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Abstract. Central Force Optimisation (CFO) is a nature-inspired conceptual framework
with roots in gravitational kinematics, a branch of physics that models the motion of
masses moving under the inuence of gravity. This paper presents a review of CFO, its
variants, and applications to engineering problems. Example applications include electric
circuit design, antenna design, water pipe network design, and training of arti�cial neural
networks.
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1. Introduction

Nature-inspired computing and optimisation para-
digms have been the subject of signi�cant research
in the past three decades. They include evolutionary
computing [1-4], genetic algorithm [5,6], Ant Colony
Optimisation (ACO) [7], Particle Swarm Optimisation
(PSO) [8-11], chemical reaction optimisation [12], and
the patented neural dynamics model of Adeli and Park
[13-17]. Central Force Optimisation (CFO) is a nature-
inspired conceptual framework with roots in gravita-
tional kinematics, a branch of physics that models the
motion of masses moving under the inuence of gravity.
In CFO, there is no a priori information about the max-
ima. The objective function is de�ned on a Decision
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Space (DS) of unknown topology that is searched by
the algorithm. De�ned as points in an N -dimensional
space, CFO searches by moving probes through DS
at discrete time steps (iterations) [18]. Probes are
agents similar to ants used in ACO and particles used
in PSO [19-21]. Each probe's location is speci�ed by
its position vector computed from equations of motion
that are analogous to their real-world counterparts
for objects moving through physical space under the
inuence of gravity without energy dissipation. CFO
consists of two simple equations of motion drawn from
gravitational kinematics. Gravity is deterministic, and
so is CFO as it adopts the Newton's laws of gravity
and motion. Each probe experiences an acceleration
created by the gravitational pull of masses in DS. The
acceleration causes the probe to move from an initial
position to the next position according to the laws of
motion. By combining the acceleration and probe po-
sition, a new probe distribution is obtained. The value
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of the objective or �tness function to be maximised is
computed at each probe's location iteratively, and then
input to a user-de�ned function known as the CFO's
mass analogous to real mass in the universe.

This paper reviews the physics behind the cen-
tral force optimisation metaphor, the CFO algorithm
with discussion on di�erent parameters a�ecting the
algorithm, convergence analysis, and applications to
engineering problems.

2. Central force optimisation metaphors

CFO is a relatively new metaheuristic optimisation
algorithm proposed by [18,22]. CFO uses a population
of probes. The probes are distributed over the entire
search space. The main concept behind CFO is the
search for the biggest mass that has the strongest force
to attract all other masses towards it within a DS and
converge towards the optimal probe that achieves the
highest mass measured in terms of a prede�ned �tness.
This is considered to be the global optimum of the
problem at hand.

In contrast to other population-based algorithms
where the initial population is generated randomly,
such as GA [23-25], CFO uses probes as its basic pop-
ulation. The movement of the probes is based on the
theory of gravitational kinematics that describes the
force between two objects as de�ned by the following
equation [26]:

F = g
m1m2

r2 : (1)

The force F is proportional to the two masses m1
and m2 and inversely proportional to the distance r
between them and g is the gravitational constant. The
force F acts along the line connecting the centres of
gravity of the two masses. According to Newton's law
of motion, F = m1a, where a is the acceleration and
m1 is the mass. The acceleration ~a of mass m1 towards
the mass m2 is given by the following equation where
ê denotes unit vector acting along the line joining the
centres of gravity of the masses m1 and m2:

~a = �gm2ê
r2 : (2)

CFO is based upon three basic kinematics equations in
terms of the force F between masses, acceleration a,
and change of position of the mass. The new position
can be calculated from the old position and the distance
travelled by the mass with an initial velocity V0 and
acceleration ~a over time �t. Thus, the new position
after �t is calculated using the following equation:

~X(t+ �t) = ~X0 + ~V0�t+
1
2
~a�t2; (3)

where ~X(t + �t) is the position at time t + �t, ~X0

is the position at time t, and ~V0 is the velocity at
time t. A position vector ~X in a 3-dimensional space
described by Cartesian coordinate system is de�ned by
~X = xêi + yêj + zêk where êi, êj , and êk are the unit
vectors along the x, y, and z axes, respectively. The
search procedure is implemented by ying a limited
number of probes through the decision space. Probes
in CFO are equivalent to chromosomes in GA [27,28],
i.e. each probe position represents a solution to the
problem at hand. Each probe p is a feasible solution
to the problem in an Nd-dimensional space (i.e. with
Nd coordinates). The vector ~Xp

