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Abstract. This research addresses scheduling problem of n jobs in a Hybrid Flow Shop
(HFS) with unrelated parallel machines in each stage. A monolithic Mixed Integer Linear
Programming (MILP) model is presented to minimize the maximum completion time
(makespan). As the research problem is shown to be strongly NP-hard, a Lagrangian
Relaxation (LR) algorithm is developed to handle the HFS scheduling problem. We design
two approaches, namely, simpli�cation of subproblems and dominance rules, to solve the
subproblems which are generated in each iteration. For evaluation purposes, numerical
experiments with small- and large-size problems are randomly generated with up to 50 jobs
and 4 stages. The experimental results show that the Lagrangian relaxation approaches
outperform the MILP model with respect to CPU time. Furthermore, from the results,
it can be concluded that the simpli�cation of subproblems shows slightly better solutions
than dominance rules do in solving the subproblems.
© 2018 Sharif University of Technology. All rights reserved.

1. Introduction

Nowadays, production scheduling is a complicated
decision making process that has a considerable role
in the competitive manufacturing and production en-
vironment. As a result, e�ective scheduling can lead
to signi�cant improvements in various performance
measures like customer satisfaction, production costs,
throughput, and bottleneck resources utilization [1].

This paper aims to minimize makespan in a
hybrid ow shop environment with unrelated parallel
machines. In this production system, machines are
arranged intom stages in series, in which in a particular
stage, i, there are Si unrelated parallel machines. Job
j has �nite processing time and must be processed on
only one machine in each stage. Preemption is not
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acceptable for the jobs and every machine must process
only one job at a time.

The hybrid ow shop scheduling problem has
received a great deal of attention due to its increasing
applicability in many industries, such as automobile
assembly plants [2] and packaging industry [3], during
recent years [4]. Recently, di�erent solution approaches
like exact, heuristic, and metaheuristic are developed
for the HFS problems. Moursli and Pochet [5] proposed
a branch-and-bound algorithm for the hybrid ow
shop scheduling problem with makespan minimiza-
tion. They developed some heuristics and single-
stage subproblem relaxation to compute the upper
and lower bounds, respectively. Liu and Chang [6]
considered a Lagrangian relaxation-based approach for
hybrid ow shop scheduling problem with sequence-
dependent setup time and cost and earliness-tardiness
minimization.

Fattahi et al. [7] proposed a hierarchical branch-
and-bound approach to solve the HFS problem with
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sequence-dependent setup time and one assembly
stage. The selected objective function was to minimize
the completion time of all products (makespan). Riane
et al. [8] proposed two heuristic methods, based on
dynamic programming and branch-and-bound method,
to minimize the makespan in three-stage hybrid ow
shop scheduling problem.

In the literature, heuristic methods and Branch-
and-Bound are the two mostly employed approaches
for the HFS scheduling problems [9]. Marichelvam
et al. [10] considered a multistage hybrid ow shop
scheduling problem to minimize the makespan. They
proposed a new bat algorithm to solve the problem.
Jolai et al. [11] investigated no-wait two-stage exible
ow shop scheduling to minimize makespan and max-
imum tardiness. They developed three metaheuristic
approaches based on simulated annealing algorithm.
Marichelvam et al. [12] proposed Cuckoo Search (CS)
metaheuristic algorithm to solve the multistage hy-
brid ow shop scheduling problem for minimizing the
makespan.

Due to the huge computational time in branch-
and-bound approaches for large-size problems, indus-
tries commonly prefer to apply the heuristic meth-
ods [13]. On the other side, heuristic approaches can-
not guarantee achieving the optimal or near-optimal
solutions. Therefore, it is inevitable to develop ap-
propriate approaches to solve the HFS scheduling
problems in large size scale. Lagrangian relaxation
approach has been introduced as a powerful tool to
solve various optimization problems and it can be an
e�cient and e�ective approach to solving the HFS
problems [14].

Liu and Luh [15] developed a novel \separa-
ble" integer programming formulation for permuta-
tion ow shop scheduling problem and proposed a
Lagrangian relaxation method to minimize penalties
on jobs tardiness and earliness of releasing the raw
materials. Luh and Hoitomt [16] proposed Lagrangian
relaxation algorithms for some scheduling problems,
including single-operation and multiple-operation jobs
with simple fork-join precedence constraints on identi-
cal parallel machines and job shop scheduling problem,
respectively.

