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Abstract. A multi-objective Optimality Criteria (OC) is used to obtain optimum design
of metal cylindrical shells under combined external loading. The objectives are to maximize
the axial and hoop sti�ness and minimize the mass of sti�ened cylinders subject to the
constraints, including functions of weight and buckling load, in such a way that the sti�ened
shell has no increase in weight and no decrease in buckling load, with respect to the initial
unsti�ened shell. The optimization process contains six design variables, including shell
thickness, number of circular ring sti�eners, number of longitudinal stringer sti�eners,
height of ring sti�eners, width of ring sti�eners, and longitudinal sti�ener eccentricity
from the shell centerline. In the analytical solution, the Rayleigh-Ritz energy procedure
is applied and the ring sti�eners are treated as discrete elements. The shapes of the ring
and stringer sti�eners are assumed rectangular and Z, respectively. The shell is subjected
to uniform axial and non-constant external pressure, simultaneously. The longitudinal
stringers are placed in equal spacing, whereas the rings can be placed in an unequal space,
due to the non-constant of external pressure over the cylinder length. The results show
that the iteration numbers depend on the ring sti�ener space states.
c 2015 Sharif University of Technology. All rights reserved.

1. Introduction

Cylindrical shells are mostly used in structural applica-
tions, such as pipes conveying uids or gases, aircraft
and aerospace industries, and marine vessels. With
the aim of having minimum weight, the load-carrying
capacity of these structures is generally restricted by a
loss of stability under axial compression and external
pressure. Sti�ening of the shell with longitudinal
stringers and circumferential rings is one of a few
ways to increase the shell buckling load and reduce
its weight. Some researchers have treated the opti-
mization of sti�ened cylindrical shells. Damodar and
Navin [1] examined the optimal design of composite
grid-sti�ened panels and shells with variable curvature
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subjected to global and local buckling constraints.
Akl et al. [2] carried out the optimal design of un-
derwater isotropic sti�ened cylindrical shells using a
Pareto/min-max multi-criteria optimization procedure.
The adopted procedure aimed to, simultaneously, min-
imize either the shell vibration and associated sound
radiation or the vibration, noise radiation, weight, and
cost of the sti�ened shell. Also, some researchers
have treated the optimization of sti�ened cylindrical
shells. Topal [3] carried out the multi-objective opti-
mization of laminated composite cylindrical shells for
maximum frequency and buckling load without any
constraint.

The present paper deals with the multi-objective
optimization of ring and stringer sti�ened cylindrical
shells for minimum weight and maximum critical global
buckling load, which includes axial compression and
hydrostatic external pressure, using the OC method.
The constraints involve functions of weight and critical
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Figure 1. Three types of ring spacing on the cylindrical
shells.

buckling load. The analysis is implemented based
on Classical Shell Theory for shells, with simply
supported boundary conditions. The optimization
is carried out for sti�ened shells with three types
of ring spacing distribution, which is illustrated in
Figure 1. The study provides the optimum values
of the objective functions, corresponding to the op-
timal values of the design variables, including shell
thickness, number of rings and stringers, height of
rings, the eccentricity of stringers from the centerline
of the shell, and the order of ring spacing distribu-
tion. Comparisons between the two single-objective
weight and buckling optimizations, as well as the
multi-objective weight and buckling optimization, are
made, being useful for relevant research and applica-
tions.

2. OC method

In general, Optimality Criteria (OC) methods are opti-
mization algorithms which seek the optimum through
�nding a solution that satis�es some pre-speci�ed crite-
ria, which are postulated to the corresponding optimal
result for the problem. In these methods, the optimum
is sought without explicit concern for an objective
function. Design modi�cations in these methods are
usually based on a recursive resizing formula derived
from the optimality criterion [4].

The attractive features of OC methods caused
further advances in modern structural optimization.
For example, Sander and Fleury [5] proposed a mixture
of optimality criteria and mathematical programming
methods in a dual formulation of the design prob-
lem.