j =
PNd
k=1 x

p
k;j êk is its

position vector at time step (or iteration) j, where xpk;j
is the k-th direction (decision variable) of probe p's
coordinates and êk is the unit vector along the k-th
axis. A �tness value, the mass M in CFO, is calculated
by evaluating the objective function of the optimisation
problem and assigned to each probe. Smaller probes
are attracted by bigger probes within the decision
space like a larger mass attracting a smaller mass
in the universe. The attraction force F de�ned by
Eq. (1) causes the probes to y with an acceleration
a de�ned by Eq. (2) through the space over time. As a
consequence, the probe position vectors are updated by
applying rules of the equation of motion and all probes
tend to settle around the larger probes. In order to
represent a solution to a problem, CFO de�nes each
probe as having a position vector X, an acceleration
vector a, and a �tness value M . The position vector
is a representation of the probe's current coordinates
with regard to each dimension of the search space.

3. CFO algorithms

With these theoretical underpinnings, an optimisation
problem can now be formulated using Eqs. (1)-(3)
based on Newton's universal laws of gravitation. Fig-
ure 1 shows three probes k, p, and q, their positions,
distances between them and their masses in DS. Probe
p moves from position Xp

j�1 to the new position Xp
j

that changes the mass from Mp
j�1 to Mp

j . Consider two
probes k; p 2 Np with position vectors Xk

j�1; X
p
j�1 2

XNd at time step j� 1. An attraction force will act on
the probes creating an acceleration apj�1 described by
Formato [18]:

apj�1 = g
NpX
k=1
k 6=p

U
�
Mk
j�1 �Mp

j�1
�
:
�
Mk
j�1 �Mp

j�1
��

:
�
Xk
j�1 �Xp

j�1
���Xk

j�1 �Xp
j�1
��� ; (4)

where Np is the total numbers of probes. � > 0 and
� > 0 are constant parameters of the CFP model to
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Figure 1. Decision space of CFO in 3D with three probes
k, p, and q.

be chosen. In the physical space, � and � are 1 and
3, respectively. In the CFO space, the user can choose
� > 0 and � > 0, depending on the problem at hand
based on experience with the problem. That is, � and
� are free parameters and the user is free to assign
a completely di�erent variation of the gravitational
acceleration de�ned by Eq. (4) in terms of mass and
distance. In other words, the gravity in CFO is di�erent
than the real gravity. Simulation results reveal that the
convergence of CFO algorithm is sensitive to the choice
of values of � and �. The term U(:) in Eq. (4) is the
unit step function, de�ned as:

U
�
Mk
j�1 �Mp

j�1
�

=

(
1 if

�
Mk
j�1 �Mp

j�1
� � 0

0 otherwise (5)

The position vector of probe k at step j is de�ned by:

Xk
j =

NdX
l=1

xkl;j êl; (6)

where xkl;j are probe k's coordinates and êl is the
unit vector along the xl axis. Nd is the number of
dimensions (or axes) of the decision space.

In CFO, there are a total of Np probes y-
ing through the Nd-dimensional decision space as a
function of time along the trajectories determined by
acceleration and position vectors. At each time step,
the probes move to new positions, which create a new
probe distribution. A physically realizable mass does
not exist in CFO space. A �tness function is de�ned for
the given optimisation problem. The �tness function
value of each probe is called the mass in CFO. The
�tness at the location of the k-th probe at time step
j � 1 is de�ned by:

Mk
j�1 = f

�
xk1;j�1; x

k
2;j�1; :::; x

k
Nd;j�1

�
; (7)

where Mk
j�1, k = 1; :::; p � 1; p; p + 1; :::; Np are the

�tness function values (or masses) in the CFO space.
f(:) is the �tness function and xkl;j�1 are the decision
variables of the optimisation problem. The probes that
are close to each other in the decision space are likely
to have similar �tness values, which will lead to an
excessive gravitational force on the subject probe. In
practice, the di�erence between �tness values is used
as mass, for example,

�
Mk
j�1 �Mp

j�1
�
. According to

gravitational theory, real mass must be positive. Due
to the di�erence used, the term

�
Mk
j�1 �Mp

j�1
�

can
be negative or positive. Therefore, a unit step function
U
�
Mk
j�1 �Mp

j�1
�

is included to avoid the possibility
of negative mass in CFO. It forces CFO to create
only positive masses that are consequently attractive
in nature. If negative masses were allowed, the
corresponding accelerations would be repulsive instead
of attractive. The e�ect of a repulsive gravitational
force is to y probes away from large masses instead
of attracting toward them. Thus, the mass in CFO is
de�ned as the di�erence of �tness raised to the power
multiplied by the unit step function U(:):

U
�
Mk
j�1 �Mp

j�1
� �
Mk
j�1 �Mp

j�1
��
: (8)

The term U
�
Mk
j�1 �Mp

j�1
� �

Mk
j�1 �Mp

j�1
�� in the

numerator in Eq. (4) is the �tness function correspond-
ing to the mass. As explained earlier, � > 0 is a free
parameter. It is usually set to 1 [22].