Chang et al. [17] developed a Lagrangian relax-
ation method and minimum cost linear network ow to
solve the hybrid ow shop with earliness-tardiness cost.
The numerical results indicated that their scheduling
algorithm could achieve the near-optimal solution in a
reasonable computational time. Irohara [18] proposed
three Lagrangian relaxation methods for the HFS
problem with limited bu�er capacity to minimize the
weighted earliness-tardiness cost. They relaxed ma-
chine capacity and precedence constraints to schedule
all stages together.

Sun and Nobel [19] considered a job shop

scheduling problem with sequence-dependent setup
time. They decomposed the problem into some single-
machine subproblems via shifting bottleneck procedure
and employed Lagrangian relaxation method to solve
the subproblems. Tang et al. [14] proposed a La-
grangian relaxation approach for the hybrid ow shop
with identical machines in each stage to minimize the
sum of the weighted completion times. They proposed
dynamic programming algorithm to solve the parallel
identical machine subproblems.

Emami et al. [20] proposed Lagrangian relaxation
algorithm for robust Order Acceptance and Scheduling
(OAS) problem in an unrelated parallel machines en-
vironment to maximize the pro�t. They also applied
a cutting plane method to update the Lagrangian
multipliers in each iteration and introduced a heuristic
method to generate the feasible solutions. Shishebori et
al. [21] proposed a mixed integer programming model
for a fuzzy robust multi-objective facility location
network design problem. They developed a Lagrangian
relaxation approach to solve the problem precisely.

During the last years, many searchers have stud-
ied and solved the HFS problems and signi�cant e�orts
will be put to �nding better solutions to this problem
in future. This research proposes a decomposition ap-
proach based on Lagrangian relaxation approach to hy-
brid ow shop scheduling problem and two approaches,
namely simpli�cation of subproblems and dominance
rules, are developed to solve the decomposed unrelated
parallel machine subproblems.

The rest of the paper is organized as follows.
Section 2 is devoted to describing an integer program-
ming formulation of the HFS problem proposed by
Nahavandi and Asadi Gangraj [22]. Section 3 presents
a Lagrangian relaxation method for the HFS problem
with makespan minimization. Computational results
are presented in Section 4 based on some test problems.
Finally, some concluding remarks and future research
areas are given in Section 5.

2. Problem statement

2.1. Problem description
In an HFS, machines are arranged into m stages in
series. On a particular stage i, there are Si unrelated
parallel machines and job j must be processed on
machine k in each stage i with deterministic processing
time pijk. The travel time between stages is negligible
and there is not any constraint on bu�er capacity
between stages in the production line. Preemption is
not allowed and the processing time involves both setup
time and processing time of the job. One job must be
processed only by one machine at any time in each
stage and every machine can process only one job at
a time. The selected objective function is to minimize
the maximum completion time (makespan).
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2.2. Mathematical model
This section is devoted to introducing the Mixed
Integer Linear Programming (MILP) model of the
HFS problem with unrelated parallel machines, which
was proposed by Nahavandi and Asadi Gangraj [22].
They proposed a monolithic MILP model for the
HFS problem, which required the following indices,
parameters, and decision variables:

Indices:
j; l Job index;
i; h Stage index;
k Machine index in each stage;
n Number of jobs;
m Number of stages;
R Set of job indices necessary to de�ne

decision variables (R = fj; ljj < lg).
Parameters:
Si Number of machines in stage i;
M A very large number;
pijk Processing time of job j in stage i on

machine k.
Decision variables:
Cij Completion time of job j in stage i.

Xijk =

8><>:1 if job j is assigned to machine k in
stage i

0 otherwise

Yilj =

8><>:1 if job l is processed earlier than job
j in stage i

0 otherwise

Wilj =

8><>:1 if job l and job j are processed on
the same machine in stage i

0 otherwise

By using the above notation, they formulated the
problem as MILP, as follows:

Min Z = maxfCmjg j = 1; 2; � � � ; n: (1)

Subject to:
SiX
k=1

Xijk=1 j=1; 2; � � � ; n i=1; 2; � � � ;m;
(2)

C1j �
s1X
k=1

p1jk:X1jk j = 1; 2; � � � ; n; (3)

Cij � Ci�1;j +
SiX
k=1

pijk:Xijk

j = 1; 2; � � � ; n i = 2; � � � ;m; (4)

