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Abstract. The Standard Penetration Test (SPT) is one of the most e�ective tests for
quick and inexpensive evaluation of the mechanical properties of soil layers. Numerous
studies have been conducted to evaluate correlations between SPT blow counts (NSPT )
and soil properties such as friction angle ('0). In this paper, the relation between and in
situ parameters of soil, including NSPT , e�ective stress and �ne content, is investigated for
granular soils. In order to demonstrate the relevancy of '0 and corrected SPT blow count
(N60), a new polynomial model, based on the Group Method of Data Handling (GMDH)
type Neural Network (NN), was used based on 195 data sets including three soil parameters.
These were recorded after two major earthquakes in Turkey and Taiwan in 1999. This
study addresses the question of whether GMDH-type NN is capable of estimating '0 based
on speci�ed variables. Results con�rm that GMDH-type NN provide an e�ective way to
recognize data patterns and predict performance over granular soils accurately. Finally,
the e�ect of �ne content and e�ective overburden stress on the correlation of N60 and '0
has been studied using sensitivity analysis.
© 2015 Sharif University of Technology. All rights reserved.

1. Introduction

One of the important parameters considered a typi-
cal characteristic for reconnaissance of granular soils
is the friction angle ('0). Owing to di�culties in
soil sampling, and the high costs of representative
undisturbed specimens, in-situ investigations, in lieu
of laboratory element testing, are preferred to de-
termine '0 directly. Therefore, it is necessary to
determine '0 indirectly through methods such as the
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SPT and Cone Penetration Test (CPT), which are
commonly used for conventional geotechnical site in-
vestigations [1].

Conducting a SPT test during boring is widely
used in geotechnical investigation projects. Local
correlations and vast practical equations are available
that relate SPT blow counts or NSPT to the engineering
behavior of earthworks and foundations [2].

In geotechnical engineering, many design param-
eters of soil are associated with the SPT. SPT blow
count is signi�cant in site investigation, along with
other geotechnical parameters such as '0. To the
author's knowledge, there is no established theoretical
relation between NSPT and '0.

Hence, their dependency, and evaluation of
geotechnical properties, requires empirical correlations,
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statistical analysis and system identi�cation tech-
niques.

The interdependency of factors involved in such
problems prevents the use of regression analysis and
demands a more extensive and sophisticated approach.
The Group Method of Data Handling (GMDH) type
Neural Networks (NN) can be used to model complex
systems, where unknown relationships exist between
variables, without having speci�c knowledge of the
process. In recent years, the use of such self-organizing
networks has led to successful application of the
GMDH-type NN in geotechnical science (e.g. [3-5]).

This treatment aims to develop a GMDH-type
NN for the prediction friction angle ('0), based on
various soil parameters, such as corrected SPT blow
count (N60), �ne content and e�ective overburden
stress for granular soils. To this end, the paper �rst
reviews previous e�orts in correlating NSPT and '0.
Then, a brief explanation of the case histories under
consideration and the procedure of modeling with
GMDH are presented. Finally, the developed GMDH
model is described and its accuracy is assessed through
sensitivity analysis.

2. Background to previously proposed
correlations

The literature presents a portfolio of research regarding
application of NSPT for geotechnical characterization.
A correlation between shear strength parameter, '0,

standard penetration resistance and e�ective overbur-
den pressure was published by Schmertman, based on
the previous work by De Mello. It must be noted that
the mentioned chart provides only a rough estimate of
the '0 value and should not be used for very shallow
depths [6].

Also, other researchers have proposed correlations
between NSPT and '0 for di�erent types of soil. Shioi
and Fukui [7] proposed empirical relationships between
'0 and energy corrected NSPT (N70). It is obtained
from the Japanese Railway Standards [8] for roads,
bridges and buildings. Zekkos et al. [9] presented an
equation, based on best �t on the resulted equation
suggested by Hatanaka and Uchida [10].

