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Abstract. In this paper, we consider a de�cient production system with permissible
shortages. The production system consists in a unique machine that manufactures a number
of products with a part being imperfect in the form of rework or scrap. These defective
products are identi�ed by 100% inspection during production; then, they are whether
reworked or disposed of after normal production process. Like real-world production
systems, there are diverse types of errors creating dissimilar breakdown severity and rework.
Moreover, rework has non-zero setup time, which makes the problem closer to real-world
instances, and the machines require some preparations before starting a new production cy-
cle. Thus, we introduce an Economic Production Quantity (EPQ) problem for an imperfect
manufacturing system with non-zero setup times for rework items. The rework items are
classi�ed into several categories based on their types of failure and rework rates. The aim
of this study is to obtain optimum production time and shortage in each period minimizing
total inventory system costs. Convexity of the objective function and exact solution
procedure for the current nonlinear optimization problem are also proposed. Finally, a
numerical example is presented to assess e�ciency and validity of the proposed algorithm.
© 2019 Sharif University of Technology. All rights reserved.

1. Introduction

For any manufacturing organization, supply chain,
inventory, and production management is vital to
achieve success. In attaining the objectives of operation
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management, each company should e�ectively utilize
resources and try to minimize costs as much as possible.
In today's competitive environment, every organization
wants to make sure that their customers are satis�ed
with the quality of their products. On the other hand,
no customer wants to compromise on the quality of
the product. In the classic EPQ model, it is assumed
that during a production run, 100% perfect products
are manufactured, which is far from the reality. There
are so many reasons for which a smaller percent
the items produced will be imperfect, e.g., situations
such as breakdown of the machine, interruption in
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manufacturing process, etc. Therefore, one cannot
ignore the issue of imperfect production as it has direct
side e�ects on the reputation and good-will of the
organization. Employing mathematical optimizations
for inventory management dates back to more than
a century ago when Ford Whitman Harris introduced
classical Economic Order Quantity (EOQ) inventory
model in 1913 [1]. This model is the foundation of
lot-sizing models and one can consider Harris as the
founder of the modern inventory studies [2].

In 1918, Taft [3] proposed Economic Production
Quantity (EPQ) by extending the aforementioned in-
ventory model to a manufacturer that produced an
item at a constant rate. The main drawback of
such inventory models is their impractical assumptions.
Therefore, several studies have relaxed these assump-
tions to make the models more applicable to real-
world instances. For example, Hadley and Whitin [4]
presented a summary of the EOQ inventory model
and extended this model by taking shortage into
account. Moreover, Parker [5] investigated reorder
point and reorder quantities for an inventory system
with stochastic demand and permissible backorder. On
the other hand, Yao and Lee [6], Lee and Yao [7], and
Bj�ork [8] among others developed the EOQ model for
instances of employing fuzzy numbers to approximate
model parameters. Moreover, Silver [9], Maddah and
Jaber [10], and Khan et al. [11] considered stochastic
uncertainties in parameters under several assumptions.

Flawless products and perfect quality is another
impractical assumption in the basic EOQ/EPQ inven-
tory models. In organizations of the modern world,
deteriorating items have drawn attention in di�erent
forms, i.e., scrapped, defective, reworked, obsolescent,
etc. One of the �rst instances of inventory models
with deteriorating items was proposed by Whitin [12],
in which items became obsolete by time. Aggarwal
and Jaggi [13] studied permissible delay in payments
with deteriorating products. Wu et al. [14] studied
an inventory system consisting in non-instantaneous
deteriorating items with partial backordering. Chang
et al. [15] developed the aforementioned model by
maximizing total pro�t, instead of minimizing cost
per time unit, considering maximum inventory level
constraint. Wu et al. [16] addressed deteriorating items
with expiration dates and trade credit when trade
credit increased revenue as well as opportunity cost and
default risk. Some recent studies that have investigated
inventory management with deteriorating items under
di�erent policies are Sett et al. [17], Wu and Zhao [18],
Mokhtari et al. [19], Wu et al. [20], Shah and C�ardenas-
Barr�on [21], and Teng et al. [22]. Recently, Dobson
et al. [23] proposed an EOQ inventory model for
deteriorating items with a single product in which
demand rate of consumers linearly decreased as a
function of the age of the product.

Furthermore, EPQ inventory model has been
extended by relaxing perfect production systems in
di�erent studies. Salameh and Jaber [24] consid-
ered an imperfect production system in which poor
quality products could be sold at a lower price after
100% inspection. Afterwards, Goyal and C�ardenas-
Barr�on [25] proposed a simpler approach to solving the
aforementioned problem with near optimal solutions.
Wee et al. [26] generalized Salameh and Jaber [24]
by modelling an imperfect production system in an
uncompetitive market where shortage was permitted
and fully backordered. Haji et al. [27] developed a
model and its optimization for an imperfect produc-
tion system with rework where the machine required
setup before starting the rework procedure. Recently,
Nobil et al. [28] indicated the possibility of shortage
occurrence during setup time in the former models
and proposed a modi�ed algorithm to overcome this
de�ciency. C�ardenas-Barr�on [29] studied an imperfect
production system with rework and planned backo-
rders. Hsu and Hsu [30], Farhangi et al. [31], C�ardenas-
Barr�on et al. [32], Shah et al. [33], Jaggi et al. [34], and
Jaggi et al. [35] have presented some recent inventory
management instances with imperfect products.

