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and mechanical stresses for a hollow thick infinite cylinder made of Functionally Graded
Piezoelectric Materials (2D-FGPMs) is performed and developed. The general form of
thermal, mechanical, and electrical boundary conditions is considered on the inside and
outside surfaces. A direct method is used to solve the heat conduction equation and the
non-homogenous system of partial differential Navier equations, using the complex Fourier
series and the power law functions method. The material properties are assumed dependent
on the radial and circumferential variables and are expressed as power law functions along
the radial and circumferential directions.
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1. Introduction

Functionally Graded Piezoelectric Materials (FGPMs)
represent a kind of piezoelectric materials with material
composition and properties varying continuously along
certain directions. The piezoelectric devices can be
entirely made of FGPM or use FGPM as a transit inter-
layer among different piezoelectric materials. FGPM
is the composite material intentionally designed so
that desirable properties for some specific applications
can be obtained. The advantages of the new kind of
material can improve the reliability of lifespan of piezo-
electric devices. Shelley et al. [1] presented functionally
graded piezoelectric ceramics. Chen et al. [2] solved
the stability problem of piezoelectric FGM rectangular
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plates subjected to non-uniformly distributed load heat
and voltage. Dai et al. [3] obtained the analytical
solutions of stresses in functionally graded piezoelectric
hollow structures. Akbari Alashti et al. [4] presented
the thermo-elastic analysis of a functionally graded
spherical shell with piezoelectric layers by a differential
quadrature method.

Nemat-Alla [5] presented a reduction of thermal
stresses by developing two-dimensional functionally
graded materials. Asgari and Akhlaghi [6] presented
thermo-mechanical analysis of 2D-FGM thick hollow
cylinder using graded-finite elements. The effects of
variation of materials distribution in two radial and
axial directions on the temperature, displacements,
and stress distributions were studied. Darabseh and
Alshear [7] presented thermoelastic analysis of a 2D-
FGM hollow circular cylinder with a finite length by the
finite-element method. Jabbari et al. [8,9] presented
mechanical and thermal stresses in FGPPM hollow
cylinders. Meshkini et al. [10] presented asymmetric
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mechanical and thermal stresses in a 2D-FGPPMs
hollow cylinder. In addition, Meshkini et al. [11] per-
formed an analytical investigation of a 2D-PPMS hol-
low infinite cylinder under Thermo-Electro-Mechanical
(TEM) Loadings. They applied the separation of
variables and the complex Fourier series to solve the
heat conduction and Navier equations.

In this study, an analytical method is presented
with respect to mechanical and thermal stress analyses
for a hollow infinite cylinder made of Functionally
Graded Piezoelectric Materials (2D-FGPMs). In the
present study, the material properties are assumed
to be expressed by power functions in radial and
circumferential directions. The effects of electric poten-
tial coefficient on displacement, electric potential, and
stresses are studied. Temperature distribution is con-
sidered in the steady-state asymmetric case, and me-
chanical and thermal boundary conditions are consid-
ered in the general form. The Navier equations in terms
of displacements are derived and solved analytically by
the direct method; therefore, any boundary conditions
for stresses and displacements can be satisfied.

2. Governing equations

2.1. Heat conduction problem

The first law of thermodynamics for the energy equa-
tion in the steady-state condition of two-dimensional
cylinder is as follows (see Appendix B):

1 1
; (kTT7T)7 + p (kT,G)’g = 07

T

a<r<hb, —r <6<+, (1)

where T'(r, 0) is temperature distribution, and k(r,8) is
the thermal conduction coefficient.

The thermal boundary conditions are assumed to
be as follows:

511T<a70) + Sl?TJ(a’ve) = f1(6)7 (2)

So1T'(b,0) 4 S22T(b,0) = f2(0), (3)

where 5;; represents the constant thermal parame-
ters related to conduction and convection coefficients.
Functions f1(0) and f2(f) are known as the inner
and outer radii, respectively. It is assumed that non-
homogeneous thermal conduction coefficient k(r,8) is
the power function of radial and circumferential (r,6)
as in k(r,0) = ko(Z)"3e"36.