Sarat Kumar and Prabir Kumar [11] and Gok-
tepea et al. [12] used arti�cial neural networks to
correlate the friction angle of clays based on the index
properties of soil. Mahdavian and Lalerokh [13] stated
that a fuzzy algorithm can predict friction angle based
on geotechnical soil properties. Esmaeilzadeh et al. [14]
presented a detailed historical review and reported
statistical correlations between N70 and '0 for sandy
soil of Babolsar city, Iran, based on 46 standard
penetration tests and direct shear tests.

Others have developed correlating equations ac-
counting for corrected SPT blow counts (N60) (e.g. [15-
17]) and e�ective overburden stress (e.g. [18,19]). How-
ever, almost all studies have focused on relationships
between NSPT and '0. Table 1 summarizes an inven-
tory of antecedent research and empirical correlations.

Table 1. Inventory of the proposed correlations between uncorrected NSPT and '.

Ref. Proposed relations Remark

Dunham (1954)

' = (12N60)0:5 + 25 Angular and well-grained
soil particles

' = (12N60)0:5 + 15 Round and uniform-grained
soil particles

' = (12N60)0:5 + 20
Round and well-grained or

angular and uniform-grained
soil particles

Pek et al. (1974) '0 = 53:881� 27:6034exp(0:0147N60) - - -

Shioi and Fukui (1982)
' =

p
18N 070 + 15 Roads

' = 0:36N 070 + 27 Bridges

' = 0:45N 070 + 20 Buildings

Wol� (1986) ' = 27:1 + 0:3N60 � 0:00054N2
60 Sand

Kulhawy and Mayne (1990) ' = tan�1 fN60[12:2 + 20:3(�0=pa)]g0:34 Sand

Hatanaka and Uchida (1996) '0 =
p

20CNN60 + 20 Sand

Zekkos et al. (2004) '0 = 3:5
p
N1;60 + 22:3� " - - -

Hettiarachchi and Brown (2009) '0 = �0 tan�1
h

0:2N60
K(�0=pa) � 0:68B

i
Sand

Esmaeilzadeh et al. (2012)
a : ' = 0:66(N 070) + 8:52

Sand
b : ' = 13:56 ln(N 070)� 18:20
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3. Overview of database and case histories

The �eld test results of the two earthquakes, i.e. Chi-
Chi and Kocaeli, were used in this study to develop a
GMDH model. Hanna et al. [20] synthesized the results
of both site investigation programs. The database
consists of 195 case records; 120, 50 and 25 data
sets were used, respectively, for training, testing and
the validation phase. A sample database given in
Table 2 covers a wide range of soil parameters, as
well as corrected SPT blow counts (N60), FC (Fine
Content% � 75�m), e�ective overburden stresses (�0v0)
and '0. Further details regarding the measurement and
interpretation of the foregoing parameters are available
in Hanna et al. [20].

Figure 1 illustrates the distribution of descriptive
variable characteristics for all case histories.

4. Principles of modeling using GMDH type
NN

The GMDH algorithm is a self-organizing approach
by which, gradually, complicated models are gener-

Table 2. A sample of the database extracted from Hanna
et al. [19].

N60 FC (%) �0v0 (kPa) '0
35 8 79 40.78
31 41 67.6 40.2
31 18 163.8 36.97
23 45 83 35.1
48 35 176.2 41.07
28 10 181.4 36.25
34 4 96.6 44.29
8 42 67.6 29.17
6 43 20.5 29.17
20 12 162.4 33.86
16 25 76.1 32.96
13 23 77 31.49
49 19 188.2 41.35
44 11 96.3 43.24
24 20 179.9 35.1
18 10 71.9 33.42

ated, based on evaluation of their performances on
a set of multi-input, single-output data pairs (xi; yi)
(i = 1; 2; :::;M). The GMDH was �rst developed by
Ivakhnenko [21] as a multivariate analysis method for
complex system modeling and identi�cation. The main
idea of GMDH is to build an analytical function in
a feed forward network based on a quadratic node
transfer function, whose coe�cients are obtained using
a regression technique [22].

