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Abstract. Many industrial problems are concerned with optimization of large and
complex systems involving many criteria. Indeed, optimization problems encountered in
practice are seldom mono-objective. In general, there are many con
icting objectives to
handle. This study introduces a new method for the solution of multi-objective optimization
problems. Multi-objective optimization is utilized to �nd the most suitable solution, which
covers the requirements and demands of decision makers. The main goal of the resolution
of a multi-objective problem is to obtain a Pareto optimal set and, consequently, the
Pareto front. This method is based on the Charged System Search (CSS) algorithm,
which is inspired by the Coulomb and Gauss laws of electrostatics in physics. In order
to illustrate the e�ciency of the proposed method, numerical examples are solved and
results are compared to show the ability of the CSS in �nding optimal solutions.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

In the last two decades, many e�cient mono-objective
optimization algorithms have been developed [1-7].
These algorithms search through possible feasible solu-
tions, and ultimately identify the best results. Multi-
objective optimization techniques play an important
role in engineering design, resource optimization, and
many other �elds. Their main purpose is to �nd a set of
best solutions from which a designer or decision maker
can choose a solution to derive maximum bene�t from
available resources. The various objectives of a multi-
objective optimization problem often con
ict and/or
compete with one another. In multi-criterion Decision
Making (DM), no single solution can be termed as the
optimum solution to the multiple con
icting objectives,
as a multi-objective optimization problem is amenable
to a number of trade-o� optimal solutions. For
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this purpose, multi-objective optimization generates a
Pareto front, which is a set of non-dominated solutions
for problems with more than one objective. The major
goal of a multi-objective optimization algorithm is to
generate a well-distributed true Pareto optimal front
or surface.

Over the past decade, a number of Multi-
Objective Evolutionary Algorithms (MOEAs) have
been developed, such as the Non-dominated Sort-
ing Genetic Algorithm (NSGA)-II [8], the Strength
Pareto Evolutionary Algorithm (SPEA2) [9], the
Pareto Archive Evolution Strategy (PAES) [10], Multi-
Objective Particle Swarm Optimization (MOPSO) [11],
and hybrid multi-objective optimization comprised of
CSS and PSO [12].

In this paper, a new multi-objective optimization
approach, based purely on the Charged System Search
(CSS) algorithm, is introduced. The CSS is a pop-
ulation based meta-heuristic optimization algorithm
proposed recently by Kaveh and Talatahari [5,13,14].
In the CSS, each solution candidate is considered a
charged sphere, called a Charged Particle (CP). The
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electrical load of a CP is determined considering its
�tness. Each CP exerts an electrical force on all the
others, according to the Coulomb and Gauss laws from
electrostatics. Then, the new positions of all the CPs
are calculated utilizing Newtonian mechanics, based on
the acceleration produced by the electrical force, the
previous velocity and the previous position of each CP.
Many di�erent structural optimization problems have
been successfully solved by CSS [13,14].

In the present work, after a brief description of
multi-objective optimization (MOP), the main con-
cepts of the Charged System Search algorithm are
provided. For better understanding of the MOPs,
readers can refer to [15]. Then, the multi-objective
charged system search algorithm is presented. A simple
multi-criteria decision making process is also presented.
Numerical examples are prepared to show the e�ciency
and accuracy of the proposed method. Finally, the
concluding remarks are provided.

2. Multi-objective optimization concepts

De�nition 1. Multi-objective optimization problem.
A multi-objective optimization problem can be de�ned
as:

MOP =

8<:min F (x) = (f1(x); f2(x); :::; fn(x))

S:C: x 2 S (1)

where n � 2 is the number of objectives, x =
(x1; x2; :::; xk) is the vector representing the decision
variables, and S represents the set of feasible solutions
associated with equality and inequality constraints and
explicit bounds. F (x) = (f1(x); f2(x); :::; fn(x)) is the
vector of objectives to be optimized.

De�nition 2. Pareto dominance. An objective vec-
tor, u = (u1; u2; :::; un), is said to dominate v =
(v1; v2; :::; vn), denoted by u � v, if and only if no
component of v is smaller than the corresponding
component of u, and at least one component of u is
strictly smaller, that is:
8i 2 f1; :::; ng : ui � vi ^ 9i 2 f1; :::; ng : ui < vi:

De�nition 3. Pareto optimality. A solution, x� 2 S,
is Pareto optimal if for every x 2 S, F (x) does not
dominate F (x�), that is F (x) � F (x�).