Using the definition for the material properties,
the temperature equation becomes:

1 1
T7rr + (m3 + 1);T7T + ﬁ (ngT’g + Tﬂg) =0. (4)

The solution of Eq. (3) is written in the form of complex
Fourier series as follows:

T(r,0)= Y T,(r)e. (5)

g=—oc
By substituting Eq. (5) into Eq. (4), the following
equation is obtained:

1 1. .

T/ () +(m + 1) Ty () + 5 (g3 —a*)T, () = 0. (6)
Eq. (6) is the Euler equation and has solutions in the
following form:

T,(r) = AP, (7)

By substituting Eq. (7) into Eq. (6), the following
characteristic equation is obtained:

B2 +msf + (igng — ¢%) = 0. (8)
The roots of Eq. (8) are:

m m3 12
—ma o
51]1,2 =—F F =3 + (qz - an3) . (9)
2 4
Thus:
T,(r) = AgrPn + AgyrPe. (10)
Substituting Eq. (10) into Eq. (5) gives:
T(r,0) = Z (AgyrPn + Ay, rPaz) ', (11)
qg=—oc

Constants 44, and Ay, are presented in Appendix A.

2.2. Stress analysis

The governing two-dimensional strain-displacement
and electric field intensity relations in cylindrical co-
ordinates are [11]:

ou 10v w

Err a_ g =—-—=t+ -
or’ = o0 T

1 /10u Ov w
8T9_2<r<9«9+ar_r>’
LR
or r 00
where u, v, and ¥ are the displacement components,
electric potential, and the radial and circumferential
directions, respectively.

The asymmetric stress-strain and electric dis-
placement relations of FGPMs are as follows [11]:

0rr = Cr12,r + Craggp + e E, — CL T(1,6),
099 = Ci2er, + Conegg + e22E, — C3 T(r,8),
0.. = Cia (e +200) + €23E, — C§ T(7.60),
org = 2C 44600 + €24 Ep,

D, = eze,r + 22600 — €208, + g T(r,0),

Dygg = 2e946r9 — €21 Eg + ¢g22T(r,0), (13)
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Figure 1. Geometric model of a 2D-FGPM hollow
infinite cylinder under 2D-TEM.

where CI' represents thermal moduli which can be
expressed by elastic constants and linear thermal ex-

pansion coefficients a; and ClT = Chia, + 2C12ay,
CZT = 201204T + 022059.

Under this consideration, a, = ap = a [8].
Therefore:

cl = (Cy +2C12)a, CF = (2015 + Ca)a,

cl =cf. (14)

The stress and electric displacement equilibrium
equations are written as follows:

do,r 1 0o, 1
T~ T (o — 000) =0,

or r 00

(90’,9 1 (90’99 2 _

o Trap T =0

oD, 10Dgy 1, .

or s on T(DM) =0 (15)

Figure 1 shows the geometric model of a 2D-
FGPM hollow infinite cylinder under two-dimensional
electro thermo mechanical loads. To obtain the
equilibrium equations in terms of the displacement
components for the 2D-FGPM cylinder, the functional
relationship of the material properties must be known.
Because the cylinder material is assumed to be graded
along r, f-direction, the coefficient of thermal expan-
sion and elastic and electric constants are assumed to
be described with the power laws as follows:

~mq mn16
)

& = T e Cij = Cijfmzenza,

K = ko™ e™, nl,

ey = €, 7""e

=~ ~myg ns50 n 9
€9 = &g, 0", G2i = GoiT e (16)

where:

=L (17)
a
In addition, a is the inner radius.
By substituting Eq. (15) into Eq. (17), the Navier
equations in terms of the displacement components are
obtained as follows:

C
U + <(mz +1) + (mg — 1)Clz> ~u
11

mzcm - CQQ) 1 n <n2044) lv
7 T

(mq+1 621—622) 1¢7T+ (624> b0
r 01

M4€E2 > w@] T(m4 mz)e(n4—n2)9

(m1+m2+1)