Producing several items on a machine is another
realistic extension of EPQ inventory model. Rogers [36]
proposed the �rst instance of this kind of inventory
model. Taleizadeh et al. [37] developed the aforemen-
tioned model with respect to shortage and imperfect
production system with interruptions, scrapped items,
and rework. Pasandideh et al. [38] proposed an EPQ
inventory model for an imperfect production system
with permissible shortage. They considered a machine
that produced various quality items, i.e., perfect, scrap,
and reworked. They considered diverse failure levels
with their own rework procedures. This classi�cation
of rework made the inventory model more realistic by
considering various types of production error. Nobil
et al. [39] considered utilization-allocation policy in
an imperfect manufacturing system producing multiple
products on several machines using single-machine
properties and common cycle length to reduce calcu-
lation e�orts in a hybrid genetic algorithm. Nobil and
Taleizadeh [40], Nobil et al. [41], and Nobil et al. [42]
have recently presented some inventory management
studies with single-machine production system.

In this study, an imperfect production system
with permissible shortages in backorder form is con-
sidered. A single machine produces a number of
items including uncon�rmed products in the form of
rework or scrap. Like real-world production systems,
there are various kinds of faults leading to various
breakdown severity. As a result of diverse breakdown
severity, products require di�erent kinds of rework.
Moreover, we extend Pasandideh et al. [38] research by
considering non-zero setup times for rework as in Haji
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et al. [27]. By relaxing zero setup time, the mentioned
problems would be a sub-problem of the current study
and the problem becomes closer to real-world instances,
in which machines require some preparations before
starting a new production cycle. After proving con-
vexity, employing an exact method developed based on
the derivatives, the solution procedure for the current
nonlinear optimization problem is proposed.

The remainder of this paper is as follows: The
problem is de�ned in Section 2. Section 3 proposes
an exact algorithm for this problem. A numerical
example is studied in Section 4 to assess e�ciency
of the proposed algorithm. Finally, the paper is
concluded by proposing some future research directions
in Section 5.

2. Problem de�nition

In this paper, we address a multi-item single-machine
production system with imperfect products. The
imperfect products may be categorized into two kinds
of de�ciency, namely scrap and reworked, i.e., the
products that are diagnosed as repairable after inspec-
tion process. The expected proportion of produced
defective items is known and constant. Moreover,
repairable products are categorized in a number of
classes based on the severity of defects, which directly
inuences the rework rate. Item i (i = 1; 2; � � � ;m) is
produced at the rate of (Pi) during regular production
periods and �i percent of the products are defective.
The de�ciency rate (�i) is divided into �i and �i for
scrap and reworked items, respectively. In other words,
�i = �i+�i, where �i consists in n kinds of rework, i.e.,
vji percent of item i products require the rework of type
j and j = 1; 2; � � � ; n. Therefore, the total proportion of
products i that require rework (�i)can be stated as the
sum of vji , i.e., �i = v1

i + v2
i + � � �+ vni or �i =

Pn
j=1 v

j
i .

Thus, we have:

�i = �i + �i = �i + v1
i + v2

i + � � �+ vni : (1)

Furthermore, in the proposed inventory system, all
items are produced by one machine; this property lead
to the following equation:

T1 = T2 = T3 = � � � = Tm = T: (2)

The following notations are employed to model the
proposed non-linear single-machine inventory control
problem with m kinds of items and n types of rework.
ci Production cost of manufacturing each

item kind i (i = 1; 2; � � � ;m);
oi Inspection costs per item kind i

(i = 1; 2; � � � ;m);
di Disposal costs per item kind i

(i = 1; 2; � � � ;m);

rji Rework costs for item kind i with
fault type j (i = 1; 2; � � � ;m) &
(j = 1; 2; � � � ; n);

hi Holding costs per year per item kind i
(i = 1; 2; � � � ;m);

Li Shortage costs per year per item kind i
(i = 1; 2; � � � ;m);

Ai Setup costs per regular production
cycle to produce item kind i
(i = 1; 2; � � � ;m);

Bi Setup costs per rework cycle for all
rework types associated with item kind
i (i = 1; 2; � � � ;m);

tsi Setup time per regular production
cycle to produce item kind i
(i = 1; 2; � � � ;m);

Gi Setup time per rework cycle for all
rework types associated with item kind
i (i = 1; 2; � � � ;m);

Pi Production rate for item kind i
(i = 1; 2; � � � ;m);

Di Demand rate for item kind i
(i = 1; 2; � � � ;m);

�i Disposal rate of produced item kind i
(i = 1; 2; � � � ;m);

vji Percentage of produced item kind i that
requires rework type j (i = 1; 2; � � � ;m
and j = 1; 2; � � � ; n);

�i Percentage of produced imperfect
product kind i (i = 1; 2; � � � ;m);

�ji Rework rate for rework type
j associated with item kind i
(i = 1; 2; � � � ;m and j = 1; 2; � � � ; n);

T Cycle length;
N Number of cycles in a year;
Qi Quantity of produced item kind i per

cycle (i = 1; 2; � � � ;m);
Si Quantity of shortage for item kind i

per cycle (i = 1; 2; � � � ;m).