By means of the GMDH algorithm, a model can
be represented as a set of neurons in which di�erent
pairs of them in each layer are connected through a
quadratic polynomial, and thus, produce new neurons
in the next layer. Such representation can be used
in modeling to map inputs to outputs. The formal
de�nition of the identi�cation problem is to �nd a
function, f̂ , that can be used to approximate instead of
the observed one, f̂ , in order to predict output, ŷ, for a
given input vector, X = (x1; x2; x3; :::; xn), as close as
possible to its observed output, ŷ. Therefore, given M
observations of multi-input, single output data pairs,
so that:

yi = f(xi1; xi2; xi3; :::; xin) (i = 1; 2; 3; :::;M): (1)

The next step is training a GMDH type neural network
to predict the output values, ŷ, for any given input
vector, X = (xi1; xi2; xi3; :::; xin); the predicted output
is de�ned as:

ŷi = f̂(xi1; xi2; xi3; :::; xin) (i = 1; 2; 3; :::;M): (2)

The problem is now to determine a GMDH type neural
network, such that the square of di�erences between
the observed and predicted outputs is minimized, that
is:

MX
i=1

h
f̂(xi1; xi2; xi3; :::; xin)� yi

i2 ! min: (3)

The general connection between input and output
variables can be de�ned by a complicated discrete
form of the Volterra functional series, known as the

Figure 1. Distribution of descriptive variable characteristics for all case histories.
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Kolmogorov-Gabor polynomial; Eq. (4) represents the
polynomial series:

y =a0 +
nX
i=1

aixi +
nX
i=1

nX
j=1

aijxixj

+
nX
i=1

nX
j=1

nX
k=1

aijkxixjxk + ::: (4)

The full form mathematical description can be repre-
sented by a system of partial quadratic polynomials
consisting of only two variables (neurons) in the form
of:

ŷ =G(xi; xj) = a0 + a1xi + a2xj + a3xixj

+ a4x2
i + a5x2

j : (5)

By this means, the partial quadratic description is used
in a network of connected neurons during a back cal-
culation procedure to build the general mathematical
relation between inputs and outputs given in Eq. (4).
The coe�cients, ai, in Eq. (5) are calculated using
regression techniques, so that the di�erence between
the observed output, y, and the calculated one, ŷ, for
each pair of xi and yi as input variables is minimized.
Apparently, a tree of polynomials is constructed using
the quadratic form given in Eq. (5), whose coe�cients
are obtained according to the least squares rule. In this
way, the coe�cients of each quadratic function, Gi, are
derived to �t, optimally, the output in the whole set of
input-output data pairs, that is:

E =
PM
i=1 (yi �Gi())2

M
! min: (6)

In the basic GMDH algorithm, all possibilities of two
independent variables out of the total n input variables
are taken to construct the regression polynomial in
the form of Eq. (5) that best �ts the dependent
observations (yi = 1; 2; :::;M) in a least squares sense.

Consequently,
�
n
2

�
= n(n�1)

2 neurons will be built up

in the �rst hidden layer of the feed forward network
from the observations f(yi; xip; xiq); (i = 1; 2; :::;M)g
for di�erent p; q 2 f1; 2; :::; ng.

In other words, it is now possible to construct
M data triples f(yi; xip; xiq); (i = 1; 2; :::;M)g from
observations using p; q 2 f1; 2; :::; ng in the form of:24 x1p x1q y1

x2p x2q y2
xMp xMq yM

35 : (7)

Using the quadratic sub-expression in the form of
Eq. (5) for each row of M data triples, the following
matrix equation can be readily obtained as:

Aa = Y; (8)

a = fa0 + a1 + a2 + a3 + a4 + a5g; (9)

Y = fy1; y2; y3; :::; yMgT ; (10)

where a is the vector of unknown coe�cients for the
quadratic polynomial in Eq. (5) and (Y ) is the vector
of output values from observation. It can be readily
seen that:2641 x1p x1q x1px1q x2