The distance between two masses Mk
j�1 and

Mp
j�1 is given by the Euclidean distance between the

positions of two probes k and p at time step j�1 de�ned
by the following relation:

��Xk
j�1 �Xp

j�1
�� =

vuut NdX
l=1

�
Xk;l
j�1 �Xp;l

j�1

�2
: (9)

The term
��Xk

j�1 �Xp
j�1
��� in the denominator in

Eq. (4) is used to represent the distance between two
probes.

The update of position vector for probe p at time
step j is calculated by adding the distance to the
previous position, that is:

Xp
j = Xp

j�1 + Spj : (10)

The distance Spj travelled by the probe p due to initial
velocity V p0 and acceleration apj�1 from time step j � 1
to time step j is given by:

Spj = V p0 �t+
1
2
apj�1�t2: (11)

The position of probe p at time step j is given by:

Xp
j = Xp

j�1 + V p0 �t+
1
2
apj�1�t2; j � 1: (12)

In Eq. (3) and Eq. (12), the initial velocity V p0 and
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the time increment �t have been used primarily as
a formalism to preserve the analogy to gravitational
kinematics. The initial velocity V p0 is considered 0
and the time step increment �t is actually the time
di�erence between two time steps, i.e. j � (j � 1) = 1,
hence �t is unity here. Thus, Eq. (12) becomes:

Xp
j = Xp

j�1 +
1
2
apj�1; j � 1: (13)

The new positions of probes are calculated using
Eq. (13). It is important to note that the terminology
in Eq. (13) is chosen to reect the CFO metaphor, for
example the factor 1

2 in Eq. (13) comes from Eq. (12)
after setting the values of initial velocity and time
di�erence. There is no speci�c signi�cance for the
factor. Therefore, some researchers have dropped the
factor 1

2 in Eq. (13) [29]. A possible problem with the
calculation of new position vectors using Eq. (13) is
that some positions may fall outside of the DS and
CFO may search regions outside the DS. Formato [18]
suggested a simple deterministic repositioning scheme
for avoiding an unallowable search space and repairing
infeasible solutions as follows:

Xp
j;i =

8>>>><>>>>:
xmin
i + Frep:

�
Xp
j;i � xmin

i
�

if Xp
j;i < xmin

i

xmax
i � Frep: �Xmax

i � xpj;i�
if Xp

j;i > xmax
i

(14)

where xmin
i and xmax

i are the lower and upper bounds
of the i-th decision variable, respectively, and Frep is
an arbitrary repositioning factor speci�ed by the user
within the range of 0 � Frep � 1.

Another relocation mechanism is to reposition the
probes randomly. While CFO has been shown to be
promising in terms of solution quality and functional
evaluations, the computational time required to solve
optimisation problems is often high compared with
other algorithms. Studies have shown that this in-
creased computational time is due to the computations
used to update the acceleration of each probe [30].

To summarise, CFO algorithm is a deterministic
metaheuristic algorithm for solving optimisation prob-
lems. Most optimisation problems are formulated as
minimisation problems, but that CFO usually performs
maximisation, which, of course, is the same as minimis-
ing �f(x). CFO algorithm consists of two simple equa-
tions; Eq. (4) for a probe's acceleration and Eq. (13) for
its position vector in the search space. With the above
background and assumptions, implementation of CFO
algorithm is simple. A owchart for the CFO algorithm
is presented in Figure 2.

4. Parameters of CFO algorithm

The main issue in CFO is selection or estimation of
the parameter values. There are, in general, seven

Figure 2. Flowchart of the CFO algorithm.

parameters in CFO that are required to be initialised,
controlled, or tuned by the user in order to achieve a
desired optimal performance for the algorithm. They
are the total number of probes Np, repositioning factor
Frep, gravitational constant G, parameters � and �
required for computation of acceleration, time interval
�t, and maximum number of iterations Nt.

Formato [31] empirically found that CFO's per-
formance depends mostly on the number of probes
Np and its initial distribution. Parameters � and �
provide exibility for the implementation of the CFO
algorithm. In general, � and � are found empirically.
In most of CFO applications reported in the literature,
� and � are set to 2 across a wide range of test functions
and applications.

