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1. Introduction

Abstract. Seismic fragility analysis is one of the main steps of consequence based
earthquake engineering process. Accurate uncertainties modeling involved in this method-
ology, affects the final results of seismic fragility analysis and hence assessment of decision
variables which are the final products of performance-based seismic analysis. One aspect
of such efforts is to incorporate the sources of uncertainties associated with various factors
controlling seismic loads on the buildings as well as structural responses to such excitations.
Probabilistic approach is usually used to model quantitative sources of such uncertainties,
however, there are other factors with descriptive nature which probabilistic approach may
not well incorporate them. In this paper a fuzzy randomness approach is used to model
epistemic uncertainties as an alternative to the conventional probabilistic method. The
approach is used to model those uncertainties which have not been addressed by the
others, in particular the definition of the collapse limit state. To illustrate the efficiency
of the proposed approach, fragility curves for a sample moment-resisting steel frame are
developed. The results demonstrate the superiority of fuzzy solution in comparison with
excising probabilistic methods to incorporate epistemic uncertainty in view of much less
computational effort.

(© 2015 Sharif University of Technology. All rights reserved.

in order to provide solutions which could assist all
stakeholders to make reasonable decision with regard

There are four major components and sources of uncer-
tainties involved in the consequence-based evaluation
of structural seismic performance. Such evaluation of
building performance should be able to incorporate
variability associated with seismic hazard, structural
performance, structural damage, and decision vari-
ables. These uncertainties should be taken into account
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to desired performarnce of new buildings or those under
retrofitting process. PEER [1] summarizes the decision
variables as number of casualties, down time and
economic loss, and presents a consistent probabilistic
framework to incorporate sources of uncertainties to-
wards assessment of these decision variables [2].
Variability in the Intensity Measure (IM) is usu-
ally expressed by probabilistic strong ground motion
values with various return periods or probability of
exceedance. As intensity measure various parameters,
such as Peak Ground Acceleration (PGA), Spectral
Acceleration of first-mode natural period (SA) [3], or
vector valued SA and epsilon may be used [4]. The
variability in the estimated ground motion proposed
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by conventional seismic hazard methods project the
likelihood of seismic events, as well as variability of
induced ground motions modeled by empirical at-
tenuation functions. Seismic hazard variability may
also address other sources of uncertainties associated
with earthquake source mechanism, ground motion
frequency content and duration and even record-to-
record variability [5].

The results of performing multiple nonlinear dy-
namic analyses of structural model subjected to a
selected set of ground motion records (each scaled to
increasing level of intensity) can be presented in terms
of IDA curves. Each curve represents intensity measure
(scalar/vector) versus Engineering Demand Parameter
(EDP). The EDPs are commonly measured in terms
of maximum story drift, floor acceleration or plastic
hinge rotation. The contribution of EDP given IM
(EDP|IM), in PEER probabilistic {framework, is calcu-
lated based on results of IDA curves [3]. Probabilistic
damage analysis, which relates the EDP to Damage
Measurements (DMs), is the next step in DV assess-
ment. The DMs quantitate descriptions of damage
to components of a building which affects DVs, and
may be categorized damages to structural elements,
nonstructural elements and contents. Probabilistic
aspect of DM given EDP (DM|EDP) is another contri-
bution to DVs uncertainties. Successful evaluation of
assumed DVs, in terms of necessary repairs, downtime
estimation or number of casualties, requires DMs to be
estimated relevantly. The seismic fragility functions,
defined as the probability of a structural system or
element reaching or exceeding a damage state, given
a seismic intensity measure or EDP for equal seismic
hazard, constitute probability context of damage. The
convolution of these conditional probabilities is pre-
sented in the following form by PEER [6]:

/\(DV):///G(GWDM)dG(DM|EDP)

dG(EDP[IM)dA(IM), (1)

where, A(DV) is the annual rate of exceeding a de-
cision variable(s), G(DV|DM) is the complimentary
cumulative distribution function of DV conditioned
on the engineering damage measure(s), G(DM|EDP)
is the complimentary cumulative distribution function
of DM conditioned on engineering demand parame-
ter(s), G(EDP|IM) is the complimentary cumulative
distribution function of EDP conditioned on intensity
measure(s), and dA(IM) is the mean annual frequency
of intensity measure(s). In this paper, uncertainties
of a sideway collapse damage measure in moment-
resisting steel structures are investigated. Sideway
collapse is the consequence of successive reduction of
load-carrying capacity of structural components that
are part of building’s lateral load-resisting system to

the extent that second-order (P — A) effects, accel-
erated by component deterioration, overcome gravity
load resistance [7]. Two distinct uncertainty sources,
entitled as aleatory, due to randomness, and epistemic,
due to lack of knowledge or inaccuracy of analytical
model, affect the characteristics of collapse fragility
curves [5,8].