Since all sizes and numbers of sti�eners are de-
�ned in discrete value assembly, the OC method can
be the appropriate option for optimal solution. The
optimum value of the variable from Eq. (1) is found as:
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in which xi is the variable, �j are the Lagrangian co-
e�cients, � is the value of optimization steps, function
(f) is the objective function and, (gi) are condition
functions that are de�ned, subsequently.

3. Analytical formulation

Consider a thin uniform cylindrical shell with uniform
thickness, t, radius, R, length, L, mass density, �,
modulus of elasticity, E, Poisson ratio, v, and shear
modulus, G = E=2(1+v), as displayed in Figure 2. The
shell is circumferentially sti�ened by nr rings of equal
or unequal spacing and is also longitudinally sti�ened
by ns stringers of equal spacing, which may be placed
either internally or externally. The form of the ith
ring sti�ener cross section is rectangular with constant
width, bri, and depth, dri, and is located at distance
xri from one end of the shell, which can be arranged
by one of the three types of ring spacing (Figure 1).
The height of the rings may vary along the length of
the shell but the width of the rings is equal along it.
The stringer sections are Z-shaped and the same size.
A coordinate system (x; y; z) is �xed on the middle
surface of the shell at one of its two ends, as shown
in Figure 2. In general, the sti�eners may be made of
materials di�erent from the parent shell material, with
�r, �s, Er, Es, Gr, Gs, vr and vs denoting the ring and
stringer mass density, Young modulus, shear modulus,
and Poisson ratio, respectively. All rings and stringers
are the same material.

The displacement �eld in the classical theory of
thin shells can be expressed in the cylindrical coordi-
nate system as follows:

u(x; �; z) = u0(x; �) + z
�
�@w0(x; �)

@x

�
;

v(x; �; z) = v0(x; �) + z
�
�@w0(x; �)

R@�
+
v0(x; �)
R

�
;

w(x; �; z) = w0(x; �); (2)

where (u; v; w) are the orthogonal components of
displacement of an arbitrary point (x; �; z) in the
shell along the coordinates (x; �; z), respectively, and
(u0; v0; w0) are the displacements of the shell mid-
surface at point (x; �).

The strain-displacement relations from Love thin
shell theory are de�ned as:

" = "(0) + Z�;
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Figure 2. Sti�ened shell con�guration, geometrical properties, loading method and coordinate system.
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where "(0)
xx , "(0)

�� and (0)
x� are the normal and shear

strains at the mid-surface (z = 0), �xx, ��� are the
mid-surface changes in curvature and �x� is the mid-
surface twist.

The boundary conditions of the shell are standard
simply supported v = w = 0 at x = 0; L. The
displacement components (u0; v0; w0) may be de�ned
as:

u0(x; y) = u1 cos
�m�x

L

�
cos(n�);

v0(x; y) = v1 sin
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L

�
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�m�x

L

�
cos(n�); (4)

where m and n are the longitudinal and circumferential
wave numbers, respectively, and u1, v1 and w1 are the
displacement coe�cients. The strain energy of the shell

in terms of strains is expressed by:
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in which "xx and "�� are the normal strains in the x
and � directions of the shell, and x� is the shear strain
in the x-� plane.

The strain energy of all stringers is expressed as:

Ustring =
1
d
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where Ixs, I�s and Izs are the second moment of areas
about the x, � and z axes, As is the cross-sectional area,
Zs is the eccentricity of the stringers, d is the equal
space between the stringers, and "xx and w are the
axial strain and out of plane deformations, respectively,
as de�ned in Eqs. (1) and (2). In this formula, the
stringers are considered a continuous shell above the
main shell.
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Table 1. Comparison of critical buckling loads, Pxcr (N/mm), and the number of iterations for �nding optimum values of
ring-sti�ened cylindrical shells.