Graphically, solution x� is Pareto optimal if there
is no other solution x such that point F (x) is in the
dominance cone of F (x�), which is the box de�ned
by F (x) with its projections on the axes and origin
(Figure 1).

De�nition 4. Pareto optimal set. For a given
MOP(F; S), the Pareto optimal set is de�ned as P � =
fx 2 S=@ x0 2 S; F (x0) � F (x)g.

Figure 1. Pareto solution denoted by solid dots and
dominate solution shown by triangles.

De�nition 5. Pareto front. For a given MOP(F; S)
and its Pareto optimal set, the Pareto front is de�ned
as PF � = fF (x); x 2 P �g.

The Pareto front is the image of the Pareto
optimal set in the objective space. Obtaining the
Pareto front of a MOP is the main goal of a multi-
objective optimization. The Pareto front should have
two desirable properties consisting of good convergence
and diversity.

3. Charged system search algorithm

The charged system search contains a number of
Charged Particles (CP), where each CP is treated
as a charged sphere and can insert an electric force
onto the others. The magnitude of this force for a
CP located inside the sphere is proportional to the
separation distance between the CPs, and, for a CP
located outside the sphere, is inversely proportional
to the square of the separation distance between the
particles. The resultant forces persuade the CPs to
move towards new locations, according to the motion
laws of Newtonian mechanics. In the new positions, the
magnitude and direction of the forces are reformed and
this successive action is repeated until a terminating
condition is satis�ed. The pseudo-code for the CSS
algorithm is summarized as follows:

Level 1: Initialization
Step 1. Initialization. The magnitude of charge for
each CP is de�ned as:

qi =
�t(i)� �tworst

�tbest� �tworst
i = 1; 2; :::; N; (2)

where �tbest and �tworst are the best and the worst
�tness of all the particles, respectively, �t(i) represents
the �tness of agent i, and N is the total number
of CPs. The separation distance, rij , between two
charged particles is de�ned as follows:

rij =
kXi �Xjk

k(Xi +Xj)=2�Xbestk+ "
; (3)

where Xi and Xj are the positions of the ith and jth
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CPs, respectively, Xbest is the position of the best
current CP, and " is a small positive number. The
initial positions of CPs are determined randomly.

Step 2. CP ranking. Considering the values of the
�tness function, sort the CPs in an increasing order.

Step 3. CM creation. Store a number of the �rst CPs
and the values of their corresponding �tness functions
in the Charged Memory (CM).

Level 2: Search
Step 1. The probability of moving determination.
Determine the probability of moving each CP towards
the others using the following probability function:

pij =

8<:1 �t(i)��tbest
�t(j)��t (i) >rand _ or �t(j) > �t(i)

0 otherwise (4)

Step 2. Forces determination. Calculate the resultant
force vector for each CP as:

Fj=qj
X
i;i 6=j

 
qi
a3 rij :i1+

qi
r2
ij
:i2

!
arijpij(Xi�Xj);

* j = 1; 2; � � � ; N
i1 = 1; i2 = 0, rij < a
i1 = 0; i2 = 1, rij � a

(5)

where Fj is the resultant force acting on the jth CP.
arij is a new parameter, so-called the kind of force,
and determines the type of force, where +1 represents
the attractive force and �1 denotes the repelling force,
which is de�ned as:

arij =

8<:+1 w.p. kt

�1 w.p. 1� kt
(6)

where \w.p." stands for \with the probability". In this
algorithm, each CP is considered a charged sphere with
radius a, which has a uniform volume charge density.

Step 3. Solution construction. Move each CP to the
new position and �nd the velocities as:

Xj;new =randj1:ka:
Fj
mj

:�t2

+ randj2:kv:Vj;old:�t+Xj;old; (7)

Vj;new =
Xj;new �Xj;old

�t
; (8)

where ka and kv are the acceleration and velocity
coe�cients, respectively. These can be obtained as

follows: If randj1 and randj2 are two random numbers
uniformly distributed in the range [0,1], then:

ka = 0:5 (1 + iter=itermax) ;

kv = 0:5 (1� iter=itermax) : (9)

Step 4. CP position correction. If each CP swerves
o� the prede�ned bounds, correct its position using the
harmony search-based handling approach, as described
in [16].

Step 5. CP ranking. Considering the values of the
�tness function, sort the CPs in an ascending order.

Step 6. CM updating. Include the better new
vectors in the CM and exclude the worst ones from the
CM. The number of substitutions is not constant. In
primary iterations, many CM vectors may be excluded,
but in later iterations (when the particles are converged
to the optimal answer), this number is decreased.

Level 3: Terminating criterion controlling
Repeat the search level steps until a terminating
criterion is satis�ed.