Probability theory has been applied to involve
effects of these uncertainty sources and their com-
binations by several researches [5]. A Monte Carlo
simulation, based on several realizations of probable
parameters according to their probability distributions
as input data for dynamic analyses, has been applied to
structures resulted in variation of collapse performance
of buildings, presented by lognormal probability distri-
butions [9,10].

Variations associated with some parameters, such
as construction quality and human errors, may not
well be presented by probability distributions. On
the other hand, the limit states, which are defined
linguistically as EDP or IM thresholds, corresponds to
initiation of various damage states [11]. Probabilistic
methods must be enhanced to involve these sources
of uncertainties. In this paper, the fuzzy randomness
method is proposed to consider epistemic uncertainties
effects on collapse fragility curves of steel moment-
resisting frames. Variability of applied strong ground
motions is considered as aleatory uncertainty, while
connection moment-rotation modeling parameters, en-
titled as plastic hinge rotation capacity (6p), post
capping rotation capacity (f,.), and rate of cyclic
deterioration (A), of steel connections based on the mo-
ment rotation model proposed by Ibarra and Krawin-
kler [9], are considered as epistemic uncertainties. In
previous researches, effects of these parameters on col-
lapse performance of structures have been considered
by First Order Second Moment (FOSM) and Monte
Carlo simulation Methods [12]. In this paper, fuzzy
randomness method is applied to involve modeling
parameters uncertainties. Further application of the
proposed method may be involving uncertainties of
parameters which may not be presented by probability
distributions.

Fuzzy numbers and fuzzy logic, introduced by
Zadeh in 1965 [13], are powerful tools to incorporate
epistemic uncertainties effects of linguistic variables in
various problems [14]. Fuzzy numbers are represented
by a membership function, which shows the member-
ship degree of the variable belonging to a set. Since the
experimental results, used by Lignos [15], have large
values of dispersion, as the first step, in this study
the modeling parameters are considered fuzzily and the
results are verified by previous probabilistic method-
ologies. Further application of proposed formulation
may be used similarly for the sources of uncertainties,
which may not be represented by probability distribu-
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tions such as human errors and construction quality.
Non-probabilistic method of uncertainty treatment,
applying fuzzy randomness method, has been used
in structural analysis and optimization [16], damage
detection, seismic risk analysis [17], safety assessment
of structures [18] and structural reliability [19]. This
method has not yet been applied to seismic fragility
curves derivation, applicable in probabilistic framework
of PEER. In this research, considering modeling uncer-
tainties as fuzzy numbers, fuzzy randomness method-
ology is proposed to consider epistemic uncertainties
and to derive 3-dimentional collapse fragility curves,
presenting epistemic and aleatory uncertainties, sepa-
rately.

2. Probabilistic formulation of collapse
fragility curve

Based on key variable selection, formulation of collapse
fragility curve may be written in IM-based or EDP-
based formats [7]. IM-based formulation, which applies
IM as controlling variable, is written as:

P(COH&pSGlIM = zml) :P(im i > IMpg ) :FIMLS (1m1),
(2)

where, Fiy o (im;) is the cumulative probability dis-
tribution, expressed by intensity measure of imposed
strong ground motion, which is extracted through
application of IDA to considered structure. Derivation
of parameters of this probability distribution requires
a definition of IMpg and a procedure to propagate
the epistemic and aleatory uncertainties involved in
IM, [7]. Applying EDP as intermediate variable, EDP-
Based formulation is written as:

P(Collapse|TM =im;) =S4, P(EDP,>EDP,|[EDP,

= edp,,,IM=im;).P(EDP.=edp,, ).
(3)