1p x2
1q

1 x2p x2q x2px2q x2
2p x2

2q

1 xMp xMq xMpxMq x2
Mp x2

Mq

375 : (11)

The least squares technique from multiple regression
analysis leads to solve the normal equations;

a = (ATA)�1ATY: (12)

Eq. (12) determines the vector of best coe�cients of
Eq. (5) for the whole set of M data triples. It should be
noted that this procedure is repeated for each neuron
of the next hidden layer, according to the connectivity
topology of the network. However, such a solution
directly from normal equations is rather susceptible to
round o� errors and more important to the singularity
of these equations [23].

5. Proposed model

In order to develop the evolved GMDH-type NN, the
database was divided into two di�erent sets, namely,
training and testing. The training set is consisted of
120 inputs-output data pairs. The testing set, con-
sisting of 50 inputs-output unforeseen data during the
training process, is merely used for testing the trained
GMDH-type NN models. Of note, the training and
testing sets are randomly selected from the data sets
with approximately the same statistical information.
Figure 2 illustrates the model predictive performance
in comparison with the observed data tested for the
training dataset. As seen in Figure 2, predicted and
measured values are fairly close.

Figure 2. Neural network model predicted performance
in comparison with observed data for the training set.
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Figure 3. Evolved structure of generalized GMDH neural
network for '0.

Table 3. Statistical information for this study model in
predicting friction angle.

Statistic R2 MSE MAD RMSE

Neural training 0.998 1.57 0.8 1.25
Neural testing 0.997 2.2 0.94 1.48

The corresponding polynomial representation of
such a model for the friction angle is as follows:

'0 =� 3:574� 0:183FC + 1:346Y1 + 0:00111FC2

� 0:0056Y 2
1 + 0:00127Y1FC

Y1 =27:298 + 0:638N60 � 0:0422�0v0 � 0:00327N2
60

+ 0:000146�0v0 � 0:000696�0v0N60: (13)

The architecture of the evolved GMDH type neural
networks is shown in Figure 3, corresponding to the
genome representations.

As presented in Table 3, the statistically assessed
accuracy of the model is evaluated via R2 (absolute
fraction of variance), RMSE (root-mean squared error),
MSE (mean squared error), and MAD (mean absolute
deviation), de�ned as follows:

R2 = 1�
"PM

i=0
�
Yi(Model) � Yi(Actual)

�2PM
i=0(Yi(Actual))

#
; (14)

RMSE =

"PM
i=0
�
Yi(Model) � Yi( Actual)

�2
M

#1=2

; (15)

MSE =

"PM
i=0
�
Yi(Model) � Yi( Actual)

�2
M

#
; (16)

MAD =

24���PM
i=0
�
Yi(Model) � Yi( Actual)

����
M

35 : (17)

The ability of the polynomial model to predict unfore-
seen data is conducted for the testing dataset. As seen
in Figure 4, results from the model agree well with
measured values.

Figure 4. Neural network model performance in
comparison with observed data for the testing set.

6. Validation and sensitivity analysis

The accuracy of the proposed model in predicting '0
was compared with correlations presented previously
by Pek et al. [16], Shioi and Fukui [7], Wol� [17],
Kulhawy and Mayne [18], Hatanaka and Uchida [10],
Hettiarachch and Brown [19] and Esmaeilzadeh et
al. [14]. The comparison was performed for all 25 val-
idation cases that not included in training and testing
sets. Figure 5 illustrates the scattering of predicted
(calculated by di�erent methods) versus observed '0
values.

As seen, the correlations of Kulhawy and
Mayne [18] and Hatanaka and Uchida [10] overesti-
mate measured values. Other researchers, such as
Esmaeilzadeh et al. [14], Hettiarachch and Brown [19],
Wol� [17], Shioi and Fukui [7] and Pek et al. [16], esti-
mate '0 lower than measured values. But, according to
this study, the GMDH model predicts the �ction angle
accurately.