The repositioning factor 0 � Frep � 1 has a sig-
ni�cant inuence on the convergence of the algorithm.
Formato [31] used a simple and deterministic approach
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to set values of Frep from a starting value, increase it
by some predetermined value �Frep, to a �nal value
of 1. At each step, the current and previous 4 �tness
values are stored in a 5-element array. Frep starts
at a value of 0.5 and is increased by 0.005 whenever
the absolute values of the di�erence between the 5th
array element and elements 3, 4, and 5 di�er by less
than 0.0005. If increasing Frep in this way results
in Frep � 1, then Frep is reset to the starting value.
The starting value of Frep, increment �Frep, and the
�tness tolerance are determined empirically. Certain
values of Frep can also help avoid local trapping of the
algorithm. Local trapping of CFO algorithm can be
measured by the normalised average distance, denoted
as Davg. Oscillation in Davg curve is an indication of
local trapping and a convergence di�culty. Changing
Frep at each step by some small increment appears to
mitigate local trapping in most cases.

Very often, G is chosen the same as � or �. The
parameter �t is the time interval between steps during
which the acceleration is constant. It is chosen to
reect CFO's gravitational metaphor and is usually set
to 1. G and �t have direct analogues in the equations
of motion for real masses moving under gravity. Some
researchers combine the constant values of G and �t
into a single coe�cient, but there is still the possibility
to vary these two parameters, individually [31]. The
maximum number of iterations Nt has been chosen
between 250 and 300 in most applications reported in
the literature. Another possible parameter is the initial
probe acceleration a0 which is usually set to zero. Some
researchers consider it as a parameter to change [31,32].

5. Decision space and probe distribution

The global optimum in CFO depends on the probe
distribution within the decision space. The CFO
algorithm is sensitive to initial probe distribution which
is de�ned by two variables: the total number of probes
Np and where the probes are placed inside the decision
space. Di�erent suggestions have been made on how to
distribute the probes within the search space, such as
uniform distribution across the axis of each dimension,
uniform distribution on the diagonals of the problem
space, or random distribution across the search space.
Researchers have shown that the CFO algorithm is
sensitive to distinctive topological distributions and
these topologies can be mapped to certain mathemati-
cal functions [33]. Researchers have used topologies to
improve the local search and avoid the trapping in local
maxima. Toscano-Pulido et al. [34] �rst studied the
e�ect of neighbourhood topologies in the behaviour of
Particle Swarm Optimisation (PSO) algorithm. They
investigated distinct neighbourhood topologies such as
ring, fully connected, mesh, star, toroidal, and static
tree. Green et al. [30] showed that CFO and PSO

share some common features and some neighbourhood
topologies used in PSO algorithm provide clues to
the application of such neighbourhood topologies in
the CFO algorithm. Green et al. [30] noted that the
neighbourhood topologies used by Toscano-Pulido et
al. [34] for PSO can also be applied to CFO to ensure
a good distribution of search points within the decision
space.

6. Variants of CFO

Several di�erent formulations for calculation of the
mass, acceleration, and position have been proposed to
improve the quality of solution and convergence speed.
A number of modi�cations of parameters have been
proposed to improve the exploration and exploitation
of the search space. Some of the variants of CFO
algorithm are discussed in this section.

6.1. Extended CFO (ECFO)
To enhance the global search ability of CFO and
speed up its convergence, Ding et al. [35] proposed
an Extended CFO (or ECFO) by de�ning a new mass
function which is updated in an adaptive fashion based
on historical information (using values from previous
iterations).

A balance between exploitation and exploration in
CFO is sought for general problems. In CFO, the mass
is de�ned as positive by using the unit step function.
In ECFO, a new landscape of mass is introduced
by de�ning a new unit step function based on an
adaptive mean threshold. The total relative masses are
adjusted to di�erent probe distributions, adaptively.
The adaptive mean threshold is de�ned as:

Mamt
j�1 =

1
Np � 1

NpX
k=1
k 6=p

�
Mk
j=1 �Mp

j�1
�
: (15)

The unit step function is then de�ned based on the
value of the adaptive mean threshold:

U(z) =

(
1 if z � �Mamt

j�1

0 else
(16)

This de�nition of unit step function, Eq. (16), expands
the gravitational range of both larger and smaller
probes and helps exploit the search space globally more
e�ectively.