A schematic diagram of inventory position for this
model is represented in Figure 1. As it is demonstrated
in Figure 1, production rate of item i during regular
cycle is (Pi) in which �i percent of the products
are defective; consequently, production rate of non-
defective items of kind i per cycle equals (1��i)Pi. On
the other hand, production rate of non-defective items
should be more than or equal to the demand rate (Di).
In other words, we have:

(1��i)Pi�Di or ei = (1��i)Pi�Di�0: (3)

After accomplishing the regular production cycle and
inspection, scrap items are disposed of and rework
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Figure 1. A schematic diagram of inventory level of item i.

process should be initiated. In this study, we assume
that rework process has a non-zero setup time equal
to regular production setup time. Moreover, for the
sake of simplicity and as a consequence of independency
of setup times, we consider one setup time, namely
Gi, before starting all types of rework for item kind
i. During setup time, no item is produced and item i
is consumed at the rate of Di. The rework processes
initiate at rates of �1

i ; �2
i ; � � � ; and �ni during the

periods of t2i ; t3i ; � � � and tn+1
i , respectively; during these

periods, no scrap item is manufactured. Moreover, it is
logical to assume that the rework process of products
does not require more time than its corresponding
regular production time does. In other words, the
rework rate for a product is greater than or equal to its
regular production rate, i.e., �ji � 1. Consequently,
the demand rate (Di) for product i is less than or
equal to its rework production rate �jiPi. In other
words:

�jiPi � Di or aji = �jiPii �Di � 0: (4)

Based on Figure 1 and the aforementioned conditions,
inventory level at the end of each rework process can
be stated as:

Ki =
eiQi
Pi
� Si; (5)

Hi = Ki �GiDi =
eiQi
Pi
� Si �GiDi; (6)

I1
i = Hi +

a1
i v1
iQi

�1
i Pi

=
eiQi
Pi
� Si �GiDi +

a1
i v1
iQi

�1
i Pi

;
(7)

I2
i =I1

i +
a2
i v2
iQi

�2
i Pi

=
eiQi
Pi
� Si �GiDi +

a1
i v1
iQi

�1
i Pi

+
a2
i v2
iQi

�2
i Pi

: (8)

Therefore, the following is obtained:

Iji =
eiQi
Pi
� Si �GiDi +

 jX
r=1

ajiv
j
iQi

�jiPi

!
;

j = 1; 2; � � � ; n: (9)

Moreover, based on the inventory level and Figure 1,
each period length can be stated as:

t1i =
Ki

ei
=
Qi
Pi
� Si
ei
; (10)

t2i =
I1
i �Hi

a1
i

=
v1
iQi
�1
i Pi

; (11)

t3i =
I2
i � I1

i
a2
i

=
v2
iQi
�2
i Pi

: (12)

Consequently, we have:

tj+1
i =

Iji � Ij�1
i

aji
=
vjiQi
�jiPi

; j = 1; 2; � � � ; n: (13)

Thus:

tn+1
i =

vni Qi
�ni Pi

: (14)

On the other hand, we know that:

tn+2
i =

Ini
Di

=
eiQi
DiPi

� Si
Di
�mi +

 jX
r=1

ajiv
j
iQi

�jiDiPi

!
;
(15)

tn+3
i =

Si
Di
; (16)

tn+4
i =

Si
ei
: (17)

Based on the above-mentioned conditions, a period
length can be obtained as:
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T = Ti =t1i +mi + t2i + t3i + � � �+ tn+1
i + tn+2

i

+ tn+3
i + tn+4

i : (18)

Moreover, based on Eq. (A.4) stated in Appendix A,
a cycle length can be calculated as:

T =
(1� �i)Qi

Di
; (19)

and:

Qi =
DiT

(1� �i) : (20)

2.1. Objective function
The objective function of the proposed problem is to
optimize total inventory costs, including annual setup
costs for regular production cycles, annual setup costs
for rework, annual production costs, annual inspection
costs, annual disposal costs, annual rework costs,
annual shortage costs, and annual holding costs. As it
was mentioned before, setup cost of regular production
cycle for item kind i is Ai. Moreover, each year consists
in N cycles and the sum of annual setup costs (SC) for
regular production of all items is stated as:

SC =
mX
i=1

NAi =
mX
i=1

Ai
T
: (21)

On the other hand, setup cost of rework associ-
ated with item kind i per cycle is Bi and a year consists
in N cycles. Therefore, the sum of annual setup costs
(UC) of rework for all items is as follows:

UC =
mX
i=1

NBi =
mX
i=1

Bi
T
: (22)

Production cost per item kind i equals Qi. As a
result, production cost per cycle can be stated as ciQi
and the total production cost per year (PC) is:

PC =
mX
i=1

NciQi =
mX
i=1

ciQi
T

: (23)

