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Abstract. Damage identi�cation in Structural Health Monitoring (SHM) involves three
main steps: signal acquisition, signal processing, and feature extraction and interpretation.
Recently, the authors presented a review of recent articles on signal processing techniques
for vibration-based SHM. This article presents a review of journal articles on feature
extraction and classi�cation techniques in order to assess the health condition of a structure
in an automated manner. This review is limited to civil structures such as buildings and
bridges. The methods reviewed are neural networks, wavelets, fuzzy logic, support vector
machine, linear discriminant analysis, clustering algorithms, Bayesian classi�ers, and hybrid
methods. Further, two novel algorithms with potential for feature classi�cation in SHM
are suggested.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Civil infrastructures, such as buildings and bridges,
can deteriorate during their service life due to dif-
ferent causes, such as corrosion, fatigue, and sudden
accidental loads, as well as natural hazards, such as
earthquakes and high winds [1,2]. To ensure their
safety and reliability and to prevent human losses and
minimize economic losses, it is highly desirable to have
an automated monitoring system capable of assessing
the structural performance and detecting, locating, and
quantifying damage severity in an early stage [3,4]. In
the past two decades, Structural Health Monitoring
(SHM) has become an important and growing research
topic on aeronautical, mechanical, and civil structures
with the aim of evaluating the health condition and
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the dynamic characteristics of the structure in real
time. Qarib and Adeli [5] presented a review of recent
advances made in vibration-based SHM using responses
of the structure to an excitation. They discussed
sensor layout and data collection strategies, integra-
tion of SHM with vibration control of structures [6],
wireless monitoring, and application of LIDAR [7-
8].

Damage identi�cation in an SHM system in-
volves three main steps: signal acquisition, signal
processing, and feature extraction and interpretation
(Figure 1). Recently, Amezquita and Adeli [9] pre-
sented a review of recent articles on signal process-
ing techniques for vibration-based SHM. This article
focuses on the last step and presents a review of
journal articles on feature extraction and classi�cation
techniques in order to assess the health condition of
a structure in an automated manner. This review
is limited to civil structures including buildings and
bridges.
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Figure 1. Steps in a structural health monitoring system.

2. Arti�cial neural networks

Arti�cial Neural Networks (ANN) are computational
models inspired by the interconnected neurological
structure of the human brain in order to learn and
solve problems through pattern recognition [10-12].
Di�erent ANN architectures have been proposed with
the feedforward architecture to be the most commonly-
used in numerous applications, such as pattern match-
ing [13-15], classi�cation [16,17], forecasting [18], sys-
tem identi�cation [17,19,20], and data clustering [21-
23]. Figure 2 shows a typical feedforward architecture
consisting of an input layer, one or more hidden layers,
and an output layer where each layer is composed of
a number of nodes. In this architecture, the input
information moves in one direction only, from the input
nodes through the hidden nodes and to the output
nodes.

Since the publication of the �rst journal article
on civil engineering application of neural networks by
Adeli and Yeh [24], neural networks have been used
extensively in di�erent �elds of civil engineering, such

Figure 2. Feedforward architecture of a neural network.

as transportation engineering [25,26], earthquake pre-
diction [27-29], vibration control [30], structural design
optimization [31-35], construction engineering [36,37],
among others.

In recent years, many researchers have used an
ANN approach for system identi�cation and damage
detection of civil structures. Ni et al. [38] combined
Frequency Response Function (FRF) [39], Principal
Component Analysis (PCA) [40,41], and multilayer
perceptron NN [24] to identify and locate damage in
the scaled model of a 38-story RC structure. Li et
al. [42] also employed FRF-PCA-ANN for monitoring
the health condition of a beam subjected to forced
excitations. Mehrjoo et al. [43] used a multilayer
perceptron NN to detect damage severity in the joints
of two truss bridge structures subjected to dynamic
excitations. The natural frequencies and mode shapes
of structures were used as inputs to train the neural
network for damage detection.

Probabilistic NN (PNN) [29,44] provides a rela-
tively quick training, good network fault tolerance, and
strong pattern classi�cation ability compared with the
multilayer perceptron and backpropagation NN. Li [45]
compared PNN and Learning Vector Quantization
(LVQ) neural network to locate damage in a simple
plate and concluded that PNN was more e�cient in
locating damage in the structure compared with LVQ-
NN. Jiang et al. [46] used PNN to detect and locate
single- and multi-damage patterns in a 2D 7-story
steel model. Recently, Zhou et al. [47] used PNN
for assessing the heath condition of a cable-supported
bridge. The �rst 20 modal frequencies were used to
train the PNN. The authors concluded that the method
could detect and locate damage with an accuracy of
90% when the signal was not noisy; but when the signal
was noisy, the accuracy fell below 85%.