A sensitivity analysis is performed by a technique
similar to the Partial Derivative or PaD method [24].
The basis for this method [25] is that the partial
derivative of output Yj , with respect to input xi is a
mathematical de�nition, reecting the sensitivity of Yj
to xi. Therefore, the higher the sensitivity of a function
to a speci�c input variable, the greater its partial
derivative with respect to that variable will be. This
method can also reveal the e�ect of an input change on
the network's �nal output value. For example, if the
numerical value of the partial derivative, with respect
to a variable, at a speci�c point, is positive, then, a
slight increase in input variable will cause an increase
in network output. Results of sensitivity analysis for
the GMDH model of '0 are shown in Figure 6.

Overall, N60 has positive e�ect on '0 (Fig-
ure 6(a)). That is to say, an increase in N60 leads to an
increase in '0. The observed change trend is ascending
with an increase in N60. The main reason for this
issue is NSPT dependency on soil strength and density,
which, as density increases, shear strength increases
and results in a higher '0 [6].

As seen in Figure 6(b), Fine Content (FC) has a
decreasing e�ect on '0. This negative e�ect is less at
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Figure 5. Estimated versus measured friction angle by di�erent methods.
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Figure 6. Result of sensitivity analysis based on Nspt (a), FC (b) and overburden stresses (c).

high FC values. The trend can be attributed to the low
for �ne soils in comparison to coarse soils [6].

Figure 6(c), shows the sensitivity of '0 based on
e�ective overburden stresses, �0v0. It can be concluded
that �0v0, as a representation of con�ning stress [6], has
a negative e�ect on '0.

Also, a sensitivity analysis of the obtained model
can be done to evaluate the input parameters inuence
on model output. This is carried out by changing each
of the input neurons at a constant rate, one at a time,
while other variables are constant. Various constant
rates (0.9, 0.95, 1.05, 1.1 and 1.2) were selected in
the study. For every input neuron, the percentage
change in the output, as a result of the change in the
input neuron, is observed. The sensitivity of each input
neuron is calculated by the following equation [26]:

Sensitivity level of X(%) =
1
M

MX
j=1�

%change in output
%change in input

�
j
� 100: (18)

Results of the mentioned analysis of the obtained model
are shown in Figure 7. It can be noticed that ' is
considerably inuenced by N60.

7. Conclusions

The main aim of this paper is to deploy an identi�ca-
tion system technique to develop '0 correlation with

Figure 7. Results of the sensitivity analysis of the
obtained model for friction angle.

soil geotechnical properties, and assess their inuence
on '0. The evolved GMDH type neural network
has been used to obtain a model for friction angle
prediction.

A database of historical cases, consisting of 195
datasets from earthquakes in Taiwan and Turkey, was
collected. A polynomial model was developed for '0 in
terms of N60, e�ective stress and �ne content.

The validation and performance of the new model
was assessed, and compared with previous statistical
correlations. For all 25 validation case records, in-
cluding '0 and soil geotechnical properties, predicted
and measured '0 values were compared. The results
demonstrate that correlations represented by Kulhawy
and Mayne [18], and Hatanaka and Uchida [10] are
overestimated, and those represented by Esmaeilzadeh
et al. [14], Hettiarachch and Brown [19], Wol� [17],
Shioi and Fukui [7] and Pek et al. [16] result in
lower '0 than the measured values. However, the
proposed approach predicts '0 with high accuracy and
low variance.

The sensitivity analysis showed the e�ect and
signi�cance of input parameters, i.e. soil properties,
on the predicted '0. The results reveal that '0 is con-
siderably a�ected by N60, and decreases by increasing
�0v0 and �ne content.

Results obtained from this study and previous
research reveal that empirical correlations derived from
a local dataset should not be implemented for di�erent
sites with signi�cantly varying properties. Therefore,
the study approach should be used while paying at-
tention to geotechnical engineering for the same ranges
and conditions.
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