The collapse limit state, considered in this study, is
defined as the IM of strong ground motion in which the
structure undergoes the dynamic instability. In other
words, IM, is defined as the last-converged result on an
IDA curve at which the nonlinear response history anal-
ysis has converged [7]. Estimation of collapse capacity
of structures by EDP-based formulation results in
underestimation of EDP,, since the remaining capacity
left after IDA curve passes the collapse criterion of
20% of initial slope; furthermore EDP, is a function of
IM, which adds another approximation of EDP-based
method [12]. In this paper, IM-based formulation is
applied to evaluate collapse fragility curve of struc-
tures. Applying this approach, for each IDA curve
a point will be the representative of IMcoliapse and
the exceedance probability distribution of collapse limit

state will be achieved [12]. If fixed values of modeling
parameters are considered, only aleatory uncertainties
will be involved.

The collapse fragility curves are represented by
lognormal probability distributions [9]. The fragility
curves obtained from IDA analysis is:

P(CIM = im;) = & (Ln(m:) - “) , (4)
in which ®(.) is the standard Gaussian distribution
function and i and ¢ are mean and standard deviation
of collapse fragility curve, respectively.

3. Epistemic uncertainty treatment

There are varieties of methods for considering epistemic
uncertainties effects, such as sensitivity analysis, First-
Order-Second-Moment Method (FOSM) and Monte
Carlo simulation methods. In sensitivity analysis, the
effect of each random variable on structural response
is determined by varying a single modeling parameter
and re-evaluating the structure’s performance. This
method has been applied to select the most important
parameter in performance assessment of structures [20-
23].

In FOSM method, collapse capacity limit state
g(x) is linearized applying a Taylor series expansion
about the mean values of modeling parameters at
x = p. So that, mean of collapse fragility function
is unchanged, that is p, = g(x = p), while variance of
collapse fragility function is computed from gradients
of g(x). Gradients of g(z) are calculated by perturba-
tion of modeling parameters in a series of sensitivity
analysis, which can be done by one-side or two-side
methods [4,9]. Calculation of g(z) derivatives by one-
side and two-side methods, respectively, are given by:

99 _ g(ng) — g9(ug £nog) (5)
oQ tnog '

% _ Q(MQ—nUQ)—g(NQ"’”UQ) (6)
oQ 2nog '

Changes in mean values of collapse fragility curves
cannot be predicted applying FOSM method. In
Monte Carlo methods, thousands of input random
variable realizations and collapse capacity calculation
for each realization results in probability distribution
of collapse capacity of assumed structure [24-27]. The
crude Monte Carlo method is very elaborate in imple-
mentation and is not practical for collapse prediction
of structures with probable modeling parameters [5].
Response surface based Monte Carlo method has been
applied to reduce computational efforts by several
researches [5,24].
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The methods for combination of epistemic
and aleatory uncertainties are categorized into
mean estimate method [28] and Confidence Interval
Method [29,30]. Applying mean estimate method,
mean value of collapse fragility curve is remained
unchanged, and epistemic uncertainties affect standard
deviation of collapse fragility curve. On the other hand,
in Confidence Interval Method, epistemic uncertainties
affect mean value of collapse fragility curves and stan-
dard deviation remains unchanged.

Applying hysteretic models which are capable
of modeling deterioration of components is important
aspect of accurate estimation of collapse limit state in
structures and has been investigated in a numerous
studies [7,9,31-33].  According to advantages, such
as capability of modeling various modes of compo-
nent deterioration, refinement of parameters definition
and consistency with experimental tests of steel and
concrete components [15], modified Ibarra-Krawinkelr
model is applied here [5]. Modeling parameters of
steel moment resisting connections are considered as
epistemic uncertainties, and their effects on collapse
fragility curves are investigated in this paper. The
backbone curve of considered moment-rotation model,
referred to as modified Ibarra-Krawinkler model is
shown in Figure 1.

Definition of modeling parameters (Figure 1) is as

follows:

4. : Cap rotation

M, : Effective yield moment

By : Effective yield rotation

a. : Ultimate rotation Capacity

0, : Plastic rotation Capacity

Ope Post-Capping rotation Capacity.