Sti�ened
type

Pcr in [8]
Pcr in

the present
study

Di�erence in
Pcr

Iteration
number

in [8]

Iteration number
in the present

study

Di�erence in
iteration
number

Ring
sti�ened

9179.3 9181.26 2% 10 5 5

The displacement functions of the ring sti�eners
in three directions are:
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Now, the strain energy for the ith ring is expressed as:
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where I�r and Izr are the second moment of areas about
� and z axes, Ar is the cross-sectional area, and Zr is
the eccentricity of the ith rings.

The work done by the compressive load (P ) and
external hydrostatic pressure (q = P+L��w) (Figure 2)
during buckling is de�ned as [6]:
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The total potential energy, Utot, of the system is
obtained by:

Utot = Ushell + Ustring +
NX
i=1

Uringi + wp + wq: (10)

For starting the optimization process, we use the exact
formula for critical load that is obtained according
to [7].

Also, for the optimization process, the weights of
the shell, rings, and stringers are given by:

Wsh = 2�RtL�shg;

Wr = 2�
�
R+

t
2

+ Zr
�
Arnr�rg

!Wtot = Wsh +Wr +Ws;

Ws = LAsns�sg: (11)

4. Validation of buckling formulation

To examine the validity of the derived solution, the
critical optimum values of variables obtained from the
presented analysis are compared with those existing
in well-known sources for the case of ring-sti�ened
cylindrical shells.

For a ring-sti�ened cylindrical shell, the results
of the current study are compared with those of
Ref. [8], as presented in Table 1. The geometric and
material properties of the simply supported, externally
equal spaced, ring-sti�ened cylindrical shell are L =
247:5 mm, R = 82:5 mm, t = 2:5 mm, v = 0:29 and
E = 200 GPa. In Table 2, we describe our optimization
procedure for this case (k = 1).

As seen in Table 2, our optimization procedure
reached the same result as in Ref [8] in 5 steps less
than in Ref [8].

5. OC optimization procedure

A multi-objective, weight and buckling optimization of
orthogonally sti�ened cylindrical shells is proposed for
three types of circumferentially sti�ened ring. Empha-
sis is placed on selecting the optimal design parameters
of sti�ened shells using the OC method. Consider a
shell with length L = 2 m, radius R = 0:75 m, and
initial thickness t = 0:01 m with simply supported
boundary conditions. The shell and sti�eners are made
of steel with � = 7800 kg/m3, E = 200 GPa and
v = 0:3. The unsti�ened shell has a weight of W0 and
critical buckling load of Pcr0. The optimization aims
to maximize shell buckling load and minimize shell
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Table 2. Optimization path that program passed to reach the result of Ref. [8] for case k = 1.

Iteration t Zs� ns nr W Pcr Ring's no.=nr
(m) (t=2) (KN) (KN/mm) i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

1 0.0025 - - - 24.61 9.17 - - - - - -

2 0.002 - - 3 21.6 9.18 br = 0.004 0.004 0.004 - - -
dr = 0.004 0.004 0.004 - - -

3 0.00165 - - 5 19.8 9.1808 br = 0.0035 0.004 0.004 0.004 0.0035 -
dr = 0.0045 0.0045 0.0055 0.0045 0.0045 -

4 0.00155 - - 6 19.66 9.1811 br = 0.0035 0.0035 0.004 0.004 0.0035 0.0035
dr = 0.0045 0.005 0.0055 0.0055 0.005 0.0045

5 0.0015 - - 6 19.6 9.1812 br = 0.0035 0.0035 0.004 0. 004 0.0035 0.0035
dr = 0.005 0.0055 0.006 0.006 0.0055 0.005

weight, instantaneously. Throughout the optimization
process, the thickness of the shell is reduced and the
number of sti�eners is increased at each step. On this
basis, the total objective function (f) is de�ned as:

f =
W
W0
� Pcr
Pcr0

: (12)