Substituting Qi from Eq. (20) in Eq. (23), we have:

PC =
mX
i=1

NciQi =
mX
i=1

Dici
(1� �i) : (24)

Inspection cost per item kind i is oi and production
quantity of this kind of item per cycle is Qi. Therefore,
inspection cost per cycle is oiQi and annual inspection
cost (IC) equals:

IC =
mX
i=1

NoiQi =
mX
i=1

Dioi
(1� �i) : (25)

Disposal cost per item kind i is di and quantity of
produced items requiring disposal per cycle is �iQi.
Thus, disposal cost per cycle is di�iQi and annual

disposal cost (DC) can be stated as:

DC =
mX
i=1

Ndi�iQi =
mX
i=1

Didi�i
(1� �i) : (26)

Rework cost of type j per item kind i is rji and quantity
of the produced items requiring this type of rework per
cycle is vjiQi. Thus, rework cost type j per cycle is
rji v

j
iQi and annual rework cost (RC) can be stated as:

RC =
mX
i=1

nX
j=1

Nrji v
j
iQi =

mX
i=1

nX
j=1

Dirji v
j
i

(1� �i) : (27)

As it can be seen in Figure 1, the backordered
demands for item kind i can be stated as Si(tn+3

i +
tn+4
i )=2. Knowing that annual shortage cost for

product kind i is Li, annual shortage cost (BC) is:

BC =
mX
i=1

NLiSi(tn+3
i + tn+4

i )
2

: (28)

Substituting tn+3
i and tn+4

i with Eqs. (16) and (17),
respectively, we have:

BC =
mX
i=1

Li(ei +Di)
2Diei

�
(Si)2

T

�
: (29)

Annual holding cost for item kind i is hi and with
respect to the area under the curve in Figure 1, annual
holding costs (HC) can be stated as:

HC =
mX
i=1

Nhi

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Ki � t1i
2

+
(Ki +Hi)Gi

2

+
(Hi+I1

i )t2i
2

+
(I1
i +I2

i )t3i
2

+ � � �+ (In�1
i + Ini )tn+1

i
2

+
Ini � tn+2

i
2

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
:

(30)

This equation can be stated as follows. For calcula-
tions, see Eq. (B.10) in Appendix B:

HC =
hieiGiDi

Pi(1� �i) +
hiei(1� �i)
2Pi(1� �i)2 (T )

+
hiPi(1� �i)

2eiDi

�
(Si)2

T

�
� hiGi

2

�
Si
T

�
� hiei

2Pi(1� �i) (Si)

+
hi(Di)2

(Pi)2(1� �i)2

nX
j=1

vji
�ji

 j�1X
y=0

ayi v
y
i

�yi

!
(T )
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� hiGiDi

Pi(1� �i)
0@Di

nX
j=1

vji
�ji

+
nX
j=1

ajiv
j
i

2�ji

1A
� hiDi

Pi(1� �i)
0@ nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

1A(Si)

+
hiei(Di)2

(Pi)2(1� �i)2

 
nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

!
(T )

+
hi(Di)2

2(Pi)2(1� �i)2

 
nX
j=1

aji (v
j
i )2

(�ji )2

+
1
Di

nX
j=1

 
ajiv

j
i

�ji

!2!
(T ): (31)

Finally, based on Eqs. (21), (22), (24), (25), (26), (27),
(29), and (31), the annual total cost can be calculated
as follows:

TC =
mX
i=1

�1
i +

mX
i=1

�2
i (T ) +

mX
i=1

�3
i
T
�

mX
i=1

�4
i

�
Si
T

�
�

mX
i=1

�5
i Si +

mX
i=1

�6
i

�
(Si)2

T

�
; (32)

where:

�1
i =

hiGiDi

Pi(1� �i)
0@ei �Di

nX
j=1

vji
�ji
�

nX
j=1

ajiv
j
i

2�ji

1A

+

Di

 
ci + oi + di�i +

nP
j=1

rji v
j
i

!
(1� �i) ; (33)

�2
i =

hiei(Di)2

(Pi)2(1� �i)2

0@ nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

1A
+

hi(Di)2

2(Pi)2(1� �i)2

 
nX
j=1

aji (v
j
i )2

(�ji )2

+
1
Di

nX
j=1

 
ajiv

j
i

�ji

!2!

+
hi(Di)2

(Pi)2(1� �i)2

nX
j=1

vji
�ji

 j�1X
y=0

ayi v
y
i

�yi

!