The hysteretic behavior of the connection is de-
fined based on deterioration rules which are defined
according to hysteretic energy dissipated in each hys-

Moment-rotation backbone
model

Mu

0, 9. 0,

4
Figure 1. Back-bone curve of moment rotation model
based on modified Ibarra-Krawinkler model (Ibarra et al.,

2005 [9]).

= Backbone
- Cyclic-no deterioration
—— Cyclic deterioration

Figure 2. Effects of cyclic deterioration modeling on M-0
backbone curves (Zareian et al., 2009 [12]).

teretic cycle. The deterioration of basic strength, post
capping strength, unloading stiffness and reloading
stiffness can be considered in this model [22]. Compar-
ison of considering and neglecting cyclic deterioration
of component behavior is shown in Figure 2 [12].

Capacity of energy dissipation of the component
is defined by:

E, = AM,, (7)

where A is rate of cyclic deterioration and is evaluated
according to calibration of experimental results, which
is considered as a modeling parameter in this study.
It has been shown that fp, 6,. and A have the
most appreciable effects compared to other modeling
parameters on collapse performance of structures [34].
In this study these three parameters have been chosen
as modeling parameters including inherent epistemic
uncertainty.

4, Proposed method to propagate epistemic
uncertainties

In this paper, the fuzzy randomness approach is
proposed for propagation of epistemic uncertainties.
Application of fuzzy randomness method, in treatment
of epistemic uncertainty, is summarized in [18]. In this
method, the parameters with epistemic uncertainties
are presented by fuzzy numbers, defined by Zadeh in
1965 [13]. For a given membership function value, «,
a crisp set, Aa, is obtained as shown in Figure 3. This
is referred to as a “a-cut” set and expressed by:

A, ={X|MF(X) > a}, (8)

in which MF(X) is membership function value of pa-
rameter X. A range of values for @ and implementing
interval analysis methods developed by Rao and Berke,
in 1969 [35] of input variables provides fragility curves
with fuzzy means and standard deviations.

The flowchart of the proposed method is shown in
Figure 4. The first step of the proposed approach is to
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a-cut definition of fuzzy parameter X

Crisp set An

0

Figure 3. a-cut definition of X.

consider limited numbers of values for input random
variables. In this study, mean minus one standard
deviation, mean plus one standard deviation and mean
values are considered for each variable (totally 27
values). Firstly, mean and standard deviation of
equivalent uncorrelated variable are calculated, and
the perturbation of input variables is done based
on achieved means and standard deviations. The
transformation of uncorrelated realization to correlated
values is implemented later in the following. Means
and standard deviations of collapse fragility curves
are calculated based on Incremental Dynamic Analysis
of structure considering modeling parameters as per-
turbed values. Quadratic surfaces are applied to derive
analytical relationship between predictor variables (6,,,
f,c and A) and response parameters (collapse fragility
curve mean and standard deviation). Formulations of
applied quadratic functions are also discussed later.
In the next step, to involve epistemic uncer-
tainties, the modeling variables are considered as
fuzzy numbers with triangular membership functions,

between mean minus and mean plus one standard
deviation; the same interval in which the perturba-
tion of variables is implemented. Several intervals
of variables are considered by taking various vales
for a-cuts of membership functions. For each inter-
val, minimum and maximum of mean and standard
deviation of collapse fragility curves are calculated
considering constructed response surfaces, and then
solving constrained nonlinear optimization problem.
Extreme values of mean and standard deviation are
correspondent to a-cut values of derived membership
functions of mean and standard deviation of collapse
fragility curves, which involve the effects of epistemic
uncertainties. Presentation of mean and standard
deviation of collapse fragility curves by fuzzy numbers
may be interpreted as the bounds of validity for collapse
fragility curves.