In the OC method, the condition functions, (gi), are
de�ned as:

g1 = 0:005 < dr; g2 = dr < 0:05;

g3 = 0:01 < br; g4 = br < 0:1;

g5 = 0:02 < Zs � t=2; g6 = Zs � t=2 < 0:1;

g7 = 4 < ns; g8 = ns < 22;

g9 = 3 < nr; g10 = nr < 21: (13)

Therefore, in Eq. (1), \m" is equal to number 10 and
\n" is equal to number 5. Moreover, the identical
sized rings can be spaced in di�erent arrangements.
A ring spacing distribution function (xri) representing
the location of the ith ring along the shell length, is
de�ned as:

xr1 = 0:2m;
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6. Optimization results and discussion

The discrete values of the design variables used in the
OC method are listed below. At each step, the value
of the variables will be compared with those available
in the list, and by considering the constraints, the
nearest value will be selected. The OC procedure will
be continued until the convergence in the results is
achieved. In this work, the control of convergence was
undertaken on variables bri and dri in which, in two
consecutive iterations, the value of bri or dri was almost
the same; then, the OC procedure would be stopped.
Also, the eccentricity of the stringer sti�eners, as a
variable, was considered in this study. The Z-shaped
cross sections are selected from available commercial
products, listed as below:

t = f0:005; 0:0045; 0:004; 0:0035; 0:003; 0:0025;

0:002; 0:0015; 0:001; 0:0005g;
dr = f0:05; 0:045; 0:04; 0:035; 0:03; 0:025;

0:02; 0:015; 0:01; 0:005g;
br = f0:1; 0:09; 0:08; 0:07; 0:06; 0:05; 0:04;

0:03; 0:02; 0:01g;
(Zs � t=2) =f0:1; 0:09; 0:08; 0:07; 0:06; 0:05;

0:04; 0:03; 0:025; 0:02g;
ns = f22; 20; 18; 16; 14; 12; 10; 8; 6; 4g;
nr = f21; 19; 17; 15; 13; 11; 9; 7; 5; 3g
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Figure 3. Flowchart of the optimization procedure.

The following three examples are presented; In each
example, the optimization procedure is illustrated in
Figure 3.

I. The sti�ened shell is subjected only to uniform
axial pressure;

II. The sti�ened shell is subjected only to external
pressure;

III. The sti�ened shell is subjected to both uniform
axial and external pressure.

Tables 3 to 5 show the optimization process and

convergence study for a sti�ened cylindrical shell under
uniform axial pressure only (example I), for di�erent
values of \k", denoting di�erent ring spacing. The
obtained results show that for axial pressure only,
the uniform distribution of ring spacing provides the
highest buckling load with minimum weight. The
convergence process yields to 4 iterations, and is one
less than that for k = 2 and 3.

Tables 6 to 8 illustrate the optimization progress
and convergence study of a sti�ened cylindrical shell
under external pressure only (example II), for di�erent
values of k. It is seen that for the state of non-uniform
external pressure (example II), the optimum design,
based on maximum buckling load and minimum weight,
has been achieved for the case when k = 2, with the
lowest iteration in the optimization process. The next
optimum design belongs to k = 3 and the worst case is
when k = 1 was chosen.

In the last example, the optimization process has
been practiced for sti�ened cylindrical shells under
combined axial and external pressure. The results of
the convergence study have been tabulated in Tables 9
to 11. It can be observed that for this case, the
optimum design was found for k = 3, with the
highest buckling strength, and minimum weight and
optimization iteration of all cases, including k = 1 and
2. The second optimum design was obtained for k = 1
and the worst for k = 2.

Table 12 compares the optimum design of three
di�erent types of ring sti�ened cylinder. The non-
dimensional parameter, � = Pcr=W , is the ratio of the
critical buckling load over the weight.

Conclusions

This study considers an optimization study of double
sti�ened cylindrical shells under uniform axial loading
and non-uniform external pressure. The objective is
to obtain the optimum design of the ring arrangement,
in order to achieve maximum buckling strength and
minimum weight. Being a powerful discrete constraint
optimization, optimality criteria was implemented for
this research.

