 1.07 1.04 0.85 0.95 1.17 0.83 0.89 1.05 1.13 1.12 1.24 1.16 1.04 1.22
2 0.94 1.21 0.83 1.14 0.89 1.08 1.07 1.22 1.01 1.17 1 1.17 1.05 1.22
3 1.23 1.16 1.13 1.23 1.22 1.17 1 0.84 1.17 0.94 0.99 1.04 1.22 1.16
4 1.17 - 1.16 - - 0.96 - - 1.09 - - 1.21 - 1.22

Table 8. The cost of each type of components in each subsystem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Components Type

1 1 2 2 3 2 3 4 3 2 4 3 2 2 4
2 1 1 3 4 2 3 4 5 3 4 4 3 3 4
3 2 1 1 5 3 2 5 6 4 5 5 4 2 5
4 2 - 4 - - 2 - - 3 - - 5 - 6

Table 9. The weight of each type of components in each subsystem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Components Type

1 3 8 7 5 4 5 7 4 8 6 5 4 5 6
2 4 10 5 6 3 4 8 7 9 5 6 5 5 7
3 2 9 6 4 5 5 9 6 7 6 6 6 6 6
4 5 - 4 - - 4 - - 8 - - 7 - 9

Table 10. The results of the numerical example.

i zi ni nai nci
1 3 5 5 0
2 2 5 2 3
3 3 5 2 3
4 1 5 2 3
5 3 5 2 3
6 2 5 2 3
7 3 5 2 3
8 1 5 5 0
9 3 5 2 3
10 3 5 2 3
11 1 5 5 0
12 2 5 2 3
13 3 5 2 3
14 1 5 2 3

realistic. The Weibull probability distribution is one of
the proper distributions to model the time-dependent
failure rates. Due to its hazard function, it has
appropriate exibility to model time-dependent failure
rates and can be used in many real-world systems.

Figure 4. A graphical comparison to investigate e�ect of
nmax;i on system reliability via 10 test problems.

This suitable property of the Weibull distribution can
overcome the limitation of previous studies in which
the component failure rates were considered as constant
based on exponential distribution. This research study
investigated a RAP under k-out-of-n subsystems with
time-dependent failure rates based on this distribution.
Moreover, it was assumed that the redundancy strategy
was mixed. Since it is hard to obtain the reliability
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Table 11. The results of test problems to investigate e�ect of nmax;i on system reliability .

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 R

Test problems

1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 0.254
2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 0.3764
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0.4779
4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 0.5468
5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 0.6214
6 7 6 5 5 5 5 5 5 5 5 5 5 5 5 0.6822
7 7 7 5 5 5 5 5 5 5 5 5 5 5 5 0.7222
8 7 7 6 5 5 5 5 5 5 5 5 5 5 5 0.8042
9 7 7 7 5 5 5 5 5 5 5 5 5 5 5 0.8654
10 7 7 7 6 5 5 5 5 5 5 5 5 5 5 0.9764

function of such systems explicitly, a simulation-based
optimization approach was developed to estimate the
system reliability function. Then, due to the Np-
hardness of the proposed RAP, the original INLP was
replaced by an ILP problem. Finally, a B&B algorithm
was developed to solve the ILP model exactly. In
addition, a numerical illustration was presented to
demonstrate the application of the proposed method-
ology. The presented idea in this paper can help man-
agers and owners of electronic and mechanical systems
make better decisions on their systems according to
real-world issues and not merely based on academic
assumptions. For future researches in this area, the
following lines are recommended:

� Considering other probability distributions such as
normal, lognormal, Gumbel, log-logistic, etc. to
model the systems component life;

� Considering systems with failure rates which are
dependent on working components;

� Considering repairable components;
� Considering failure rates of components as fuzzy

variables;
� Studying reliability evaluation of systems with time-

dependent failure rate via mathematical and statis-
tical relations.
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