Butcher et al. [48] used a recurrent neural network
for electromagnetic anomaly detection of defects in
reinforced concrete. Story and Fry [49] used a competi-
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tive array of neural networks to detect impairment in a
100-year old railroad drawbridge based on the analysis
of digital data streams of electronic sensors attached to
its critical components.

3. Wavelets

In recent years, the Wavelet Transform (WT) [50] has
been used as a powerful signal processing approach in
di�erent structural engineering applications, such as
analysis of seismic signals [51], structural control [52-
54], and reliability analysis [55]. In the parametric
approach to SHM, a key point is accurate estima-
tion of the modal parameters of a structure. Su
et al. [56] integrated the time series Auto-Regressive
(AR) method with the wavelet packet [57] transform
to determine the modal parameters of a structure from
its ambient vibration responses. When combined with
a classi�cation approach, WT can be a powerful tool
for feature extraction. Examples of such integration
will be presented in the section Hybrid Approaches.

4. Support vector machine

Introduced by Vapnik [58], Support Vector Machine
(SVM) is a statistical machine learning method for
distinguishing di�erent classes. SVM classi�es data by
�nding the optimal hyperplane with the largest margin
between the classes in a high dimensional feature
space [59]. Complex problems cannot be classi�ed
using simple hyperplanes. To overcome this problem, a
nonlinear SVM classi�er can be used, which employs a
nonlinear kernel, usually a Gaussian Function (GF) or
Radial Basis Function (RBF) [60]. Figure 3 graphically
shows examples of linear and nonlinear SVM classi�ca-
tion.

SVM has attracted SHM researchers, because it
does not require a large number of training data sets
and seems to su�er less from the data over-�tting issue
plaguing some of the ANN models. Park et al. [61]
used RBF SVM for classi�cation of crack damage on a
1/8 scale model of a vertical truss member of Seongsu
Bridge, Seoul, Korea, which collapsed in 1994.

Despite promising results on small-scale struc-
tures, an SVM model can only detect if the structure
is damaged or not, that is a binary classi�er. It
has been applied mostly to simple structures and
academic exercises. Chong et al. [62] presented a
nonlinear multiclass SVM known as one-versus-the-
rest for health monitoring of a 2D three-story frame
structure equipped with an MR damper subjected to
ambient vibrations. For larger real-life applications,
SVM has been combined with other approaches, such
as WT, that is discussed in the section of Hybrid
Approaches.

5. Linear discriminant analysis

Linear Discriminant Analysis (LDA), also known as
Fisher's discriminant, is a statistical classi�cation
method which minimizes the interclass variance while
maximizing the distance between two classes through
a linear hyperplane [63]. For a multiple-class classi-
�cation, a generalization of LDA, known as Multiple
Discriminant Analysis (MDA), uses several linear hy-
perplanes to separate all classes [64]. Advantages of
LDA are ease of the implementation and computational
e�ciency [65].

Farrar et al. [65] used LDA for health monitoring
of a concrete bridge column subjected to dynamic
excitations produced by an electromagnetic shaker.
The results showed that LDA can distinguish the un-
damaged structure from the damaged one, but cannot
locate and quantify damage severity which is of vital
importance in SHM. Other applications of LDA have
been reported by Sohn et al. [66] and Lynch [67].
LDA, however, cannot solve nonlinear classi�cation
problems, e�ectively, which occur commonly in SHM.

6. Clustering algorithms

Clustering refers to classi�cation of similar objects into
di�erent groups or clusters based on their features [68-
69]. Its intention is to classify a dataset into a set of
groups which contain similar data items according to
some de�ned distance measure [70-72]. Di�erent types

Figure 3. (a) Linear- and (b) nonlinear-SVM classi�cation.
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of clustering algorithms, such as k-means (KM) [73],
Fuzzy C-Means (FCM) [74], and Partitioning Around
Medoids (PAM) [75], have been proposed. Among
them, KM and FCM are the most widely-used in SHM,
primarily because of the ease of implementation.