Table 3. Optimization path that program passed to reach the result of example I and for k = 1.

Iteration t Zs � (t=2) ns nr W Pcr Ring's no.=nr
(m) (KN) (KN/mm) i = 1 i = 2 i = 3

1 0.01 - - - 7.212 16.14 - - -

2 0.004 0.07 4 3 7.204 20.45 br = 0.06 0.06 0.06
dr = 0.045 0.04 0.045

3 0.0035 0.05 8 3 6.238 23.72 br = 0.06 0.05 0.06
dr = 0.04 0.035 0.04

4 0.003 0.04 12 3 6.124 24.14 br = 0.05 0.04 0.05
dr = 0.04 0.03 0.04
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Table 4. Optimization path that program passed to reach the result of example I and for k = 2.

Iteration t Zs � (t=2) ns nr W Pcr Ring's no.=nr
(m) (KN) (KN/mm) i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

1 0.01 - - - 7.212 16.14 - - - - - - -

2 0.004 0.07 4 3 7.204 20.45
br = 0.06 0.06 0.06 - - - -
dr = 0.045 0.04 0.045 - - - -

3 0.003 0.06 6 5 7.088 21.56
br = 0.06 0.05 0.03 0.04 0.05 - -
dr = 0.045 0.04 0.03 0.03 0.04 - -

4 0.0025 0.05 8 7 6.884 21.97
br = 0.06 0.05 0.04 0.03 0.03 0.03 0.04
dr = 0.04 0.035 0.03 0.025 0.025 0.025 0.035

5 0.0025 0.05 10 7 6.807 22.23
br = 0.06 0.05 0.04 0.03 0.03 0.03 0.04
dr = 0.035 0.03 0.025 0.02 0.02 0.02 0.03

Table 5. Optimization path that program passed to reach the result of example I and for k = 3.

Iteration t Zs � (t=2) ns nr W Pcr Ring's no.=nr
(m) (KN) (KN/mm) i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

1 0.01 - - - 7.212 16.14 - - - - - - -

2 0.004 0.07 4 3 7.204 20.45
br = 0.06 0.06 0.06 - - - -
dr = 0.045 0.04 0.045 - - - -

3 0.003 0.06 6 5 7.051 21.98
br = 0.06 0.05 0.03 0.05 0.06 - -
dr = 0.04 0.03 0.03 0.03 0.04 - -

4 0.0025 0.05 8 7 6.94 22.17
br = 0.05 0.04 0.04 0.03 0.04 0.04 0.05
dr = 0.04 0.03 0.025 0.025 0.025 0.03 0.04

5 0.0025 0.05 10 7 6.862 22.53
br = 0.05 0.04 0.03 0.03 0.03 0.04 0.05
dr = 0.035 0.025 0.025 0.02 0.025 0.025 0.035

Table 6. Optimization path that program passed to reach the result of example II and for k = 1.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)

1 0.01 - - - 7.212 52.26
2 0.004 0.05 4 5 7.028 64.37
3 0.0035 0.04 6 9 6.951 66.84
4 0.003 0.03 6 11 6.843 67.65
5 0.0025 0.025 6 13 6.756 68.12

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

1 - - - - - - - - - - - - -

2
br = 0.04 0.04 0.04 0.04 0.04 - - - - - - - -
dr = 0.04 0.04 0.045 0.045 0.05 - - - - - - - -

3
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - - - -
dr = 0.03 0.03 0.03 0.035 0.035 0.035 0.035 0.04 0.04 - - - -

4
br = 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -
dr = 0.03 0.03 0.03 0.035 0.035 0.035 0.035 0.04 0.04 0.04 0.04 - -