N 2(m1 + m;z)C'12 - 022> 1
Cll T

2C12
142212
+<+C>7

11

Ci2\ 1 Co\ 1
1+ 212 24, -
+< +C44) r 9+( C44> b

€22 1 €0+ €4\ 1
= | VrF+ | —F5— ] ¥,r
<n4 044) TT/J, ( Coa ) 7}/1, 0
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3 1
+ ((m4 + 2)6_24) ﬂ¢79‘| f(mztfmz)e(?ufng)e
4

2015+ Cor\ 1
= o) ——=———| -T
l((nl + 712) 044 ) r

~m1

O[QT n19’

(&2
)

2C12 + Co:
+< 127 22)

1
-T
044 T o

1 o1\ 1
wﬂ‘r + (7715 + 1);w,T + (715) ﬁ¢’9

€22

1)e: é: 1 e 1
(myg + 1) +€22> o+ (m4€22>

(m4 + 1)@22 — 624) 1

— SV
€99 7’2 ’

eaq\ 1 (s — e e
_) U’TQ] ,r(m4 mu)e(n4 ns)0
T

Ty

)

_ (<m6 + 1)?21 +n6§22> 1T—|— (§22>

T €929
o\ 1
()2
€99 T
The Navier equations (18) represent a non-
homogeneous system of partial differential equations
with non-constant coefficients. For simplicity, without

the loss of generality, the power law of material
properties is considered to be:

flme—ms)g(ne—ns)f, (18)

Mgy = My, myg = Ms,

Mg — M5 = M1, Ny = Na,

N4 = N5, g — Ny = 1N1.

3. Solution of the Navier equation

u(r,0) = Z ug(r)elirtn)e,
g=—00

o(r, ) = Y vg(r)elietme,
g=—00

G(r,0) = Y hy(r)elietm)?, (19)
q=—00
Substituting Eqgs. (11) and (19) into Eq. (18) yields:
" )\ ]' ! A A ]'
Uq +( 1);Uq+( 2+ 3)T7Uq

) 1 i 1
+ (Mg +iA5) ;v; + (Ag +iA7) 3%

Q)+ O) 10+ (o + i) 8,

1
N (am1> ((A1z + Bgy Adrg)Ag rmiHou =t

+ ()‘12 + ﬂqz)‘13)Aq2TM1+,8q271)7

1 ) 1
7)(’1/ + ()\14);7); — (A15 — Z)\l(;) ﬁﬂq

. 1 . 1
+ (A17 + 1A13) ;u; + (A19 +iA20) oLl

) 1 . 1
+ (A2 + l/\22);¢; + (A2s + l/\24)§¢q

1
B () (Aas + ihag) (Agron F7 1

a™

+ qurﬁ(12+m1—1)’
" ]' ! . ]' n
Py + ()\27);% + (A2g + Mgg)ﬁwq — (As0)uy
q

1 1 . 1
— ()\31);11’ — (Agg)ﬁuq + ()\33 + Z/\34);’U;

. 1
+ ()\35 + Z)\ge)ﬁvq

1 ' o
= (aml) ((A37 + ZA38 + ﬁql)\Bg)Aqlrﬂql‘F 1—1

+ (Aa7 + idgs + Bgy Agg) AgyrPe T (20)
Eqgs. (20) represent a system of ordinary differential

equations with general and particular solutions.
The general solutions are assumed as follows:

ug(r) = Dr",
vi(r) = Er’,

PI(r) = Fro. (21)

Substituting Eqs. (24) into Egs. (23) yields:
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[n(n — 1) + Ain + A2 +iA3]D

+ [Aan + A5 +i(Xen + A7)|E

+ [n(n — 1)As + Agn + Ao + 1A ] F =0,
[A1g 4+ Ar7n 4+ i(A1sn + A2o)] D

+ (= 1) + Aan — 15 +iAi6] E

+ [A21n + Aoz + iA22n + Aog)]F = 0,
[n(n — 1)Aso — Az1m — A32] D

+ [As3n + Ass + 1(Agam + A36)| B

+ (0 = 1) + Aoz + Aas +idae] F = 0. (22)

Constant A; is presented in Appendix A.