Cen et al. [76] presented a grey-box neural net-
work approach for model identi�cation in nonlinear
dynamic systems. Park et al. [77] used the KM
algorithm for classifying the frequency variations in
vibration signals in order to detect loosening of bolts
in joints for an aluminum beam subjected to forced
excitations. The authors concluded that it was nec-
essary to combine the KM algorithm with supervised
pattern recognition tools such as FLC, SVM, and
ANN for health monitoring of more complex structures.
Silva et al. [78] combined the AR-ARX model and
FCM algorithm for classifying the level of damage in
a 3D scaled model of a four-story two-bay by two-
bay braced steel frame subjected to band-limited noise
as excitation. da Silva et al. [79] compared the
FCM and Gustafson-Kessel (GK), another clustering
algorithm, to identify di�erent damage states (bolts
and bracket completely removed) for a 3D three-story
steel frame subjected to forced excitation produced by
an electrodynamic shaker and concluded that the GK
algorithm is slightly better than the FCM algorithm
for condition assessment of the structure.

Despite providing useful results, the aforemen-
tioned works have been limited to academic and small
example structures only. Health monitoring of large
real-life structures represents a major challenge, be-
cause the measured signals include nonlinear and non-
stationary properties. Carden and Brownjohn [80]
examined the FCM algorithm for health monitoring of
a large real-life structure, the 66-story Republic Plaza
O�ce in Singapore, subjected to ambient dynamic
excitations (Figure 4). Yu et al. [81] combined FRF-
PCA-FCM for health monitoring of the scaled model of
a 3D aluminum six-bay truss bridge subjected to forced
excitations produced by a shaker.

KM and FCM methods are sensitive to the initial
choice of cluster centers which can produce erroneous
classi�cation. Compared with the KM algorithm, the
FCM algorithm is computationally more intensive, but
usually yields better results.

7. Bayesian classi�ers

A Bayesian Classi�er (BC) sets the decision boundaries
based on probabilities [82]. A few applications of BC
have been reported for damage detection in recent
years. Lin et al. [83] examined the BC for health
monitoring of a scaled model of a 3D six-story steel
structure subjected to ambient dynamic excitations.
The authors reported an accuracy of 90%, but the
method could not estimate the damage location. The

Figure 4. Republic Plaza O�ce Tower (adapted from
Carden and Brownjohn [80]).

BC method requires a previous calibration [84]. Huang
et al. [85] investigated a Bayesian compressive sensing
approach that used sparse Bayesian learning to recon-
struct signals from a compressive sensor and present
ideas to improve its robustness.

8. Hybrid approaches

SHM of large real-life structures is complicated. For
solution of such complicated problems, a single Com-
putational Intelligence (CI) or classi�cation technique
is not su�cient. Two decades ago, Adeli and Hung [86]
advocated the integration of three CI approaches,
neural networks, Genetic Algorithm (GA) [87-89], and
fuzzy logic [90] as a more powerful tool for solution of
complicated pattern recognition problems. Since then,
hybridization has been a major research trend. The
goal of hybridization is to improve accuracy, e�ciency,
and stability of the resulting algorithm.

Jiang and Adeli [91] presented a novel multi-
paradigm model for damage detection of highrise build-
ing structures subjected to seismic excitations using
the non-parametric dynamic fuzzy Wavelet Neural
Network (WNN) model developed by them earlier [92].
They introduced a new damage evaluation method
based on a power density spectrum method, called
pseudospectrum, and employed the multiple signal
classi�cation (MUSIC) method to compute the pseu-
dospectrum from the structural response time series.
In order to reduce errors produced by a noisy signal,
they applied the method to the scaled model of a 38-
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story reinforced concrete subjected to synthetic seismic
excitations. Osornio-Rios et al. [93] combined MUSIC
and multilayer perceptron ANN for monitoring the
health condition of a 3D truss-type structure with 70
members subjected to forced excitations. A damage
indicator based on the amplitude variation of natural
frequencies estimated by MUSIC algorithm was used
as input to train the ANN.

He and Yan [94] combined WT and SVM for
damage detection of a single-layer spherical lattice
dome subjected to ambient excitations. They employed
the wavelet energy rate index as input of the SVM
classi�er for damage detection in the structure. Oh
and Sohn [95] combined three algorithms, PCA, au-
toregressive, and autoregressive with exogenous inputs
(AR-ARX) and SVM for damage detection in an
eight-degree freedom mass-spring system subjected to
random excitations produced by an electrodynamic
shaker. The method compared the AR-ARX coef-
�cients obtained from the undamaged and damaged
dynamic systems. Jiang and Mahadevan [96] used a
Bayesian wavelet probabilistic methodology for damage
detection of a 3D 5-story steel frame and the scaled
model of a 38-story concrete building subjected to the
Kobe and synthetic earthquakes, respectively.