Cij +M � (1� Yilj) � Cil + pijk:Xijk

j; l = 1; 2; � � � ; n & (j; l) 2 R
k = 1; 2; � � � ; Si; i = 1; 2; � � � ;m; (5)

Cil +M � (1�Wilj + Yilj) � Cij + pilk:Xilk

j; l = 1; 2; � � � ; n & (j; l) 2 R
k = 1; 2; � � � ; Si; i = 1; 2; � � � ;m; (6)

Wijl � Xijk +Xilk � 1

j; l = 1; 2; � � � ; n & (j; l) 2 R
k = 1; 2; � � � ; Si; i = 1; 2; � � � ;m; (7)

Cij � 0 j; l = 1; 2; � � � ; n;
Xijk; Yilj ;Wilj 2 f0; 1g i = 1; 2; � � � ;m
k = 1; 2; � � � ; Si: (8)

Expression (1) represents the makespan objective func-
tion, which is equal to maximum completion time.
Constraint set (2) ensures that each job must be
assigned to one machine at each stage. Constraint
set (3) indicates that completion time of job j in the
�rst stage is greater than or equal to its processing
time in this stage. The relation between completion
times in two consecutive stages for job j can be
seen in Constraint set (4). Constraint sets (5) and
(6) preclude the interference between the processing
operations of any two jobs on a machine. Constraint
set (7) determines the jobs which are processed on the
same machine at stage i. Finally, Constraint set (8)
shows the range of Cij and force variables Xijk, Yilj ,
and Wilj to assume binary values of 0 or 1.

3. Lagrangian relaxation approach

Lagrangian relaxation approach is a mathematical
programming technique to address the constrained
optimization problems [23]. The Lagrangian relaxation
approach relaxes the complicated problems through re-
moving one or more constraints, especially complicated
constraints, and including them in the objective func-
tion through multipliers or weights, called Lagrangian
multipliers. Each Lagrangian multiplier introduces an
additional term, which penalizes the generated solution
that does not satisfy the relaxed constraint [24]. For
this purpose, the following subsections describe di�er-
ent parts of the proposed LR approach to tackle the
HFS problem with unrelated parallel machines at each
stage.
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3.1. Decomposition
According to the monolithic MILP model, presented
in Section 2, only Constraint set (4) couples two
successive stages. Through relaxing this complicated
constraint set and including it in the objective function,
the original problem can be decomposed into some
subproblems, any of which is associated with one
separate stage. By considering �ij as Lagrangian
multipliers, the Lagrangian relaxation problem can be
stated as follows:

LR : min Z = maxfCmjg+
nX
j=1

mX
i=2

�i�1;j

(
Ci�1;j � Cij +

SiX
k=1

PijkXijk

)
: (9)

Subject to: Constraints (2), (3), and (5)-(8):

�ij � 0: (10)

With respect to the non-negative Lagrangian multipli-
ers (�ij), the Lagrangian dual problem can be stated
as follows:

LD : max
�ij

"
max
j
fCmjg+

nX
j=1

mX
i=2

�i�1;j(Ci�1;j�Cij)

+
nX
j=1

mX
i=2

SiX
k=1

PijkXijk

#
:

(11)

Subject to: Constraints (2), (3), (5)-(8):

�ij � 0: (12)

Due to special structure of the objective function, it
can be rewritten as:

nX
j=1

�1jC1j +
m�1X
i=2

nX
j=1

"
(�ij � �i�1;j)Cij

+ �i�1;j

SiX
k=1

PijkXijk

#

+
nX
j=1

"
��m�1;j

 
Cmj +

SiX
k=1

PmjkXmjk

!#
+ max

j
fCmjg: (13)

By considering the objective function (Eq. (13)) and
other constraint sets of the relaxed form (Eq. (12)),
the Lagrangian dual problem is easily decomposed
into some subproblems, each for one stage (�rst stage,
stages i = 2; � � � ;m � 1, and last stage). Hence, the

subproblem for each stage is as follows:

SPi(�) =
nX
j=1

�ijCij i = 1; (14)

SPi(�)=
nX
j=1

"
(�ij � �i�1;j)Cij + �i�1;j

SiX
k=1

PijkXijk

#
i 6= 1;m; (15)

SPi(�) =
nX
j=1

"
��i�1;j

 
Cij +

SiX
k=1

PijkXijk

!#
+ max

j
fCmjg i = m: (16)

Subject to: Constraints (2), (3), (5)-(8).
For each subproblem, i is �xed and equal to

stage number. According to the above, any particular
subproblem can be stated as PmjjPwjcj , based on
Pinedo triple notation, in which the weights of the jobs
can be positive, zero, or negative. Since PmjjPwjcj
is NP-hard for Si � 2 in the strong sense [25], it is not
easy to solve with appropriate size by optimization soft-
ware. Thus, we develop some proper constraints and
appropriate dominance rules to reduce the complexity.