A nontrivial solution is obtained by setting the de-
terminant of the coefficients of Eqs. (22) equal to zero,
where six order polynomial characteristic equations are
obtained, presenting six eigen values 1y, 10 74,

Thus, the general solutions are follows:

6
ud(r Z Dy,r"™i = uf(r Z Dy, r"

j=1

ZE 7 = (r ZXq, TS

ZF = g (r ZYququnqj’ (23)
where X, is the relation between constants D, and
Ey;, and Y, is the relation between constants D,

and F, obtained from Eqs. (22); they are presented
in Appendlx A.
The particular solutions u}(r) and v (r) are as-
sumed as follows:
“5(7“) = Iq17ﬁq1+m1+1 + qurﬂq2+m1+17

qu(r) — I(13T5‘11+m1+1 4 Iq41“6‘12+m1+1,

Yh(r) = IqsrﬁqlerlJrl + Iqerﬁq2+m1+1~ (24)

Substituting Eqs. (24) into the non-homogeneous form
of Eq. (20) gives I, to I, as they are presented in
Appendix A.

The complete solutions for ug(r), ve(r), and g(r)
are the sum of the general and particular solutions
which are as follows:

6
1) =Y Dgr™ 4 Ly rPn ikt

=1

ptmi+l
+Iq2r5‘1~ miTs

ZXWD ir'1 4 1, JrPatmatl

g9 tmi1+1
+[q47"812 e

6
_ j +mi+1
r) = Z Yy Dgjr" + Iqsrﬁql "

+ TggrPotmatt, (25)
Substituting Eqgs. (22) into Eqs. (16) gives:

oo 6
u(r,8) = Z lz Dy;r + Iqlrﬁq1+m1+1

g=—o0 Lj=1
q#0

[eS) 6

g=—o0 Lj=1

q#0
+ ]q47ﬂq2 +"H+£| e(iq+nl)97

6

Jj=1

o

7/)(T7 9) = Z

g=—o0

q7#0

+ I%rﬁmml“] eliatn)t, (26)

By substituting Eqgs. (26) into Egs. (12), the strains
and electric intensity are obtained as follows:

oo 6
Err = Z lZ(nqj)quanjl

qg=—o0 [ j=1
q#0

+ (Bgy +ma + 1)L rPatm

+ (6112 +mi + 1)[qzrﬁq2+m1] e(iq+n1)07

00 6
€90 = Z lz(zq +n1)(Xgj + 1) Dy ™!

g=—o0 Lj=1

q#0

+ ((ig + ny )y, + Iql)rﬁql"'m1

+ ((ig + 1)y, + Ip,) Tﬁmmll glia+m)o.
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o0

0= X

q=—00

q#0

6
[_ ((zq +n1)

+ (1g5 — 1)qu))quanj_1 + ((“I +n1)ly,

+ (Bay +ma) g, ) rPa ™™ 4 ((iq + 1)1,

> e(iQ+n1)0’

oo 6
Er = Z [Z(nqj)yququ”qil

g=—oc Lj=1
q#0

+ (Bgy +mi) Iy, )rPutm

+ (/6111 +my + 1)Iq5r641+m1

+ (Bgo +m1 + 1)Iq6r542+'m1] eliztni)o

00 6
Z lz Zq+n1 Yq]Dq]rn‘Ufl

q=—00

q#0

+ (iq + ny ) [yrPatm™

+ (Zq + nl)_[qsrﬁlu +’”H‘| e(iq+n1)0’ (27)

By substituting Eqgs. (27) into Eqgs. (13), the stress and

electric displacement are obtained as follows:

6
Z (CH ("qj jriastme—l

o0

am™mz2 Z

q=—00
q7#0

Tpp =

+ (6(11 +my + 1)1q1r1641+m1+m2

+ (6% +my + l)qurﬂqz+m1+m2

(%)) i
_ (Aqlrﬁtn +m1+m2+ Aq2rﬁq2 +m1+mu)>

a™t
+ 612 ((Zq + nl)(qu + I)qufr’flqj+m271
+ ((Zq + n1)1q3 + Iq1 )Tﬁql +mi1+ma

+ ((iq + n1),, + I, )rPetmitms

2@0

a™m!