A second modi�cation, included in ECFO, is the
addition of a weighted historical experience of acceler-
ation term to the calculation of position in Eq. (13).
Although Newton's motion law says that the velocity
term in Eq. (12) is necessary, it is avoided for sim-
plicity in most of the CFO implementations [30,36,37].
The historical velocity information, i.e. the last ini-
tial velocity, is similar to the inertia term used in
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PSO. A larger inertia weight changes the dynamic
searching process, intrinsically, to achieve better global
exploration [38,39]. Therefore, a weighted historical
experience term apj�2�t is added to the original CFO
and the position information is calculated according to
the equation as follows:

Xp
j = Xp

j�1 + apj�2�t+
1
2
apj�1�t2: (17)

Meanwhile, the cost of �nding optimal initial distri-
bution is reduced accordingly. A rigorous convergence
proof of ECFO is provided by Ding et al. [35].

6.2. Pseudo-Random CFO (PR-CFO)
CFO algorithm is inherently deterministic, wherein the
decision space is searched by using a population of
probes governed by the laws of motion. It is evident
from the empirical investigations of PSO and ACO that
these algorithms fail if the randomness is removed from
the algorithms' implementation. Therefore, in order to
improve the basic algorithm, randomness is introduced
into the algorithm, indirectly, without a�ecting the
deterministic nature of the algorithm. This new version
of CFO with adjustment to include near-stochastic
characteristics is called Pseudo-Random CFO (PR-
CFO) [32].

The pseudo-randomness is introduced into the
original CFO algorithm in three ways:

(i) Initial probe distribution;
(ii) Repositioning factor;
(iii) Dynamic decision space bounds.

A variable initial probe distribution is an e�ective
way to inject randomness into the CFO algorithm
and to provide a better sampling of the decision
space than a static distribution. In the original CFO
algorithm, Formato [18] suggested a simple mechanism
of deterministic repositioning and repairing infeasible
solutions using Eq. (14), where the repositioning factor
Frep is an empirical parameter with values in the range
of 0 � Frep � 1 and speci�ed by the user. In PR-
CFO, a variable Frep is de�ned by �Frep � Frep � 1,
where �Frep is the step increment. Frep has the e�ect
of pseudorandom distribution of probes throughout the
DS. In order to achieve a better convergence speed, the
DS is gradually reduced around the location of the best
probe by using Frep. This eventually redistributes the
probes within a smaller DS.

6.3. Parameter-Free CFO (PF-CFO)
The most troublesome part in implementation of meta-
heuristic algorithms is the selection of values for their
parameters considering the following unsettling facts:

(i) There is no methodology for choosing good val-
ues;

(ii) Parameter values are very often problem-speci�c;
(iii) Solutions are often sensitive to small changes;
(iv) Setting of the same parameters never yields the

same results due to the inherently stochastic
nature of the algorithms.

Therefore, a simple strategy would be to eliminate
or reduce some of the parameters. Parameter-Free
CFO (PR-CFO) is a modi�cation of the original CFO
to reduce the number of parameters that must be
tweaked in order to generate su�ciently good re-
sults [40]. In PF-CFO, the attraction force of two
probes k; p 2 Np with position vectors Xk

j�1; X
p
j�1 2

XNd at time step j � 1 causes an acceleration apj�1 on
the probe p. The acceleration apj�1 is described in a
parameter-free form as:

apj�1 =
NpX
k=1
k 6=p

U
�
Mk
j�1 �Mp

j�1
�
:
�
Mk
j�1 �Mp

j�1
��=1

:
�
Xk
j�1 �Xp

j�1
���Xk

j�1 �Xp
j�1
���=1 : (18)

The three parameters, the gravitational constantG and
� and �, are eliminated by setting them all equal to
a �xed value of one, G = 1, � = 1, and � = 1. This
simpli�es the PF-CFO equation substantially. The unit
step function U(:) remains the same as the original
CFO. The second equation of motion in PF-CFO is
the position vector Xp

j 2 XNd which is now de�ned as:

Xp
j = Xp

j�1 + apj�1; j � 1: (19)

It is important to note that the new position of probe
is calculated using Eq. (19), where the factor 1

2 in
Eq. (13) is also dropped as there is no real signi�cance
to this factor in implementation of CFO [29]. Thus, the
PF-CFO can now be described by the two simpli�ed
equations of motions (Eqs. (18) and (19)). The
internal parameters such as the number of probes Np,
repositioning factor Frep, �Frep, and the maximum
number of iterations Nt remain the same. Formato [40]
applied the PF-CFO algorithm to 23 unimodal and
multimodal benchmark functions.