+
hiei(1� �i)
2Pi(1� �i)2 � 0; i = 1; 2; � � � ;m; (34)

�3
i = Ai +Bi � 0; i = 1; 2; � � � ;m; (35)

�4
i =

hiGi
2
� 0; i = 1; 2; � � � ;m; (36)

�5
i =

hiDi

Pi(1� �i)
0@ nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

1A
+

hiei
2Pi(1� �i) � 0; i = 1; 2; � � � ;m;

(37)

�6
i =

Li(ei +Di)
2Diei

+
hiPi(1� �i)

2eiDi
� 0;

i = 1; 2; � � � ;m: (38)

2.2. Constraints
In the proposed problem, the main constraint addresses
the production capacity of the machine. This con-
straint expresses that summation of production times
for all items and their setup times should be less than
or equal to the permissible production time of the
machine. In other words, we have:

mX
i=1

0@n+1X
j=1

tji + tn+4
i + tsi +Gi

1A � T: (39)

This constraint can be stated as follows. For detailed
calculations, see Inequality (C.4) in Appendix C:

T �
mP
i=1

(tsi +Gi)

1� mP
i=1

 
Di

(1��i)Pi

 
1 +

nP
j=1

vji
�ji

!! : (40)

Other constraints restrict shortage in rework
setup time. In other words, we have m constraints to
prepare the machine for rework equal to the number of
items. With respect to Figure 1, we have:

Hi � 0; i = 1; 2; � � � ;m: (41)

By employing Eq. (6), the following holds:

eiQi
Pi
� Si �GiDi � 0; i = 1; 2; � � � ;m: (42)

Substituting Qi with Eq. (20), we have:

eiDiT
(1� �i)Pi � Si �GiDi � 0; i = 1; 2; � � � ;m:

(43)

Therefore:

T � (1��i)(Si+GiDi)Pi
eiDi

�0; i=1; 2; � � � ;m:
(44)
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2.3. Final model
Based on the objective function proposed in Eq. (32)
and constraints proposed in Inequalities (40) and (44),
the �nal model of the proposed problem is as follows:

Min TC =
mX
i=1

�1
i +

mX
i=1

�2
i (T ) +

mX
i=1

�3
i
T

�
mX
i=1

�4
i

�
Si
T

�
�

mX
i=1

�5
i Si

+
mX
i=1

�6
i

�
(Si)2

T

�
;

s.t: T �
mP
i=1

(tsi +Gi)

1� mP
i=1

 
Di

(1��i)Pi

 
1 +

nP
j=1

vji
�ji

!! ;
T � (1� �i)(Si +GiDi)Pi

eiDi
� 0;

i = 1; 2; � � � ;m; T > 0;

Si � 0; i = 1; 2; � � � ;m: (45)

3. Solution method

In this section, we propose a solution method to
optimize the proposed non-linear programming model.
To do so, �rst, we prove the convexity of model (45)
by investigating the objective function. It is worth
mentioning that all decision variables are continuous
and constraints are in linear form. As it can be seen in
Appendix D, the quadratic form of objective function
(45) is semi-positive. Thus, Model (45) is convex
and using partial di�erentials, we can obtain optimum
values for decision variables as follows:

@TC
@Si

=��4
i
T
��5

i +
2�6

i Si
T

=0; i=1; 2; � � � ;m:
(46)

Therefore:

Si =
�5
i T + �4

i
2�6

i
; i = 1; 2; � � � ;m: (47)

Moreover, by di�erentiating objective function (45)
according to T , we have:

@TC
@T

=
mX
i=1

�2
i �

mX
i=1

�3
i
T 2 +

mX
i=1

�4
i

�
Si
T 2

�
�

mX
i=1

�6
i

�
(Si)2

T 2

�
= 0: (48)

Then:

T 2 =

mP
i=1

�3
i �

mP
i=1

�4
i Si +

mP
i=1

�6
i (Si)2

mP
i=1

�2
i

: (49)

Substituting Si with Eq. (47), we have:

T =

vuuuuut
mP
i=1

�3
i �

mP
i=1

�
(�4
i )2

4�6
i

�
mP
i=1

�2
i �

mP
i=1

�
(�5
i )2

4�6
i

� : (50)

Based on the obtained solutions from Eqs. (47)
and (50), optimum values associated with the model
can be achieved using the following algorithm:

Step 1: If
Pm
i=1( Di

(1��i)Pi (1 +
Pn
j=1

vji
�ji

)) < 0, go to
Step 2. Otherwise, the problem is infeasible and go
to Step 14;

Step 2: If
Pm
i=1 �

3
i �Pm

i=1( (�4
i )2

4�6
i

) and
Pm
i=1 �

2
i �Pm

i=1( (�5
i )2

4�6
i

) are simultaneously positive or negative,
go to Step 3. Otherwise, the problem is infeasible and
go to Step 14;
Step 3: Calculate T from Eq. (50) and go to Step 4;
Step 4: Based on the obtained values for T , calcu-
late shortage quantities associated with items using
Eq. (47) and go to Step 5;
Step 5: If Si � 0 for all i = 1; 2; � � � ;m, then go to
Step 9; else go to Step 6;
Step 6: If Si < 0 (i = 1; 2; � � � ;m), calculate TLi =
��4

i
�5
i

; else for Si � 0, let TLi = 0 and go to Step 7;

Step 7: Calculate T using:

T = maxfTL1; TL2; � � � ; TLmg;
then, go to Step 8;
Step 8: Calculate Si for all i = 1; 2; � � � ;m employ-
ing Eq. (47) with respect to T ; then, go to Step 9;
Step 9: Calculate values of TG and TXi (i =
1; 2; � � � ;m), employing the following equations:

TG =

mP
i=1

(tsi +Gi)