(AgyrPatmatm:

+ AgprPaztmitma )))en29

+ €31 ((11g7) Yoy Doy +m2 =1

+ (6:11 +my + 1)[q57”8q1 +mi+ma
+(5q2+m1+1)I%Tﬁq2+m1+m2)en20‘|e(i<1+n1)97

1 oo
- a2 Z

g=—00

q#0

T00

6
Z <é12 (nqu Mg tmez—1
Jj=1

+ (ﬁql +mq + 1)Iq1 Tﬁ‘ll +mq+mg
+ (5112 +my + 1)Iq21“ﬂ<12+m1+m2

Qo

a1

(Aqlrl@ql +mi+maz + Aq2rﬁq2 +mi+ma )>

+ Co ((zq + nl)(qu + 1)qurnq7+m271

+ ((lq + nl)IQS + Iql)rﬁl11+m1+m2

+ ((/Lq + nl)Iq4 + qu)rﬂl12+ml+m2

2040

a™m1

(Aqlrﬂql +mi+ma

+ qurﬁqg +mi+ma )) > 6”29

+ 622((nqj)yququnqj+m271

+ (6111 +m1 + 1)Iq5rﬁq1+’m1+m2

+ (6q2+m1 + 1)]{167»,3@ +mi+ma )en;>9‘|e(iq-l—n1)07

e 6

oo = a71712 Z 2(744((iq+n1)

g=—oc Lj=1
q#0

+ (00 = 1) X)) Doyt ™4 (i + )1,
+ (Ban +m1)]q3)7"6q1 tmitme (g + ni )1y,
+ (Byy + ma)I,, rlatmitme)enad

— &4((ig + TLl)Yququnqj+m2—1

+ (iq + nl)-[qs’l“ﬁ‘fl +mi+ma

+ (iq + nl)[qsrﬁqz +m1+m2)6n29 e(iq+n1)9’
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1 [SS) 6
~ aj 2—1
o= g &[S0 (mpurrn
qg=—oc Lyj=1
a#0

+ (Bg, + my + 1), P tmitme
+ (5(]2 +m + 1)Iq2r542+m1+m2
+ ((iq + m )Ly, + Iy, yrPatmrtme

+ ((ig + nl)LM + ]qz)rﬁq2 Hmame

3040

a™

(Aqlr’g‘“ +mi+ma

4 AqQT’qu +mi+ma )) ) eTL29

+ E3((11g5)Yq; Dggrartm2—1

+ (6(]1 +m; + 1)[q57°BQ1 +mi+ma

+(ﬁq2+m1 +]‘)I¢Z6Tﬂq2+m1+m2 )6”29‘|e(iq+n1)97

(€21 (nququnqj+m2_1

S
Il
IS)
3,_.
vy
M=

+ (Bg, + my + 1), pPatrmtme
+ (By, + my + 1), pPatmitme)

+ E92((ig + n1) (X, + 1)Dyjrtatma—1
+ ((iq + ny ) Iy + I, )rPatmatme

+ ((iq + n1) 1y, + Iy, )rPetmatmzy)enad
_ 522((nqj)Yququnq,-+m2—1

+ (Bg, +m1 + 1)Iq5r5<11 +mi+ma

+ (Bg, +m1 + 1)Iq6rﬂ42+m1+m2)en26

g21 (Aql 7’/8(‘1 +mi+mae
amt

+ A, pPaaTmaitms )e(n1+n2)9] e(iq+n1)97

+ (g = 1) X ) Dgyr™ ™ =L (ig+n1 ),
+ (Bay +ma) Lo )rPn T 4 (ig + ny )y,
+ (Bgy + my)I,, yrlaztmatma)ena

— E91((iq 4 1y )Yy Dgjrai tmo =1

+ (ig + nl)Iqsrﬁql +mi+ms

+ (ig + nl)IqGT’Bqﬂ Tmitms )6”50

922 (Aq1 Tﬁql +mi+me

am

+ qurﬁq2+m1+m6)en60 eligtn1)0 (28)

Assume that the six boundary conditions are expressed
as follows:

u(a, ) = wy(0), orr(a,0) = wr (),
u(b,0) = wa(h), armr(b,0) = wg(6),
v(a,d) = ws(6), are(a,8) = wy (),

v(b,0) = wy (), ar(b,0) = wip(),

¢(a79) = ’UJ5(9), Drr(aaa) = wll(e)a
¢(b,(9) = ’11)6(9), DM(ILH) = w12(9). (29)