6.4. Improved CFO
Based on the empirical performance studies of the orig-
inal CFO algorithm, it is found that the performance of
the algorithm depends on the initial probe distribution,
signi�cantly [37]. Decision space recon�guration or
adaptation helps the CFO algorithm exploit the search
space more e�ectively and improve convergence speed.
Formato [41] presents an improved CFO algorithm by
introducing variable initial probe distribution and DS
adaptation. The initial probe distribution is de�ned by
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two variables: (i) the total number of probes Np, and
(ii) the dimension of the decision space Nd. A well-
distributed initial probe distribution can be formed by
an orthogonal array of Np=Nd probes per dimension
deployed uniformly on each probe's lines determined
by a distribution factor . The position vector X is
de�ned as:

X = Xmin +  (Xmax �Xmin) ; (20)

where Xmin =
PNd=2
i=1 xmin

i êi and Xmax =
PNd=2
i=1 xmax

i
êi are the positions of the diagonal's endpoints. Here,
Nd = 2 for 2-dimensional DS. The DS is de�ned
by xmin

i � xi � xmax
i and 1 � i � Nd where xi

is the decision variable. The parameter  2 [0; 1]
determines where the probe lines intersect with the
diagonal. Using this simple notion, the initial probe
distribution can be generalised for Nd-dimensional DS,
and Nd number of probe lines can be drawn in the
DS parallel to Nd-coordinates. Formato [41] presented
a number of examples of initial probe distribution for
2D and 3D decision spaces with varying values of the
parameter .

An e�cient local search mechanism would exploit
the local decision space e�ectively, avoid unnecessary
iterations, and improve overall convergence speed.
Adaptive recon�guration of the decision space is a
suitable mechanism to reduce the size of DS around
the location of the probe with the best �tness. The
decision space boundary is reduced by one-half the
distance from the best probe's position to the boundary
of each coordinate, de�ned as:

x0min
i = xmin

i +
Xbest:êi � xmin

i
2

; (21)

x0max
i = xmax

i +
xmax
i �Xbest:êi

2
; (22)

where xi is the decision variable, and x0i is the new
boundary of decision space. It is to be noted that Xbest
may also change in each iteration. Changing decision
space boundary every 10 steps seems to provide good
result [37,41]. The performance of ICFO algorithm
has been assessed using recognised antenna benchmark
problems.

Liu and Tian [42] proposed a Multi-start CFO
(MCFO) algorithm by combining a multi-start strategy
with CFO to overcome the problem of premature
convergence. The performance of the MCFO approach
is evaluated on a comprehensive set of benchmark
functions.

7. Applications to engineering problems

Di�erent engineering applications of CFO and its vari-
ants are presented in this section.

7.1. Electronic circuit design
Formato [18] applied the CFO algorithm to a stan-
dard electronic circuit problem, such as Fano Load
Equaliser. Roa et al. [43] applied CFO algorithm to
design a simple electronic circuit comprising nonlinear
element, such as a diode which makes it di�cult for
electronic circuit design. Roa et al. [43] also applied the
CFO algorithm to the Buck converter with increasing
load. Buck converter is a voltage step down and current
step up converter, remarkably e�cient, making it useful
for converting the main voltage in a computer down to
the 0.8-1.8V required by the processor.

7.2. Antenna design
The linear array antenna comprises 2Nd elements
equally spaced by a half wavelength (�=2) and po-
sitioned symmetrically about the origin along x-axis.
The array factor is simpli�ed to:

F ('; x0i) = 2
NdX
i=1

cos (�x0i cos') ; (23)

where x0i = xi
�=2 is the normalised xi, i = 1; 2; :::; Nd; Nd

is the maximum dimensionality of CFO decision space;
and xi is the coordinate of the ith element, uniformly
spaced. The array factor F ('; x0i) has a maximum
value of 2Nd. The array's normalised radiation pattern
(or directivity) in dB is given by:

D0('; x0i) = 10 log10

�
1

2Ns
F (':x0i)

�2

: (24)

The objective of the optimisation problem is to meet
speci�c design criteria for the array's pattern by chang-
ing the positions of the array elements xi, xmin

i �
xi � xmax

i , i = 1; 2; :::; Nd. The CFO algorithm has to
determine the array element coordinates xi. The choice
of Nd is important to maximise the �tness function
de�ned by Eq. (24). The constraints are the main lobe
beamwidth BW [D0('; x0i)] � 7:7�, the maximum side
lobe level SLL [D0('; x0i)] � �15 dB, and the deep
null in the direction 'null [D0('null; x0i)] = 81� and
'null [D0('null; x0i)] = 99� in a 32-element array [44].
This is a constrained optimisation problem as xi must
meet the requirement that no array elements occupy
the same position, i.e. xi 6= xj for i 6= j and i; j =
1; 2; :::; Nd. Formato [18] applied CFO algorithm to
design a 32-element array using 1� pattern resolution
in a decision space de�ned by 0:1 � x0i � 32:5, i =
1; 2; :::; 16.