3.2. First approach: simpli�cation of
subproblems

As mentioned above, each subproblem is shown to
be NP-hard; the SPs become harder to solve if
the numbers of jobs and machines in each stage are
increased. In this section, we develop some new
constraints that can simplify solving the subproblems
so that the sequence of the jobs at each machine can
be determined easily. These constraints are inspired
by Salmasi et al. [26]. For this purpose, we suppose
that jobs j and l must be processed on machine k
at stage i, simultaneously. There are two scenarios
named Seq1 and Seq2, which can be seen in Figure 1.
The only di�erence between these two sequences is
in the positions of jobs j and l in the sequence.
The completion time of the jobs before these jobs is
the same, and is shown by CA in both sequences in
Figure 1.

As results, some new constraints are proposed
for three groups of the subproblems. The �rst one
is dedicated for the subproblem in the �rst stage, the
second one is proposed for the subproblems in stages 2

Figure 1. Two scenarios for jobs j and l.
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through m-1, and �nally, the last one is proposed for
the subproblem in the last stage.

(a) Simpli�cation of sp1(�)
According to the above, both jobs j and l are
processed on machine k in the �rst stage. By
assuming that the weighted completion time of
Seq2 is greater than that of Seq1, Inequality (17)
holds:

�1l(CA + p1lk) + �1j(CA + p1lk + p1jk)

� �1j(CA + p1jk) + �1l(CA + p1jk + p1lk)

) p1lk

�1l
� p1jk

�1j
: (17)

Thus, constraint(s) must be incorporated into
sp1(�) with respect to inequality (17). By consid-
ering Wilj and Yilj , we incorporate the constraint
sets below into sp1(�) to determine the sequence
of jobs on each machine in the �rst stage:

2Y1lj

�
p1jk

�1j
� p1lk

�1l

�
�
�
p1jk

�1j
� p1lk

�1l

�
W1lj

j; l = 1; 2; � � � ; n & (j; l) 2 R; (18)

Y1lj�W1lj j; l=1; 2; � � � ; n & (j; l) 2 R:
(19)

If job l is processed before job j, the value in
the parenthesis is positive in constraint set (18).
Thus, if the value of W1lj is equal to 1, then
Y1lj � 1

2 and Y1lj is also equal to 1. It shows
that job l is processed before job j in the �rst
stage. On the other side, if the value in the
parenthesis is negative, then Y1lj � 1

2 and it leads
Y1lj to take a value equal to zero. With respect to
Constraint (19), if both jobs l and j are processed
on the same machine in the �rst stage (W1lj = 1),
then Y1lj can take value equal to 1;

(b) Simpli�cation of spi(�); i = 2; � � � ;m� 1
Similar to the above manner and considering Seq1
and Seq2, we will have:

(�il � �i�1;l)(CA + pilk) + �i�1;lpilk

+ (�ij � �i�1;j)(CA + pilk + pijk)

+ �i�1;jpijk � (�ij � �i�1;j)(CA + pijk)

+ �i�1;jpijk

+ (�il � �i�1;l)(CA + pijk + pilk)

+ �i�1;lpilk ) pijk
�ij��i�1;j

� pilk
�il��i�1;l

:
(20)

Thus, we introduce Constraint sets (21) and (22)
to obtain the sequence of the jobs in stage 2
through m� 1 as follows:

2Yilj
�

pijk
�ij � �i�1;j

� pilk
�il � �i�1;l

�
�
�

pijk
�ij � �i�1;j

� pilk
�il � �i�1;l

�
Wilj

j; l = 1; 2; � � � ; n & (j; l) 2 R
i = 2; � � � ;m� 1; k = 1; 2; � � � ; Si; (21)

Yilj�Wilj j; l = 1; 2; � � � ; n & (j; l)2R
i = 2; � � � ;m� 1; k = 1; 2; � � � ; Si: (22)

The explanation for the above constraints is sim-
ilar to the one presented for Constraint sets (18)
and (19).