Having Fuzzy input variables and resultant fuzzy
probability distribution of collapse allows us to calcu-
late the intervals of collapse probability. The interval of
the probability of collapse between IM; and IM, values
is calculated based on fuzzy probability theory [14].
The interval of the probability, or possibility according
to fuzzy randomness method, shows the effects of
epistemic uncertainties (modeling parameters), and
the probability itself shows the effects of aleatory
uncertainties. Probability density function of collapse
limit state, evaluated based on fuzzy input variables,
has a fuzzy mean and standard deviation. The PDF is

written as:
1 ~(Ln(im) - )
(im)& o D ( 262 ) O

Jov, (im) =

in which & and & are the fuzzy mean and fuzzy
standard deviation of collapse probability distribution.
If 2p = Mi—f and 2, = IM%E, collapse probability

7
c

Figure 4. The proposed approach flowchart for incorporating epistemic uncertainty associated with fuzzy randomness.
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in the interval [IM;,IM,] is calculated based on fuzzy
probability theory [14], and is written as:

P[IMhIMﬂ[a]:{[ " i (M) € o € a)}( o

It is proved that the probability, which is presented by
Eq. (7), is a fuzzy number itself. The a-cut values of
this fuzzy number are presented by [36]:

P[IMy, IMs][a] = [Pi(a), Pa(a)], (11)

in which P;(«) and P»(a) are calculated based on:

z

P { [ i Gyl € o € o},

Z1

(12)

Py(a)=Max { / fiuw (im)d(im)|p € ji, o € &} -

While the intervals of probability for different values
of IM; and IM, are calculated, defuzzification of
fuzzy probabilities may be done by center of mass
method. The collapse probability involving both effects
of aleatory and epistemic uncertainties, which is based
on most common used center of gravity defuzzification
method [14], is given by:

_ SpMF ()
SMF ()

_ Zo;MF(q;)
= PG (14)

5. Correlation of input variables

To generate realizations of correlated variables { X}, we
have to first generate samples of uncorrelated variables
{Y'}. Then {X} values are calculated based on the
variable transformation:

{X} = [THY} (15)

Consideration of correlation between input variables
necessitates solving an eigenvalue problem of covari-
ance matrix of input variables [Ex] [37]. For n input
variables, covariance matrix is defined in Eq. (14).
Figenvalues of covariance matrix are calculated by the
determinant equation:

det ([Sx] = AlT]) = 0, (16)

in which [I] is the unit matrix; det(.) shows the
determinant; and [Yx] is covariance matrix for input
variables {X} given by:
COV(Xy,X1) COV(X1,Xn)
[Bx]= | . | ~

COV(Xn, Xn) cov(xy, xy)| 7

Solving Eq. (15) produces n values for A, each being
an eigenvalue of covariance matrix. Covariance matrix
and mean values of new variables, named {Y}, which
are uncorrelated can be calculated by [37]:

U%G 0 0
Syl=[T"[Ex][T=|0 o3, 0], (18)
0 0 0%3
{uy} =T {ux}. (19)

where [Zy] and {uy } are covariance matrix and mean
vector of variables {Y'}, respectively. Superscript T'
denotes transpose. Transformation matrix consists of
the eigenvectors corresponding to eigenvalues and is
calculated based on:

[T] = [Ex] = Alll. (20)

While sample values of variables {Y} are obtained,
main-values {X}, is calculated based on the transfor-
mation (Eq. (15)).

6. Sample structure

To evaluate the proposed method, one 3-storey steel
moment resisting frames in two ways is considered
(Figure 5). The structure is designed based on Iranian
Seismic Code 2800 [38]. The soil type is considered as
type B. The story height and bay width are assumed to
be 3.2 and 5 meters, respectively. A rigid diaphragm
is supposed based on usual floor systems existing in
common structures. The value of response modification
factor is considered as R = 10, adopted from [3§],
corresponding to special moment resisting structures.
The designed member sections are depicted in Table 1.

Non-structural and content vulnerability of the
building is not considered in this research. Effects of

B1 B1 B1

@H—— = . . "
C1 C1 C1 C1
>
B1 B2 B2 B1
B2 B2 B2
® [ * N |
C2 C2 C2 C2
a
o
€] < > <>
®1 |B1 B2 B2 B1
- B2 B2 B2
© " » » |
C2 C2 C2 C2
>
B1 B2 B2 B1
Cl1 B1 Cl1 B1 Cl B1 C1
® [} » » u
3@5 m

Figure 5. Plan of sample structure.
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Table 1. Design sections for considered structure.

Storey C1 C2 B1 B2
1 BOX 180 x 180 x 16 BOX 200 x 200 x 16 IPE 300 IPE 330
2 BOX 180 x 180 x 16 BOX 200 x 200 x 16 IPE 300 IPE 330
3 BOX 180 x 180 x 16 BOX 200 x 200 x 16 IPE 300 IPE 330

construction quality and human errors in construction
are not considered in deriving seismic fragility curves.
The assumed structure is symmetric in plan and eleva-
tion, which allows two dimensional structural analyses.