Expanding the given boundary conditions in com-
plex Fourier series gives:

o0

w](e) = Z Wj(Q)e(iq+n1)97 J = 17’ o a67 ( )
n=—o0 30

1 [" . ‘
W](q) = g/ wj(Q)e_(lq+n1)0d6a J = 17 e 7(6 )
- 31

Using the selected six boundary conditions of Egs. (29),
by means of Eqgs. (33) and (31), six unknown coeffi-
cients, Dy, to Dy, are calculated.

4. Results and discussion

The proposed analytical solution programmed into
MATLAB (2008 ~ 2016) is solved. Table 1 shows a
thick hollow infinite cylinder of inner radius ¢ = 1 (m)
and outer radius b = 1.2 (m) of a PZT-4 material with
properties.
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Table 1. Material properties PZT-4 for 2D-FGPM.

Parameters Value Parameters Value
oo 0.000012 (%) @23 151 (%)
T 1Llm €24 12,7 (5%
O 139 GPa Ea1 6.5x 107 (&)
Che 78 GPa Z22 6.5x 107" (&)
Cas 139 GPa g 5.4 % 1075 (ﬁ)
Cus 30.5 GPa oo 5.4 %1073 (<k>
€21 -5.2 (ISQ) mi, M2, , Mg m
€22 -5.2 (%) ni,me, - ,Ng n

Table 2. Thermal and electrical boundary conditions for the first example of FGPM.

Boundary conditions

T(a,0) orr(a,0)  ore(a,0)
60sin(2]9]) (°c) 0 0

u(b, )
0

V(bv 0) qﬁr(a, 0) @b(b 0)
0 0 oh? cos(20) (W/A)

Table 3. Mechanical and electrical boundary conditions for the second example of FGPM.

Boundary conditions

T orr(a,d) oro(a,d)

0 600sech (%2 + 9) (MPa) 30 6 cosh () (MPa) 0

(b, 0) W (a,0) (b, 0)

o6 cos (20) (W/A) 0

The thermal boundary conditions are substituted
into Egs. (2) and (3) to obtain the temperature distri-
bution, where the constants of integration are obtained
from equations in Appendix A. In general, the displace-
ment and stress boundary conditions are substituted
into Egs. (29); in addition, with proper function
expansions (Eq. (30)), the constant coeflicients of the
series expansions are obtained from Eqgs. (31).

To examine the proposed method for the solution,
two example problems are considered. The first exam-
ple may have a certain physical interpretation, while
the second example is chosen to show the mathematical
effectiveness of the proposed method.

As the first example, consider a thick hollow
infinite cylinder where the inside boundary is traction-
free with a given temperature distribution as in Ta-
ble 2. The outside boundary is assumed to be radially
fixed with zero temperature. Therefore, the assumed
boundary conditions yield the function given in Ta-
ble 2.

In the second example, a thick-walled cylinder
may be assumed with zero temperature distribution,
yet exposed to mechanical boundary conditions. The
stress and displacement boundary conditions are as-
sumed to be selected, such that the mathematical
strength of the proposed method is examined. These
types of boundary conditions may not be handled with
the potential function method. Using Eqs. (29) to (31),
the boundary conditions given in terms of the radial

T(°C)

=200

40—

S
WP e A
1.

Figure 2. Temperature distribution in the cross-section
of cylinder.

and shear stresses as well as electric potential appear
in Table 3. These boundary conditions are expanded
by the integral series, and unknown coefficients, D
are determined.

Figure 2 shows the temperature distribution in
the wall thickness along the radial and circumferential
directions. The effect of the power-law index on the
temperature distribution is also shown in Figures 3
and 4.

Figure 5 shows the hoop stress in the cross-section
of the cylinder. The effect of the power-law index on
the distribution of the hoop thermal stress is shown in

g5
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Figure 3. Circumferential temperature distribution at

0 =mn/3.
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Figure 4. Circumferential temperature distribution at
r=r.