(c) Simpli�cation of spm(�)
In the same manner, Inequality (23) holds:

��m�1;l(CA + pmlk + pmlk)

� �m�1;j(CA + pmlk + pmlk + pmjk)

+ Cmax � ��m�1;j(CA + pmjk + pmjk)

� �m�1;j(CA + pmjk + pmjk + pmlk)

+ Cmax ) pmjk
�m�1;j

� pmlk
�m�1;l

: (23)

Therefore, the following constraint sets are incor-
porated into the model to determine the sequence
of the jobs at the last stage:

2Ymlj
�

pmjk
�m�1;j

� pmlk
�m�1;l

�
�
�

pmjk
�m�1;j

� pmlk
�m�1;l

�
Wmlj

j; l = 1; 2; � � � ; n & (j; l) 2 R; (24)

Ymlj�Wmlj j; l=1; 2; � � � ; n & (j; l)2R:
(25)

3.3. Second approach: Dominance rules
In the second approach, we develop some dominance
rules to easily solve the subproblems. For this purpose,
we apply Lemma 1, which was developed by Tang et
al. [14].

Lemma 1. Let ssp, ss0, and ssn denote three sub-
sets of the jobs on a particular machine at stage i,
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containing the jobs with positive, zero, and negative
weights, respectively. Then, in the optimal solution,
these subsets must be scheduled on a machine in the
sequence of ssp, ss0, and ssn, respectively; the jobs
within ssp and ssn must be sequenced in WSPT order;
the jobs in ss0 can be sequenced randomly.

According to the objective function and structure
of the constraints, we will develop some dominance
rules for each subproblem as follows:

1. sp1(�): According to the objective function of
sp1(�) (Eq. (14)), the subproblem is converted to
parallel machine scheduling problem with weighted
(with positive value) completion time minimization.
Therefore, with respect to Lemma 1, if the jobs
on each machine are sequenced based on WSPT
order, we expect to minimize the objective function.
Therefore, we consider WSPT rule to determine the
sequence of jobs on each machine in the �rst stage,
easily;

2. spi(�); i = 2; � � � ;m � 1: Similar to sp1(�), the
production system of the subproblem i, i = 2; � � � ;
m � 1, is parallel machine. The objective function
contains two sections: The �rst one is

Pn
j=1(�ij �

�i�1;j)Cij that minimizes the weighted completion
time with the weight of (�ij��i�1;j) (with positive,
negative, and zero values). The second one isPn
j=1 �i�1;j

PSi
k=1 pijkXijk and equal to the sum-

mation of the product of the Lagrangian multipliers
and processing time of each job on the assigned
machine in each stage. Also,

Pn
j=1

PSi
k=1 pijkXijk

shows the summation of completion times of the
last jobs on each machine; if the weights of these
jobs (�i�1;j � 0) are added to the �rst section,
the weight of the jobs increases. Thus, the �rst
set of jobs with the weight of �ij � �i�1;j cannot
be processed as the last job on each machine and
the second set of jobs with the weight of �ij is
the last job on each machine. With respect to
the above discussion, we can generate the following
lemma.

Lemma 2. The following constraints between
jobs j (last job in sequence) and l (other jobs) at
stage i = 2; � � � ;m� 1 hold:

2Yilj
�
pijk
�ij
� pilk
�il � �i�1;l

�
�
�
pijk
�ij
� pilk
�il � �i�1;l

�
Wilj

j; l = 1; 2; � � � ; n & (j; l) 2R
i = 2; � � � ;m� 1; k = 1; 2; � � � ; Si; (26)

Yilj �Wilj j; l = 1; 2; � � � ; n & (j; l) 2 R;
i = 2; � � � ;m� 1: (27)

Proof. According to the description of spi(�),
i = 2; � � � ;m � 1, the weights of the last job and
other jobs in the sequence are �ij and �il � �i�1;l,
respectively. Because of nonnegative Lagrangian
multipliers and Lemma 1, the jobs can take
positive weights. Thus, Inequality (28) holds:

pilk
�il � �i�1;l

� pijk
�ij

j; l = 1; 2; � � � ; n & (j; l) 2 R
i = 2; � � � ;m� 1; k = 1; 2; � � � ; Si: (28)

If job j is the last job in the sequence, Inequality
(28) holds. Thus, if Wilj takes the value equal to 1
in Constraint set (26) and the value in the parenthe-
sis is positive, then Yilj � 1

2 and Yilj is equal to 1.
It shows that job j cannot be processed before job l
(j = 1; 2; � � � ; n & j 6= l) and it can impose job j as
the last job in the sequence. On the other side, if the
value in the parenthesis is negative, then Yilj � 1

2
and it forces Yilj to take a value equal to zero. Fur-
thermore, the description of Constraint set (27) is
similar to the one presented for Constraint set (22).