5
br = 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.03 0.03 0.03
dr = 0.03 0.03 0.03 0.035 0.035 0.035 0.035 0.035 0.035 0.04 0.04 0.04 0.04
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Table 7. Optimization path that program passed to reach the result of example II and for k = 2.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)

1 0.01 - - - 7.212 52.26

2 0.004 0.05 4 5 7.104 64.37

3 0.003 0.03 6 9 6.575 75.96

4 0.003 0.025 6 11 6.460 77.23

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

1 - - - - - - - - - - -

2
br = 0.04 0.04 0.04 0.04 0.04 - - - - - -

dr = 0.04 0.045 0.05 0.045 0.05 - - - - - -

3
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -

dr = 0.035 0.035 0.035 0.04 0.04 0.04 0.04 0.035 0.035 - -

4
br = 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

dr = 0.03 0.03 0.03 0.03 0.035 0.035 0.035 0.035 0.035 0.03 0.03

Table 8. Optimization path that program passed to reach the result of example II and for k = 3.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)

1 0.01 - - - 7.212 52.26

2 0.004 0.05 4 5 7.18 64.37

3 0.0035 0.04 6 7 6.852 68.24

4 0.003 0.03 6 9 6.798 69.55

5 0.0025 0.025 6 11 6.747 69.67

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

1 - - - - - - - - - - -

2
br = 0.04 0.04 0.04 0.04 0.04 - - - - - -

dr = 0.04 0.04 0.05 0.05 0.05 - - - - - -

3
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - - - -

dr = 0.035 0.035 0.04 0.05 0.05 0.045 0.045 - - - -

4
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -

dr = 0.03 0.03 0.035 0.04 0.05 0.045 0.045 0.04 0.04 - -

5
br = 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

dr = 0.03 0.03 0.035 0.035 0.04 0.045 0.045 0.045 0.04 0.04 0.04

It is found that the cylinder sti�ened with uniform
distributed and equal space rings, k = 1, under axial
pressure only, is the optimum design, with maximum
�. When the sti�ened shell was subjected to external
pressure only, the second type of proposed ring space
(k = 2) was found to be more e�cient. For the
double sti�ened cylinder under combined axial and

non-uniform external pressure, the third type ring
space (k = 3) was obtained as the optimum design.
The OC method was found to be a powerful constraint
optimization method for such complex non-linear en-
gineering problems, and the convergence speed was
found to be considerably fast. The results also show
that the sensitivity of the design variables to loading is
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Table 9. Optimization path that program passed to reach the result of example III and for k = 1.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)

1 0.01 - - - 7.212 50.14
2 0.004 0.06 4 5 7.179 61.13
3 0.0035 0.05 6 7 7.127 64.97
4 0.003 0.05 8 9 7.122 66.22
5 0.0025 0.04 10 11 7.065 66.68
6 0.0025 0.04 12 11 7.017 66.85

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

1 - - - - - - - - - - -

2
br = 0.04 0.04 0.03 0.03 0.04 - - - - - -
dr = 0.045 0.045 0.05 0.05 0.05 - - - - - -

3
br = 0.04 0.04 0.03 0.03 0.03 0.03 0.04 - - - -
dr = 0.035 0.035 0.035 0.035 0.04 0.04 0.04 - - - -

4
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -
dr = 0.025 0.025 0.03 0.03 0.03 0.035 0.035 0.04 0.04 - -

5
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
dr = 0.02 0.02 0.025 0.025 0.03 0.03 0.03 0.035 0.035 0.035 0.04

6
br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
dr = 0.02 0.02 0.02 0.02 0.025 0.025 0.03 0.03 0.03 0.035 0.035

Table 10. Optimization path that program passed to reach the result for example III and for k = 2.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)

1 0.01 - - - 7.212 50.14
2 0.004 0.06 4 5 7.141 60.85
3 0.0035 0.05 6 7 7.071 63.55
4 0.003 0.05 8 9 7.03 64.31
5 0.0025 0.04 10 11 7.009 64.98
6 0.0025 0.04 12 13 6.975 65.22