1� mP
i=1

 
Di

(1��i)Pi

 
1 +

nP
j=1

vji
�ji

!! ; (51)

TXi =
(1��i)(Si+GiDi)Pi

eiDi
; i=1; 2; � � � ;m:

(52)

Step 10: Obtain Tmin employing:



564 A.H. Nobil et al./Scientia Iranica, Transactions E: Industrial Engineering 26 (2019) 557{570

Tmin = maxfTG; TX1 ; TX2 ; � � � ; TXm g;
then, go to Step 11;

Step 11: If T � Tmin, then T � = T ; else T � = Tmin
and go to Step 12;

Step 12: Calculate Si for all i = 1; 2; � � � ;m using
Eq. (47) and go to Step 13;

Step 13: According to the obtained values for
T � and S�i , calculate Q�i and TC� using Eqs. (20)
and (32);

Step 14: Terminate the algorithm; if it is feasible,
show solutions; else show infeasible.

4. Numerical experiment

In this section, we propose a numerical example to
investigate e�ciency of the proposed solution proce-
dure for this model. The numerical example considers
a production system consisting of two items produced
by a single machine. Table 1 indicates the information
associated with parameters of the proposed numerical
example and costs of the system are proposed in
Table 2.

The percentage of de�cient items produced in the

Table 1. Values associated with parameters of the
numerical example.

Parameter Item 1 Item 2

Pi 8000 10000
Di 3000 4200
�i 0.010 0.013
v1
i 0.014 0.010
v2
i 0.012 0.012
�1
i 1 1.5
�2
i 2 2
tsi 0.0013 0.0012
Gi 0.0010 0.0010

Table 2. Costs associated with the proposed numerical
example.

Parameter Item 1 Item 2

ci 400 420
oi 10 12
di 30 25
r1
i 45 50
r2
i 55 60
Li 8 9
Ai 2000 2200
Bi 500 400
hi 5 6

system can be calculated as follows:

�1 = �1 + �1 = �1 + v1
1 + v2

1

= 0:010 + 0:014 + 0:012 = 0:036;

�2 = �2 + �2 = �2 + v1
2 + v2

2

= 0:013 + 0:010 + 0:012 = 0:035:

The rest of the model parameters can be calculated as:

e1 = (1� �1)P1 �D1 = (1� 0:036)8000� 3000

= 4712 > 0;

e2 = (1� �2)P2 �D2 = (1� 0:035)10000� 42000

= 5450 > 0;

a1
1 = �1

1P1 �D1 = 1� 8000� 3000 = 5000 > 0;

a2
1 = �2

1P1 �D1 = 2� 8000� 3000 = 13000 > 0;

a1
2 = �1

2P2 �D2 = 1:5�10000� 4200 = 10800 > 0;

a2
2 = �2

2P2 �D2 = 2� 10000� 4200 = 15800 > 0:

Moreover, �ji (j = 1; � � � ; 6) can be calculated employ-
ing Eqs. (33)-(38). The calculated values for �ji are
proposed in Table 3.

Now, we calculate the optimum solution for the
numerical example using the proposed algorithm in
Section 3 as follows:

Step 1: Since:8<: 2X
i=1

(
Di

(1� �i)Pi (1 +
2X
j=1

vji
�ji

)) = 0:8173

9=; < 1;

go to Step 2;
Step 2: Since both:(

mX
i=1

�3
i �

mX
i=1

(
(�4
i )2

4�6
i

) �= 5099:9

)
;

and:(
mX
i=1

�2
i �

mX
i=1

(
(�5
i )2

4�6
i

) �= 351:67

)
;

are positive, go to Step 3;
Step 3: Calculate T as follows:

T =

vuuuuut
mP
i=1

�3
i �

mP
i=1

�
(�4
i )2

4�6
i

�
mP
i=1

�2
i �

mP
i=1

�
(�5
i )2

4�6
i

� = 3:80821661358787;

and go to Step 4.
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Table 3. Values associated with �ji for i = 1; 2 and j = 1; � � � ; 6.

Item �1
i �2

i �3
i �4

i �5
i �6

i

1 1247251.09469697 154.583355014794 2500 0.0025 1.57196969696970 40000.0021312960
2 1844885.90655319 197.079845283519 2600 0.0030 1.73957446808511 60000.0018512451

Step 4: Shortage values associated with each item
are as follows:

S1 =
�5

1T + �4
1

2�6
1

�= 0; S2 =
�5

2T + �4
2

2�6
2

�= 0;

go to Step 5;

Step 5: Since S1 = S2 = 0, go to Step 9;

Step 9: Obtain the values of TG, TX1 , and TX2 as
follows:

TG =
Pm
i=1(tsi +Gi)

1� mP
i=1

 
Di

(1��i)Pi

 
1 +

nP
j=1

vji
�ji

!!
= 0:0246286036910265;

TX1 =
(1� �1)(S1 +G1D1)P1

e1D1

= 0:00168085688321865;

TX2 =
(1� �2)(S2 +G2D2)P2

e2D2

= 0:00181103298935632;

go to Step 10;

Step 10: Tmin is obtained as:

Tmin = maxfTG; TX1 ; TX2 g= 0:0246286036910265;

go to Step 11;