3. spm(�): The objective function for subproblem
m contains three terms. The �rst one is equal
to
Pn
j=1��i�1;jCij with the weight of ��i�1;j .

The second term represents the summation of
completion times of the last jobs on each machine
and the last term shows the last job, which has the
maximum completion time. Thus, we can assign the
jobs in the last stage to three subsets as in Table 1.

According to the above, we can develop the
following lemma to easily solve the subproblem m.

Lemma 3: The following constraint between
jobs j (last job in sequence) and l (other jobs) in
stage m holds:

2Ymlj
�

pmlk
2�m�1;l

� pmjk
�m�1;j

�
�
�

pmlk
2�m�1;l

� pmjk
�m�1;j

�
Wmlj ;

j; l = 1; 2; � � � ; n & (j; l) 2 R
k = 1; 2; � � � ; Sm; (29)

Ymlj�Wmlj j; l=1; 2; � � � ; n & (j; l)2R:
(30)
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Table 1. Di�erent subsets of jobs.

Subset Weight Position in the sequence
1 ��i�1;j Cannot be the last job
2 �2�i�1;j Last jobs
3 1� 2�i�1;j Last job (jobs) with the maximum completion time

Proof. According to the discussion about
subproblem m, the weights of the last job (j) and
other jobs (l) in the sequence are �2�m�1;j and
��m�1;l, respectively. Therefore, based on WSPT
rule, Inequality (31) holds:

pmlk
��m�1;l

� pmjk
�2�m�1;j

) pmlk
�m�1;l

� pmjk
2�m�1;j

j; l = 1; 2; � � � ; n & (j; l) 2 R
k = 1; 2; � � � ; Sm: (31)

Similar to Lemma 2, if Inequality (31) holds,
then the value in the parenthesis is positive and
Ymlj � 1

2 ; thus, Yilj is equal to 1 and job l must
be processed before job j in the last stage. On
the other side, if the value in the parenthesis is
negative, Ymlj � 1

2 and Constraint (29) forces Yilj
to take value equal to zero.

3.4. Construction of the feasible solution
With respect to relaxing of the precedence constraints
(Constraint set (4)), in general, the solution obtained
by every subproblem is infeasible. To tackle this
di�culty and achieve a feasible solution, a heuristic
method is presented here to establish the precedence
constraints. At the �rst step, the schedule obtained by
the dual problem is considered as the initial schedule.
Then, in each stage, the sequence of the jobs is
generated by three parameters of completion time in
the �rst stage, average process time in other stages,
and a random number. At last, each job is assigned to
the entire machines (available and unavailable) and the
machine with the smallest completion time is selected.
The steps of the proposed heuristic are presented in the
following:

1. The schedules generated by the dual problem are
considered as the initial schedule.

2. For each stage, the sequence is created in the non-
decreasing order of:

C1je
� 


nP
i=1

�Pij ;

�Pij =
PSi
k Pijk
Si

;


 2 U [0; 1]:

3. The jobs are assigned to all the available and
unavailable machines in stage 1 through m and the
machine with the lowest completion time is selected.

4. The end.

3.5. Updating the Lagrangian multipliers
A subgradient method [27] is adopted for updating �ij
in each iteration of the LR algorithm. In this way,
Eq. (32) is applied to update the Lagrangian multipliers
in iteration t:
�t+1
ij = �tij + htGtij ; (32)

in which, ht and Gtij are the step size and subgradient,
respectively. The step size is calculated by ht =

1
(a+bt)jGtij j (a and b are scalar) and the subgradinet is
given by:

Gtij = Cti�1;j + Ctij +
SiX
k=1

Pijkxtijk:

Figure 2 illustrates the pseudocode of the proposed
Lagrangian relaxation approach for the HFS problem
with unrelated parallel machines, in which " is a
threshold value, and MaxIter and MaxCPU are the
maximum number of iterations and maximum CPU
time, respectively.