In a Fuzzy Logic (FL) system, inputs are assessed
through membership functions in order to determine
their degree of association to a speci�c fuzzy event
set [97]. The consequent or output of the fuzzy
system is obtained through a series of logical operations
known as fuzzy rules [98]. A few applications of fuzzy
logic classi�er combined with other approaches have
been reported for damage detection in simple systems
in the last decade. Altunok et al. [98] combined
WT with an FLC for detection and quanti�cation of
damage severity in a 3D scaled model steel bridge
subjected to ambient dynamic excitations. FL uses the
energy estimated by WT to assess the condition of the
structure. Chandrashekhar and Ganguli [99] discussed
uncertainty handling in structural damage detection
using FL and probabilistic simulation in a cantilever
beam model. The �rst six natural frequencies values
were used as input of the FL. Based on results obtained
for a simple beam, the authors concluded that the use
of natural frequencies caused uncertainty in damage
detection for symmetric structures having two di�erent
symmetric damage states. Beena and Ganguli [100]
combined fuzzy cognitive maps with a Hebbian learning
algorithm to detect damage in a cantilever beam. ud
Darain et al. [101] used FL to identify cracks in a
reinforced concrete beam subjected to testing load.

Jiang et al. [102] used a combined ANN-FL
algorithm known as Adaptive Neuro-Fuzzy Inference
System (ANFIS) for damage detection in a 2D seven-
story shear-beam type building model. The authors
concluded that the combined model is superior to ANN

or FL, used individually. Graf et al. [103] used a
combination of recurrent neural network and FL to
model uncertain time-dependent structural behavior.
Zheng et al. [104] presented a genetic fuzzy radial
basis function neural network for SHM of a composite
laminated beam through integration of ANN and FL
with Genetic Algorithm (GA) [105-107].

9. New algorithms for feature classi�cation

In this section, recently-developed intelligent classi-
�cation techniques are reviewed with potential for
structural engineering application and SHM.

9.1. Enhanced probabilistic neural network
In order to obtain the best performance for PNN,
the value of the spread parameter which determines
the width of the kernel should be selected. This
is usually done by trial and error which does not
guarantee the best performance. In order to overcome
this problem and improve the accuracy and robustness
of PNN, Ahmadlou and Adeli [108] developed a novel
Enhanced Probabilistic Neural Network (EPNN) using
local decision circles to take into account and model
local information and non-homogeneity existing in the
training population. They showed the superiority of
the model compared with PNN using three di�erent
benchmark classi�cation problems: iris data, diabetic
data, and breast cancer data. EPNN has been used
for computer-aided diagnosis of the Parkinson's dis-
ease [109]. To the best of the authors' knowledge,
no structural engineering application of EPNN has
been reported in the literature. The authors believe,
however, that EPNN has great potentials and should
be explored for SHM.

9.2. Spiking neural networks
Spiking Neural Networks (SNN) are referred to as
3rd generation ANN. Compared to conventional ANN,
such as multilayer perceptron, SNN is characterized by
an internal state which changes with time and each
postsynaptic neuron �res an action potential or spike at
the time instance its internal state exceeds the neuron
threshold [110]. SNN is a more realistic representation
of real neurons than traditional ANN, but its training
is more complicated and intensive, computationally.
Ghosh-Dastidar and Adeli [111,112] presented a new
multi-spiking neural network model where the infor-
mation from one neuron was transmitted to the next
in the form of multiple spikes via multiple synapses.
Further, they presented a new supervised learning
algorithm called Multi-SpikeProp with heuristic rules
for training the network. The proposed SNN was used
to classify three pattern recognition problems: XOR
problem, the Fisher iris classi�cation problem, and
the epilepsy and seizure detection (EEG classi�cation)
problem.
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10. Final comments

This paper presented an overview of the main feature
extraction and classi�cation techniques used in SHM.
It also suggested two recently-developed models for
potential applications in SHM. These algorithms are
worth being researched for health monitoring of large,
real-life structures. Signi�cant additional research
is needed on automated feature detection for SHM
technology to be realized for large real-life structures
such as bridge and highrise building structures.
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