To assess the proposed method, a two-dimensional
frame (frame NO.B or NO.C) is considered. Mo-
ment resisting connections are considered as rotational
springs whose behaviors are based on modified Ibarra-
Krawinkler model [9]. M2-WO panel zone model is
considered since yielding in the beams, columns and
panel zones is represented well by this model (Figure 6).

Fundamental parameters which are considered as
epistemic uncertainties in this study are 6,, 6, and
A.  Estimation of modeling parameters, based on
laboratory tests, is shown in Table 2. The correlation
coefficients of input variables depicted in this table were
presented by Lignos [15].

The 5% linear elastic spectral acceleration at
the first-mode period of the structure is considered
as intensity measure of strong ground motions. The
advantage of this IM is that the seismic hazard data
for S,(T1) is available. Maximum inter-storey drift is
considered as EDP, since this EDP is the main source

Rotational spring

based on modified

Ibarra Krawinkler
model

Rotational spring
to model shear
distortion

Elastic beam-
column

. element

Rotational spring

based on modified

Ibarra Krawinkler
model

Elastic beam-
column
element

Figure 6. Panel zone model M2-WO (Douglas et al.,
2002 [40]).

of sideway instability which causes the sideway collapse
of the structure [9]. A set of 40 strong ground motions
according to Medina [39] entitled as LMSR records,
is considered for investigation of global collapse limit
state of the structure.

Covariance matrix of these input variables is:

Ap2s = 0.0407,0.103,0.3937,

[ 1 069 0.44]
[p]= 1069 1 067]. (21)
[0.44 067 1 J

Three values of input parameters are considered corre-
sponding to u—o, pu, p+o. Considering the correlation
between variables, the realization matrix of input
variables is transformed by Eq. (15). The eigenvalues
and transformation matrix for input variables are
calculated based on Eq. (17).

The input variables considering the correlation
are obtained according to:

(Op)1  (Op)2  (fP)3
(Bpc)1 (Bpc)2 (Bpc)s
A (A2 (M)

0.0239 0.025 0.0161
= 100941 0.16 02721 . (22)
0.6041 1.000 1.6555

The tree diagram of realizations for input variables is
shown in Figure 7. Each branch of the tree shows
a value for one of input variables. For each set of
values, the IDA analysis of the building is done and
collapse fragility curve is derived based on Eq. (2),
considering S, (77) as intensity measure and maximum
inter-storey drift as engineering demand parameter.
The sample IDA and collapse fragility curves are shown
in Figures 8 and 9. Egs. (21) and (22) show the
function forms, and Table 3 shows the derived constant
coefficients based on nonlinear regression analysis. The
geometric representation of response surfaces for mean
and standard deviation of collapse capacity is shown

Table 2. Modeling parameters of mean and dispersion and correlation calibration based on experimental results (Lignos,

2008 [15)).
Median 8, (rad) og¢p (rad) Median O,c (rad) oopec (rad) Median A oA Pop,ope  Pop,A  Popc,A
0.025 0.43 0.16 0.41 1.00 0.43 0.69 0.44 0.67




138 M.R. Zolfaghari et al./Scientia Iranica, Transactions A: Civil Engineering 22 (2015) 131-143
Table 3. Constant coefficients of response surface functions for mean and standard deviation.
Co C]_ C2 C3 C4 C5 Cs C7 Cg Cg Error
i (Sac) -3.4871 244.1685 3.2836 1.0601 -45.2769 -5.1520 1.0558 -465 3.2599 -6.5875 -0.3707 0.0191
a4 oit Y 4 Cy Ch C Ct C4 C Error

oL (Sac) 11.38863 -814.422 -5.4950 -0.8624 175.1236 32.5449 0.346 7 15162.9477 2.6023 0.0016 0.0320

Alp—o

epclu—«:r Alu,
Oplp—o Ope | |t
.
’
/ .
/ /
/I I/
Oplp ==~ 0T Opc|pto--------
N .
. .
’
’
/
91)|u+ff"“\'----