Figure 2. Pseudo-code of the LR algorithm.
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4. Numerical experiments

This section is devoted to evaluating the proposed
approaches to solving the HFS problem with regard
to some test problems. Due to NP-hardness of the
HFS problem with unrelated parallel machines, the
monolithic MILP model can obtain the optimal so-
lution to small-size problems. In this section, �rst,
numerical experiments are conducted to investigate
the performance of the monolithic MILP model and
the proposed LR approaches for small-size test prob-
lems. Furthermore, we compare the performances
of the subproblem solving approach, simpli�cation of
subproblems, and dominance rules for large-size test
problems.

The test problems in this experiment are divided
into two categories: small- and large-size ones. For the
small-size problems, the processing times, number of
jobs, number of machines in each stage, and number of
stages are uniformly distributed in the intervals [5; 50],
[5; 10], [2; 4], and [2; 5], respectively. On the other
side, the processing times, number of jobs, number
of machines in each stage, and number of stages are
uniformly distributed in the intervals [5; 50], [20; 50],
[2; 4], and [2; 5] for large-size problems.

The monolithic MILP model and the LR algo-

rithms are implemented in GAMS/CPLEX and tested
on a computer with 2.8 GHz CPU and 2.0 GB of
RAM. A time limit of 3600 s is imposed for running
the monolithic MILP model.

4.1. Result analysis for small-size problems
This section compares the LR and monolithic MILP
models with regard to small-size problems. For this
purpose, 20 small-size test problems are generated and
each test problem is run 10 times with di�erent process-
ing times. To compare the monolithic MILP model and
LR approach, we apply two di�erent criteria, namely
CPU time (CPU) and Optimal Gap (OG), to assess the
quality of the LR approaches. The OG is calculated as
follows:

OG =
UB � LB

LB
� 100: (33)

The results of the experiment are shown in Table 2.
Based on Table 2, the LR approach improved with

simpli�cation of subproblems signi�cantly outperforms
dominance rules in all cases. According to OG, the
average result of dominance rules is 1.49%, while that
of simpli�cation of subproblems is 1.77%. Because
of applying the heuristic approach in calculating the
upper bound, the solution with OG of less than 3% is

Table 2. Testing results of LR approaches and monolithic MILP model for small-size problems.

Test
problem

Problem
structure

MILP Dominance
rules

Simpli�cation
of subproblems

CPU OG CPU OG CPU OG

1 10J3S(232) 3600 11.5 65.4 2.76 88.7 2.38
2 10J3S(432) 3600 14.7 72.6 2.84 98.5 2.41
3 10J2S(23) 621 0 44.8 2.28 61.1 1.98
4 10J2S(43) 425 0 46.6 2.18 59 2.02
5 8J4S(2322) 119 0 55.7 2.06 66.4 1.88
6 8J4S(2324) 120 0 56.9 2.15 70.6 1.96
7 8J3S(232) 54 0 37.4 2.11 56.4 1.86
8 8J3S(432) 26 0 39.2 2.08 61.7 1.85
9 8J2S(23) 9 0 23.6 1.81 36 1.69
10 8J2S(43) 10 0 28.1 1.94 41.4 1.81
11 6J4S(2322) 3.3 0 30.9 1.73 43.8 1.32
12 6J4S(2324) 4.7 0 36.3 1.69 49.1 1.44
13 6J3S(232) 3.1 0 23.1 1.48 30.5 1.12
14 6J3S(432) 2.4 0 27.5 1.51 41.6 1.18
15 6J2S(43) 0.97 0 8.3 1.28 15.6 0.99
16 6J2S(23) 1.26 0 11.8 1.33 23.5 1.02
17 5J4S(2322) 1.26 0 16.6 1.25 25.4 0.78
18 5J4S(2324) 0.98 0 20 1.19 29.1 0.84
19 5J3S(232) 0.70 0 3.7 0.80 8.4 0.53
20 5J3S(432) 0.38 0 8.3 0.98 12.3 0.69
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very close to optimal [10]. In terms of CPU time, the
LR with dominance rules can achieve the �nal solution
in 32.8 s, but the simpli�cation of subproblems takes
about 45.9 s in average to solve the test problems.

4.2. Analysis of results for large-size problems
The parameters in this section are applied to generate
the large-size problem to compare the performances
of the proposed approaches for HFS with unrelated
parallel machines. The number of jobs is extended to
20 and 50 and other parameters are same as those in
the last section.

Due to NP-hardness of HFS with unrelated par-
allel machines, the monolithic MILP model cannot
achieve the optimal solution in reasonable time. Thus,
the test problems in this section only compare the
performances of the proposed LR approaches with each
other. The experimental results are summarized in
Table 3.