Step 11: Since T � Tmin, we have T � = T =
3:80821661358787; go to Step 12;

Step 12: Obtain S�i with respect to calculated T � as
follows:

S�1 =
�5

1T � + �4
1

2�6
1

�= 0; S�2 =
�5

2T � + �4
2

2�6
2

�= 0;

go to Step 13;

Step 13: Calculate Q�i and TC� based on the T �
and S�i obtained in the former steps as follows:

Q�1 =
D1T �

(1� �1)
= 11540:0503442057;

Q�2 =
D2T �

(1� �2)
= 16205:1770790973;

TC� =
mX
i=1

�1
i +

mX
i=1

�2
i (T �) +

mX
i=1

�3
i
T �

�
mX
i=1

�4
i

�
S�i
T �
�
�

mX
i=1

�5
i S
�
i

+
mX
i=1

�6
i

�
(S�i )2

T �
�

= $3094815:42042686:

5. Conclusion and suggestions

In this study, we investigated a defective single-machine
manufacturing system for several commodities. The
manufactured products may have problems with oper-
ator error, raw materials quality, and machine failure.
Therefore, a percentage of the production may have
a percentage of unacceptable quality. These defective
products are identi�ed by 100% inspection during
production, and they are reworked or disposed of
after normal production process. Goods that required
rework were classi�ed into several categories based on
their types of failure, each with a di�erent rework rate.
In this system, there was a setup time to manufacture
each item on the machine in a normal cycle; in the
rework cycle, a new setup time was incurred. This
study presented a single-machine lot-sizing problem
for an imperfect manufacturing system with scrap and
rework under non-zero setup times for rework items.
The rework was classi�ed into several categories based
on the types of failure and rework rates. Considering
the aforementioned conditions and permissible short-
age backordered, the proposed problem was modelled
as a non-linear programming model. The convexity
of this model was proved and an exact algorithm was
proposed. Finally, a numerical example was given to
assess the e�ectiveness of the proposed algorithm under
di�erent conditions.

5.1. Managerial insights
Taking into account the behavioral factors, this study
investigates a fairly practical problem. Therefore,
this research can provide production managers and
planners with insights in their decision-making. The
nonlinear lot-sizing model of this research integrates
the production decisions, inventory, and rework. Thus,
the model provides a good framework for the im-
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perfect manufacturing system with scrap and re-
work.

5.2. Limitations and future directions
This research considers only a de�cient manufacturing
system with permissible shortages. The production
system consists in a single machine that manufactures
items with a certain percentage of defective items that
can be reworked or thrown away as scrap. For future
work, one can consider di�erent marketing and pricing
policies with budget and storage space constraints.
One can also consider the impact of information sharing
between the manufacturer and the end user.
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Appendix A

Calculating cycle length
Based on Eq. (18), the production cycle length is:

T = Ti = t1i +Gi + t2i + t3i + � � �+ tn+1
i + tn+2

i

+ tn+3
i + tn+4

i : (A.1)

Moreover, based on Eqs. (10) to (17), we have:
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� Si
ei

+Gi +
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iQi
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i Pi
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�jiDi
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:

(A.2)
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Employing Eqs. (3) and (4), the following holds:

T =
Qi
Pi

�
(1� �i)Pi

Di

�
+
Qi
Pi

 jX
r=1

vjiPi
Di

!

=
Qi
Pi

 
(1� �i)Pi

Di
+

jX
r=1

vjiPi
Di

!
: (A.3)

Substituting �i from Eq. (1) in Eq. (A.3), we have:

T =
Qi
Pi

 
(1� �i)Pi

Di
+

jX
r=1

vjiPi
Di

!

=
Qi
Pi

 
Pi
Di
� �iPi

Di
�

jX
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vjiPi
Di

+
jX
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vjiPi
Di

!
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(1� �i)Qi
Di

: (A.4)

Appendix B

Calculating the holding cost
Based on Eq. (30), the production cycle length is:

HC=
mX
i=1

Nhi

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

Area 1z }| {
Ki � t1i

2
+

Area 2z }| {
(Ki +Hi)Gi

2

+
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i )t2i
2

+

Area 4z }| {
(I1
i +I2

i )t3i
2

+

Area 5z }| {
(I2
i + I3

i )t4i
2

+ � � �

+

Area n+ 2z }| {
(In�1
i +Ini )tn+1

i
2

+

Area n+ 3z }| {
Ini �tn+2

i
2

9>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>;

:
(B.1)

Now, we calculate the speci�ed areas in Eq. (B.1)
to obtain a general relation for holding costs as follows:

Area 1 =
Ki � t1i

2
=

1
2

�
eiQi
Pi
� Si

��
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� Si
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�
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ei(Qi)2
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The areas (5) to (n+ 2) can be stated as follows:

Area j + 2 =
(Ij�1
i + Iji )tj+1

i
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=
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On the other hand, we have:

Area n+ 3 =
Ini � tn+2
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�
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j
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Finally, annual holding costs with respect to Eqs. (B.2)
to (B.8) are as follows:

HC =
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T

(
eiGiQi
Pi

+
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2PiDi
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Moreover, substituting Qi from Eq. (20) in Eq. (B.9),
we have:

HC =
hieiGiDi

Pi(1� �i) +
hiei(1� �i)
2Pi(1� �i)2 (T )

+
hiPi(1� �i)

2eiDi

�
(Si)2

T

�
� hiGi

2

�
Si
T

�
� hiei

2Pi(1� �i) (Si)

+
hi(Di)2

(Pi)2(1� �i)2

nX
j=1

vji
�ji

 j�1X
y=0

ayi v
y
i

�yi

!
(T )

� hiGiDi

Pi(1� �i)
0@Di

nX
j=1

vji
�ji

+
nX
j=1

ajiv
j
i

2�ji

1A
� hiDi

Pi(1� �i)
0@ nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

1A (Si)

+
hiei(Di)2

(Pi)2(1��i)2

0@ nX
j=1

vji
�ji

+
1

2Di

nX
j=1

ajiv
j
i

�ji

1A (T )

+
hi(Di)2

2(Pi)2(1� �i)2

 
nX
j=1

aji (v
j
i )2

(�ji )2

+
1
Di

nX
j=1

 
ajiv

j
i

�ji

!2!
(T ):

(B.10)

Appendix C

Calculating production capacity
Based on Inequality (39), the production capacity is:

mX
i=1

0@n+1X
j=1

tji + tn+4
i + tsi +Gi

1A � T: (C.1)

By employing Eqs. (10)-(14) and (17), the following
holds:

mX
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Pi
� Si
ei

+
n+1X
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vjiQi
�jiPi

+
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+ tsi +Gi

1A � T:
(C.2)

Moreover, substituting Qi from Eq. (20) in Eq. (C.2),
we have:
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(1��i)Pi +

n+1X
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Therefore:
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Appendix D

Calculating quadratic form of objective
function (45)
Based on objective function (45):

TC =
mX
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(D.1)

The partial derivatives of the objective function are
equal to:
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@TC
@Si

= ��4
i
T

+ �5
i +

2�6
i Si
T

; (D.4)
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=
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=
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T 2 ; (D.6)
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=
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@Si@Sk

= 0: (D.7)

The Hessian matrix of the objective function equals:

Hessian=

266666666664
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(D.8)

Using (D.2) to (D.7), we have:

Hessian =

26666666666664
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(D.9)

The quadratic form of the objective function is equal to:

Quadratic=[T; S1; S2; � � � ; Sm] (Hessian)

2666664
T
S1
S2
...
Sm

3777775 :(D.10)

Substituting Hessian from Eq. (D.9) in Eq. (D.10), we
have:

Quadratic =
2
mP
i=1

�3
i

T
� 0: (D.11)

Since �3
i � 0 for i = 1; 2; � � � ;m, the quadratic form of

the objective function is semi-positive.

Biographies

Amir Hossein Nobil is currently a PhD candidate
in Industrial Engineering at Qazvin Islamic Azad Uni-
versity, Qazvin, Iran. Also, he received both his BSc
and MSc degrees in Industrial Engineering from Qazvin
Islamic Azad University, Qazvin, Iran. His research
interests include supply chain management, inventory
control, and production planning.

Amir Hosein Afshar Sedigh is currently a PhD
candidate in Information Science at University of
Otago, Dunedin, New Zealand. He received a BSc
degree from Qazvin Islamic Azad University, Qazvin,
Iran, in Industrial Engineering. Thereafter, he received
his MSc degree in Industrial Engineering from Sharif
University of Technology, Tehran, Iran. His research
interests include supply chain management, inventory
control, and queuing theory.

Sunil Tiwari is a Post-doctoral Research Fellow in
The Logistics Institute-Asia Paci�c, National Univer-
sity of Singapore, Singapore. Prior to joining Na-
tional University of Singapore, he was an Assistant
Professor in the Department of Mathematics, Ambed-
kar University, Delhi. He received his PhD degree
in 2016, MPhil in 2013, and MSc degree in 2011
from the University of Delhi. His research areas are
primarily related to inventory control, logistics, and
supply chain. He has published research papers in
International Journal of Production Economics, Com-
puters and Industrial Engineering, Annals of Opera-
tions Research, Neural Computing and Applications,
European Journal of Industrial Engineering, RAIRO-
Operations Research, Applied Mathematics and Infor-
mation Sciences, International Journal of Operational
Research, International Journal of Logistics Systems
and Management, and International Journal of In-
dustrial Engineering Computations in the mentioned
areas.

Hui-Ming Wee is a Distinguished Professor of In-
dustrial and Systems Engineering at the Chung Yuan
Christian University in Taiwan. He received his ME
in Industrial Engineering and Management from the
Asian Institute of Technology and PhD in Industrial
Engineering from the Cleveland State University, Ohio,
USA. His research interests are in the �elds of produc-
tion/inventory control, optimization, logistics, renew-
able energy, and supply chain risk management. He has
been a visiting professor to the Asian Institute of Tech-
nology, University of Washington, Curtin University
of Science and Technology, San Jose State University,
University of Technology Sydney, and Colorado State
University.