\
\
\

Figure 7. Tree diagram for preassumed values of
modelling parameters.

in Figure 10 in which 21 is 8,, x5 is 0 and z3 is A.
The response surface functions are used for estimation
of minimum and maximum values of collapse fragility
curve mean and standard deviation. Membership
functions considered for modeling variables are shown
in Figure 11. Four cases for a-cut values are considered,
a =0.2,04, 0.6, 0.8. For values of «, bounds of input
variables are calculated. Maximum and minimum
values for mean and standard deviation of collapse
capacities are presented in Table 4. These values are

4.0 —
3.50 /
3.0
2.5
2.0!
1.5}
1.0/

Sa(Ty1) (g)

0.00 0.02 0.04 0.06 0.08 0.10
IDR

4.5
4.0 o
3.5 -

3.0
2.5
2.0
1.5
1.0
0.5

0.05700 0.02

Sa(Ty) (g)

0.04 0.06 0.08 0.10

IDR

Collapse fragility curves (27 cases)

1.0
0.9 _—]
0.8
0.7

0.5
0.4

0.3

P (collapse|IM)

0.2
0.1

0.0

0.5 1:0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Sa(T1) (8)

Figure 9. Sample IDA curves, and collapse fragility
curves for 27 cases.

corresponding to a-cut of moments of collapse fragility
curves. The derived membership functions for mean
and standard deviation of collapse capacity are shown
in Figure 12 and fuzzy collapse fragility curves are
presented in Figure 13. In Figures 14 and 15 the results
of FOSM method, the proposed method and Monte
Carlo simulation based on quadratic response surface
are shown.

The perspective view of three-dimensional
fragility curves resulted from fuzzy randomness
method can be seen in Figure 13. In this figure, the

4.5
4.0
3.5 .
3.0
2.0
1.5
1.0

05 2=
0-0500 0.02

Sa(T1) (g)

0.04 0.06 0.08 0.10

IDR

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

0-0500 0.02

Sa(T1) (8)

0.04 0.06 0.08 0.10

IDR

Figure 8. Sample IDA curves.
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Table 4. Values of modeling and collapse fragility curves parameters for several values of a-cuts.
a-cut 0p Opc A Mean of fragility Standard deviation of
curve fragility curve
0.2 Min 0.0241 0.1046 0.6681 0.3859 0.3973
Max 0.0259 0.2446  1.4968 0.7939 0.4348
0.4 Min 0.0243 0.1163 0.7390 0.4429 0.3984
Max 0.0257 0.2200 1.3533 0.7607 0.4193
0.6 Min 0.0245 0.1294 0.8174 0.5 0.3993
Max 0.0254 0.1978 1.2235 0.7175 0.4079
0.8 Min  0.0247 0.1439 0.9041 0.5824 0.4001
Max 0.0252 0.1779 1.1061 0.6432 0.4015
Collapse fragility parameters (for 3 = 1) and response surface fitted to data
2
8
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Figure 10. Response surface fitted to calculated means and standard deviations.
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Figure 11. Membership functions considered for modeling parameters.

probability of reaching or exceeding collapse capacity
as a function of both IM and membership values of
mean and standard deviation of collapse fragility
curves are shown.

The membership function of achieved fuzzy mean
and standard deviation show the variation of response

parameters due to uncertainty of modeling parameters.
These membership functions may be interpreted as
effects of epistemic uncertainties of modeling param-
eters on response parameters. These effects both make
changes to mean and standard deviation of collapse
fragility curves. To compare the proposed method with
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Figure 12. Fuzzy results for mean and standard deviation of collapse capacity.

Fuzzy fragility curves

P (C[IM)

Figure 13. Fuzzy collapse fragility curves; mean and SD
membership value spectrum.

other probabilistic methods, defuzzification of fuzzy
parameters is implemented by Eq. (16). Comparison
of achieved collapse fragility curves, applying various
methods, is shown in Figures 14 and 15. Further
application of proposed method is to consider effects of
parameters which cannot be presented by probability
distributions such as human errors and construction
quality.