The problems in Table 3 are presented to compare
the performances of the proposed LR approaches for
large size. According to testing results, the average
OGs of dominance rules and simpli�cation of subprob-
lems equal 3.51% and 3.00%, respectively. Also, the
average CPU time is 220.09 s for dominance rules and

Table 3. Testing results of LR approaches for large-size
problems.

Test
problem

Problem
structure

Dominance
rules

Simpli�cation
of subproblems

CPU OG CPU OG

1 20J2S(23) 97.7 2.83 114.3 2.38
2 20J2S(33) 93.1 2.82 109.7 2.29
3 20J2S(43) 102.2 2.88 121.5 2.42
4 20J2S(44) 99.6 2.93 111.6 2.43
5 20J3S(232) 126.1 3.07 143.8 2.69
6 20J3S(432) 130.2 3.16 153.6 2.77
7 20J3S(434) 127.7 3.11 149.4 2.71
8 20J4S(2322) 150.2 3.23 165.2 2.78
9 20J4S(2324) 153.7 3.20 175.2 2.66
10 20J4S(4232) 161.6 3.21 193.9 2.89
11 50J2S(23) 259.4 3.54 303.5 2.96
12 50J2S(33) 274.0 3.56 328.8 2.89
13 50J2S(43) 270.4 3.78 299.0 3.06
14 50J2S(44) 285.3 3.63 315.2 3.13
15 50J3S(232) 310.3 4.07 359.9 3.61
16 50J3S(432) 325.9 4.01 371.5 3.51
17 50J3S(434) 318.0 4.08 349.6 3.59
18 50J4S(2322) 351.5 4.28 379.6 3.72
19 50J4S(2324) 390.0 4.24 412.9 3.81
20 50J4S(4232) 374.9 4.39 404.9 3.77

Figure 3. Interval plot of the proposed LR approaches:
(a) Large-size problems and (b) small-size problems.

248.15 s for simpli�cation of subproblems. According
to the results, conclusions similar to those for small-size
problems can be driven for these larger sized problems.
That is, on average, the simpli�cation of subproblems
approach generates better solutions than dominance
rules do in a much longer computation time.

For more scrutiny and as a formal test, we apply
95% con�dence interval for the average OG to compare
the proposed LR approaches. The con�dence intervals
are illustrated in Figure 3.

In Figure 3, we can observe that the simpli-
�cation of subproblems statistically outperforms the
dominance rules in large-size problems; In addition,
there is no signi�cant di�erence between the proposed
approaches in small-size problems.

Thus, we can conclude that the superiority of the
simpli�cation of subproblems approach becomes more
signi�cant with increase in the size of test problems.

4.3. Analysis of test problem parameters
In order to analyze the e�ects of number of jobs and
number of stages in the test problems on the quality
of the proposed approaches, a two-way ANOVA is
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Figure 4. Interaction between the proposed approaches
and number of jobs.

Figure 5. Interaction between the proposed approaches
and number of stages.

applied in this research. For this purpose, mean OG
plot for interaction between the proposed approaches,
and number of jobs and number of stages are shown in
Figures 4 and 5, respectively.

As can be seen in both Figures 4 and 5, the simpli-
�cation of subproblems works better than dominance
rules in all the cases. Furthermore, by increasing the
number of jobs, the di�erence between two proposed
approaches is signi�cantly increased. Also, if the
number of stages is set to level 4, we can see the biggest
di�erence between the two proposed approaches.

5. Conclusion

In this research, a well-known real-world problem,
namely HFS scheduling problem with unrelated par-

allel machines in each stage, has been investigated.
Since the problem has proven to be NP-hard, the
monolithic MILP cannot achieve the optimal solutions
in reasonable time. Thus, we proposed a Lagrangian
Relaxation (LR) method to solve the problem. Fur-
thermore, to solve the generated subproblems in LR,
we developed two approaches, namely dominance rules
and simpli�cation of subproblems, to reduce the com-
plexity. The results of the experiments show that the
simpli�cation of subproblems has better performance
than the dominance rules in solving the small- and
large-size problems.

Future research can be conducted to consider
other characteristics of the HFS environments, such
as availability constraints, sequence-dependent setup
time (cost), group scheduling, and identical machines.
In addition, other exact approaches such as branch-
and-cut, benders decomposition, and branch-and-price
can be used to solve the HFS problem with unrelated
parallel machines.
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