CFO was subsequently applied to many other
antenna design problems. Microstrip patch antennas
are widely used in wireless and mobile communication
systems because of their low pro�le, light weight, and
ease of fabrication. The objective is to determine
the geometric parameters of the antenna by satisfying
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certain performance criteria. Qubati and Dib [45]
applied a modi�ed CFO algorithm to design microstrip
patch antenna. Qubati et al. [46] applied the CFO
algorithm to design optimisation of a 32-element linear
array and a 10-element non-uniform circular array
antenna.

Bluetooth technology (2.4-2.484 GHz) has been
widely used in portable devices and Ultra-Wideband
(3.1-10.6 GHz) has been widely used in various radars
and communication systems as well as indoor and
handheld devices. To design light-weight consumer
products, it is necessary to integrate Ultra-Wideband
(UWB) with Bluetooth wireless technology. A simple
solution would be to have a single antenna to work in
both UWB and Bluetooth. The problem is that some
existing narrow band communication systems, such as
WLAN (5.15-5.825 GHz), interfere with UWB systems.
To minimise potential interference, researchers try to
design antennas with band-notched characteristic [47].
Montaser et al. [48] applied the CFO algorithm to
optimise an E-shaped patch antenna for Bluetooth
and UWB applications with WLAN band notched
characteristics.

Pantoja et al. [49] created �ve antenna benchmark
problems, known as PBM suite, to test e�ectiveness of
evolutionary algorithms. The benchmark problem one
is the most di�cult unimodal problem. Formato [41]
applied the improved CFO algorithm to PBM bench-
mark problem one. The objective is to maximise a
centre-fed dipole's directivity D(L; �) as a function
of its total length L and the polar angle �. The
improved CFO algorithm was able to determine the
global maximum with a value slightly higher than the
value computed by a numerical electromagnetic code.

Asi and Dib [50] applied CFO algorithm to
optimal design of multi-layer microwave absorbers in
a speci�c frequency range. Multilayer microwave
absorbers are important elements of many civil and
military electronic equipments used for minimising
electromagnetic reection from metal plates, such as
aircrafts, ships, tanks, and many other electronic
appliances. Optimal characteristics can be obtained by
varying di�erent parameters of the absorbers. These
parameters are number of layers, thickness of layers,
dielectric constant, permeability, frequency, angle of
incidence, and wave polarisation [51]. The challenge in
designing an absorber is minimisation of the reection
coe�cient of an incident wave on a multilayer structure
for a range of frequencies and incidence angles. CFO
has been applied to the absorber design to achieve the
maximum reection coe�cient.

The notion of increasing antenna bandwidth by
adding impedance loading has been around for a long
time. Formato [52] applied the parameter-free CFO
algorithm to maximise the antenna bandwidth of a
loaded monopole antenna. Mahmoud [53] proposed a

hybrid method combining CFO with Nelder-Mead al-
gorithm, called CFO-NM, for improving local optimiser
and applied it to optimise rectangular microstrip patch
antennas. Montaser et al. [48] also applied the hybrid
CFO-NM algorithm to optimise triple band dual bow-
tie slot antenna for RFID applications. Variable Z0
is a new concept in antenna design. Dib et al. [54]
used the CFO algorithm to optimise an ultra-wideband
meander monopole antenna. An improved performance
is observed for variable Z0 design using CFO.

7.3. Water pipe networks
Leak detection and reduction of friction factors in
water supply and distribution networks is an important
engineering issue, since leaks and ruptures in such
networks cause major physical damage, operational
disruption, and high operating pressure level with
potential for huge economic cost. E�cient detection
of leaks and locations is thus required in order to
e�ectively control water losses and to quickly repair
the system. A benchmark water pipe network was
introduced by Pudar and Liggett [55] consisting of 11
pipes and 7 nodes with a reservoir at node 1 that
feeds the water into the network system at constant
inow under gravitation, a constant inow at node 7
that supplies water into the network at node 7, and a
small leak at node 2. All pipes have uniform diameter,
length, and speed of water. Initially, there is a steady
outow at node 4. Inverse Transient Analysis (ITA)
has been used for leak detection, location identi�cation,
and calibration of friction in pressurised pipe networks
by many researchers [56,57]. The method is based
on the minimisation of mean square errors between
measured and calculated state variables (pressures or
ow rates). Based on this concept, the water pipe
network is then modelled as a function of unknown
variables. The leakage detection can now be formulated
as a minimisation problem. The indirect approach to
solve the ITA problem of parameter optimisation can
be set as the minimisation of weighted mean square
errors between observed and computed pressures at a
number of measurement sites (i.e., piezometric heads)
in the pipe network. Haghighi and Ramos [58] used a
simpli�ed version of the objective function, de�ned by:

min
z
F =

mHX
t=1

nHX
j�1

�
Hd
t;j �Ho

t;j
�2
; (25)

where F is the objective function to be minimised,
z is the set of decision variables, mH is the number
of observed hydraulic transient events t, Hd

t;j is the
desired pressure of the piezometric heads at site j, Ho

t;j
is the corresponding observed piezometric heads at site
j for transient event t, and nH is the number of pressure
observation sites j in the system.

Ideally, F is close to zero. Researchers applied
various optimisation techniques to the benchmark wa-
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ter pipe network problem. For example, Soares et
al. [57] and V�tkovsky0 et al. [59] used GA to solve
the optimisation problem. Haghighi and Ramos [58]
used the CFO algorithm to solve ITA-based approach
to minimisation problem of the pipe network system.
Nodes 4 and 7 are chosen as the measurement sites
where pressures are sampled. All nodes, except the
reservoir node, and friction factors are considered
unknown, resulting in 17 unknown variables to be
optimised. CFO was applied to the pipe network
problem with 36 probes. Authors report that CFO is
computationally more e�cient than GA.

7.4. Training of Neural Networks
Neural networks need a training or learning rule,
such as backpropagation [60,61], adaptive conjugate
gradient learning [62], dictionary learning [63] among
others [64-69]. In recent years, evolutionary and soft
computing approaches have been employed for training
of neural networks, such as GA [70] and fuzzy logic [71-
74].

Green et al. [30] appear to be the �rst to apply
CFO algorithm to train a neural networks representing
a logical XOR (exclusive-OR) function. The XOR
problem is one of the benchmark problems for testing
training algorithms because it is not linearly separable
and complex enough for the backpropagation learning
algorithm [75] to be trapped in local minima. XOR
problem exhibits local minima [76]. The network
consists of one input layer with two neurons, a single
hidden layer containing three neurons with a sigmoidal
activation function and one output layer neuron with
linear activation function. All biases are set to zero.

The problem is to �nd the weights of the network
connection for the given architecture to produce the
correct output for the XOR function for each corre-
sponding input. Thus, for the given architecture, to
solve the XOR function, 9 weights have to be optimised.
The weights training of neural networks can be carried
out by minimising the mean squared of the error (MSE)
function de�ned by:

MSE(w) = min
w

(
1
N

NX
i=1

(yi � ŷi)2

)
; (26)

where yi is the target output and ŷi is the actual output
of the network.

Green et al. [30] use the CFO algorithm to train
two di�erent neural network architectures for classi�-
cation of the UCI Iris data set using three and �ve
neurons in the hidden layer. The Iris data set consists
of 150 samples. The objective of the CFO algorithm
is to minimise the MSE. PF-CFO was applied to train
the neural networks wherein initial velocities and ac-
celerations were set to zero. Uniform-on-diagonal and
uniform-on-axis methods were used for initial probe

distribution. PF-CFO resulted in a �tness value of
zero when applied to networks for XOR function. CFO
is found to be sensitive to initial probe distribution
for Iris data classi�cation and uniform-on-axis initial
probe distribution approach shows good results. Chao
et al. [29] applied distributed multi-objective CFO
algorithm to optimise individual network components
of a neural network ensemble and showed that the CFO
is capable of achieving better solutions in terms of
convergence speed and local minima compared to PSO.

7.5. Other applications
Clustering is a signi�cant issue in complicated pattern
recognition problems and has been the focus of sub-
stantial research in recent years [5,77-80]. For example,
Ahmadlou and Adeli [81] developed an Enhanced Prob-
abilistic Neural Network (EPNN) with local decision
circles that increases robustness of the original PNN.

Chen et al. [82] applied a modi�ed CFO method
to solve the complicated path-optimisation problem
for the rotary wing vertical take-o� and landing of
unmanned aerial vehicles with improved performance
over the original CFO.

8. Conclusions

CFO algorithm is a deterministic search and opti-
misation algorithm based on gravitational mechanics.
Because CFO is deterministic, it is straightforward and
reproducible. CFO algorithm has already attracted
signi�cant interest from research community which will
help its further development. CFO is computationally
intensive and demands large computational resources,
especially computation time, which is the major obsta-
cle of CFO for new applications.
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