Appling FOSM approximation results in change
in standard deviation of collapse fragility curves com-
pared with fragility curve neglecting modeling uncer-
tainties. The mean value does not change applying
FOSM approximation. As shown in Table 5, mean
and standard deviation of collapse fragility curve of
sample structure are 0.6292 and 0.3894, respectively.
Application of FOSM method to involve modeling un-
certainty remains mean value unchanged, and standard
deviation is changed to 0.5191 and 0.4417, for one-side
and two-side formulations presented by Eqgs. (5) and
(6), respectively.

Application of Monte Carlo simulation shows
both mean and standard deviation values change,

Collapse fragility curves; comparison of methods

1.0
0.9
0.8
oy 7
E 0
— 0.6
0
~ 0.5
A 0.4
0.3 III" e FOSM method one-side
0.2 R/ —--— FOSM method two-side
',;-"/ -+ = Fuzzy randomness method
0.1 ,;»"/ ----Monte Carlo method
0.0 L™
0 1 2 3 4 5 6
Sa(T1) (8)

Figure 14. Defuzzification results; comparison of
methods.

Modeling uncertainties effects on collapse fragility curves

P (C|IM)

~— 7 Neglecting modeling uncertanties
—— Fuzzy randomness method
— . - Monte Carlo method

2 3 4 5 6

Sa(T1) (g)
Figure 15. Defuzzification results; fuzzy randomness
method efficiency.

involving effects of modeling uncertainties. As shown in
Table 5, mean and standard deviation values are 0.4866
and 0.4762, utilizing Monte Carlo method, respectively.
The proposed method, entitled as fuzzy randomness
method, predicts changes in mean and standard de-
viation values. Mean and standard deviation values
are 0.5218 and 0.4363, respectively. Figures 14 and 15
show the efficiency of the fuzzy randomness method.
The proposed method shows good correlation to Monte
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Table 5. Modeling uncertainty effects by FOSM, fuzzy randomness and Monte Carlo method on collapse fragility curves.

. . Consideration of
Consideration of

Collapse No consideration . modeling Consideration of
. . modeling . . .
fragility of modeling L uncertainties modeling uncertainties
. L. uncertainties
function uncertainties (Fuzzy randomness (Monte Carlo method)
(FOSM method)
method)
Mean 0.6292 0.6292 0.5218 0.4866
- A1 5
Star‘ldz'ircl 0.3894 One-side method  0.5191 0.4363 0.4762
deviation Two-side method  0.4417
Change in - %0 -%10.74 ~%13.7
median (%)
. o 07 1«
-Chan.ge in B One-side method  %12.96 %4.69 %6.86
dispersion (%) Two-side method ~ %5.23

Carlo simulation method as more accurate results in
comparison with others, while this method takes much
less computation efforts than Monte Carlo simulation
method.

We finally have made use of the following rela-
tionships:

HLn(S,.) =Co + S Cixs + Ei‘ijcz'j.’l?idfj

+ 3, Ciz? = Co + C18p + Cabpc

+ C3A 4+ Cybpbpc + Cs0pA + CobBpc A

+ C70% + Csb3 o + CoA, (23)
OLn(s,.) =Ch + S, Cla; + S ClLw;

+ 3, Ot = Cp + C10p + Cibpc

+ C4A + C4BpBpc + CLOpA + ClhbpcA

+ CLO% + CLh2 ¢ + CHA2. (24)

7. Conclusion

In this paper, fuzzy randomness formulation is pre-
sented to involve modeling uncertainties effects on
collapse fragility curves. The efficiency of the proposed
method compared with other existing approaches re-
spected to Monte Carlo simulation results. It is also
noteworthy that the proposed method keeps accurate
results, regardless of much less computation efforts
in comparison with Monte Carlo simulation method.
Involvement of modeling uncertainties decreases mean
value and increases the standard deviation value, as
shown applying probabilistic-based methods. To this
end, collapse fragility curves of special moment resist-
ing frame are derived through FOSM, Monte Carlo
and fuzzy randomness methods. Moment-rotation
modeling parameters of connections, entitled as 6,, 6,

and A are considered as epistemic uncertainties. The
effects of epistemic uncertainties, on collapse fragility
curves, are evaluated by aforementioned methods. One
of the more advantages of the proposed method is that
the possibility of involving effects of parameters cannot
be presented by probability distributions, or expressed
descriptively, such as construction quality and human
errors.
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