2
(1aq

‘1& :()0

Figure 5. Hoop thermal stress in the cross-section of
cylinder.

Figures 6 and 7. These figures are the plot of hoop
stresses versus r/a at § = 7 /3 and 0 at r = 7.

Figures 8 and 9 show the hoop thermal stress and
radial displacements in the cross-section of cylinder,
respectively, where the electric potential coefficient
(o) changes and the other parameters remain fixed.

The radial mechanical stress distributions are
shown in Figure 10. Stress patterns on the inside
and outside surfaces follow harmonic patterns. The
given harmonic boundary conditions for o,., at 7 = a
have a general influence on the pattern of the stress
distributions in the cylinders’ cross-section. The effect
of the power-law index on the distribution of the radial
mechanical stresses is shown in Figures 11 and 12.
These figures show the plot of stresses versus r/a at
6 =rn/3 and 6 at r = 7. It is shown that as m and n
increase, the radial mechanical stresses increase, too.

Figures 13 and 14 show the axial mechanical
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e o m=-1
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— . e
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2 40077,
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3001 e \ ]
e e
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\.\
>
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r/a

Figure 6. Hoop distribution of circumferential thermal
stress, ogg, at 0 = 7/3.
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Figure 7. Hoop distribution of circumferential thermal
stress, ogg, at r = 7.
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Figure 8. Hoop thermal stress in the cross-section of
cylinder in different electric potential coefficients.
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Figure 9. Radial displacement in the cross-section of
cylinder in different electric potential coefficients.
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Figure 10. Radial mechanical stress in the cross-section
of cylinder.

stresses and circumferential displacements in the cross-
section of cylinder, respectively, where electric poten-
tial coefficient (10g) is changing.
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Figure 11. Radial distribution of circumferential
mechanical stress, .., at 0 = 7r/3.
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Figure 12. Radial distribution of circumferential
mechanical stress, o, at 7 = T.

5. Conclusions

In the present work, an attempt was made to study
the problem of a general solution for the thermal
and mechanical stresses in thick two-dimensional Func-
tionally Graded Piezoelectric Materials (2D-FGPMs)
hollow infinite cylinder where the two-dimensional
asymmetric steady-state loads are taken into account.
The method of solution is based on the direct method
and uses the power series, rather than the potential
function method. The advantage of this method is
its mathematical power to handle both simple and
complicated mathematical functions for the thermal
and mechanical stress boundary conditions. The
potential function method is capable of handling the
complicated mathematical functions as in boundary
condition. The proposed method does not have the
mathematical limitations to handle the general types
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Figure 13. Axial mechanical stress in the cross-section
cylinder in different electric potential coefficients.
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Figure 14. Circumferential displacement in the
cross-section of cylinder in different electric potential
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of boundary conditions, which usually occur in the

potential function method.

Nomenclature

Ag, Ag, Thermal constant

a Inner radius

b Outer radius

Sij Constant temperature parameters
Cij Elastic constant

€2 Piezoelectric constant

£9i Dielectric constant

925 Pyroelectric coefficient

d; Mechanical and thermal constants

L Constant mechanical parameters

M. Meshkini et al./Scientia Iranica, Transactions B: Mechanical Engineering 26 (2019) 428-444

fi, f2 Inner and outer temperature boundary
conditions

wr, ;w2 Inner and outer mechanical boundary
conditions

mMs, N Material properties parameters
i=1---6

k Thermal conduction coefficient

ko Material parameter

r,0,z Cylinder coordinate

T Cylinder temperature

T, Coefficient of sine Fourier series

u, v Displacement components

« Thermal expansion coefficient

Qg Material constant

€ij Strain tensor (i,7) = (r,6)

€ Volumetric strain (€ = &, + €gg)

0ij Stress tensor (i,7) = (r,0)

D;; Electric displacement (7, j) = (r,0)

P(r,6) Electric potential

E. Ey Electric field intensity
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Appendix A

di to dss are coefficients I, in Appendix A (see

Eq. (A.4)):
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7 Appendix B
(A5) Heat conduction equations are as follows:
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Eq. (1) in Cartesian coordinates is as follows:
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