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11 i = 12 i = 13

1 - - - - - - - - - - -

2 br = 0.04 0.04 0.04 0.03 0.04 - - - - - - - -
dr = 0.04 0.045 0.045 0.05 0.045 - - - - - - - -

3
br = 0.04 0.04 0.03 0.03 0.03 0.03 0.04 - - - - - -
dr = 0.035 0.035 0.035 0.035 0.035 0.04 0.04 - - - - - -

4 br = 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - - - -
dr = 0.025 0.025 0.025 0.025 0.03 0.03 0.03 0.035 0.04 - - - -

5 br = 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -
dr = 0.025 0.025 0.025 0.025 0.025 0.03 0.03 0.03 0.035 0.035 0.04 - -

6
br = 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03
dr = 0.02 0.02 0.02 0.02 0.025 0.025 0.025 0.025 0.03 0.03 0.03 0.03 0.03
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Table 11. Optimization path that program passed to reach the result for example III and for k = 3.

Iteration t (m) Zs � (t=2) ns nr W (KN) Pcr (KN/mm)
1 0.01 - - - 7.212 50.14
2 0.0045 0.06 4 5 7.13 63.24
3 0.0035 0.05 8 9 6.948 72.69
4 0.003 0.04 10 11 6.799 73.95
5 0.003 0.04 12 11 6.753 74.32

Iteration Ring's no.=nr
i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

1 - - - - - - - - - - -

2 br = 0.04 0.03 0.04 0.03 0.03 - - - - - -
dr = 0.04 0.04 0.05 0.045 0.045 - - - - - -

3 br = 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 - -
dr = 0.02 0.02 0.025 0.025 0.025 0.03 0.03 0.03 0.03 - -

4 br = 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
dr = 0.02 0.02 0.025 0.025 0.025 0.025 0.025 0.03 0.03 0.03 0.03

5 br = 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03
dr = 0.02 0.02 0.02 0.02 0.02 0.025 0.025 0.03 0.03 0.03 0.03

Table 12. the optimum parameter �.

Examples k = 1 k = 2 k = 3
I 3:942� 103 3:266� 103 3:283� 103

II 10.083 11.955 10.326
III 9.527 9.35 11.005

dissimilar. For axial pressure, the existence of stringers
is found to be more e�cient than rings, and for
lateral pressure, the existence of rings is more e�cient
than stringers. Also, for axial pressure increase, the
width of the rings (br) is more e�cient than increasing
the height of the rings (dr), but, for lateral pressure
increase, the height of the rings (dr) is more e�cient
than increasing the width of the rings (br). The results
also show that the iteration numbers depend on the
ring sti�ener space states.

Nomenclature

u; v; w The orthogonal components of
displacement of an arbitrary point
(x; �; z) in the shell along the
coordinates (x; �; z), respectively

"(0)
xx ; "

(0)
�� ; 

(0)
x� The normal and shear strains at the

mid-surface (z = 0)
�xx; ��� The mid-surface bending curvatures
�x� The mid-surface twist curvature
m;n The longitudinal and circumferential

wave numbers, respectively
Ushell Shell internal strain energy

Ustring Stringers internal strain energy

Uringi The strain energy for the ith ring

wp External work by the compressive load
(P )

wq The work done by the external
hydrostatic pressure (q = P + L � �w)

Wsh;Ws;Wr The weights of the shell, stringers, and
rings, respectively

L The length of the shell

R The radius of the shell

t The thickness of the shell

Ixs; I�s; Izs The moment of inertia of stringers
about x, � and z axes

As The cross-sectional area of stringers

Zs The eccentricity of stringers

ns The number of stringers

d The equal space among stringers

Ixr; I�r; Izr The second moment of areas of rings
about x, � and z axes

Ar Rings cross section

Zr Ring eccentricity

xri A ring spacing distribution function
representing the location of the ith
ring along the shell length

nr The number of rings
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