Figure 2 shows the 
owchart of the CSS algo-
rithm.

4. Multi-objective charged system search
optimization algorithm

This algorithm is based on a pure Charged System
Search (CSS) algorithm. For using this algorithm in a
multi-objective optimization procedure, some changes
are made and some additional steps are considered.

Figure 2. Summarized 
owchart of the CSS.
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Figure 3. Dominance rank determination.

4.1. Algorithm
This algorithm consists of the following steps:

Step 1. Initialize the Charged Particles (CPs) mag-
nitudes randomly. The initial speed of each particle is
considered zero.

Step 2. Determine the magnitude of charge for each
CP. For this purpose, the vector of objectives for each
CP is calculated. Then, dominance rank of each CP is
obtained. The dominance rank of a solution is related
to the number of solutions in the population that
dominates the considered solution. Figure 3 represents
the procedure for determining the dominance rank of
some solutions.

Diversity loss is observable in many meta-
heuristics. To face the drawback related to the stagna-
tion of a population, diversity must be maintained in
the population. In general, the diversi�cation method
deteriorates solutions that have a high density in their
neighborhoods. For solution i, distances dij between i
and other solutions of population j, are computed.

The magnitude of charge for solution i, q(i), is
calculated as:

q(i) =
1

DRi �mi
i 2 [1; 2; :::; N ]; (10)

where DRi is the dominance rank of solution i and
mi =

P
j2pop sh(dij).

Sharing function, sh(dij), is de�ned as follows:

sh(dij) =

8<:1� dij
� if dij < �

0 otherwise
(11)

The constant � represents the non-similarity threshold.
The e�ectiveness of the sharing principle depends
mainly on these two parameters that must be set
carefully. Indeed, diversi�cation becomes ine�cient

with a low value of �, but, the convergence speed of the
front becomes too small when this value is too high.

Step 3. Now, CM should be created. For this
purpose, the particles with dominance rank equal to
1 are selected as CM.

Step 4. While iter <= itermax, in other words,
since a terminating criterion is not satis�ed, repeat the
following steps:

a) Determine the CMpart and CPpart. This means
that the location of all the particles in the popula-
tion and archive should be determined. It should
be noted that the objective space is divided into z
parts.

The space division method employed here is
the same as the formulation introduced in [16].
According to this method, to each particle with
F (x) = (f1(x); f2(x)), a value, �i is de�ned as:

� =
f2

1 � f2
2

f2
1 + f2

2
: (12)

In case the objectives are not in the same range,
for a two-objective optimization problem, � can be
calculated as below:

� =
m2

1 �m2
2

m2
1 +m2

2
;

m1 =
f1 � fmin1

fmax1 + fmin1
;

m2 =
f2 � fmin2

fmax2 � fmin2
; (13)

where fmax1(fmin1) and fmax2(fmin2) are the max-
imum (minimum) values of the �rst and second
objective of the particles in the population or
archive, respectively. The schematic demonstration
of di�erent parts is shown in Figure 4.

b) Calculate the resultant force vector for each CP or
CM particles as:

Fj=qj
X
i;i 6=j

 
qi
a3 rij :i1+

qi
r2
ij
:i2

!
arijpij(Xi�Xj);

8<:i1 =1; i2 =0, rij < a

i1 =0; i2 =1, rij � a
(14)

where the probability of moving, pij , can be calcu-
lated according to Eq. (4). Fj is the resultant force
acting on the jth particle, and arij is the kind of
force, and determines the type of force explained
in the previous sections. This parameter can be
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Figure 4. Division of the objective space by assigning
parameter � to each particle.

calculated as follows:

if i; j 2 CP or i; j 2 CM

) arij =

(
+1 if rand � kt
�1 if rand < 1� kt

if i 2 CP and j 2 CM) arij = �1

This means: A CM particle is
repeled by all CP particles

if i 2 CM and j 2 CP) arij = +1

This means: A CM particle attracts all
CP particles

c) Compute the new position and velocity of each
particle using Eqs. (7) and (8). When the current
position of a particle is obtained, the following
control should be performed:

if j 2 CP ) Part(Xnewj)

should be the same as Part(Xoldj);

otherwise Xnewj = Xoldj :

This means that each particle of CP should remain
in its initial part up to the end of the optimization
procedure, but CM particles can be moved to other
parts.

d) Update the magnitude of each particle of CP and
CM. Calculate their dominance ranks and select the
new members of CM. This means that all particles
which have a dominance rank equal to one should
be selected as the new CM.

e) In this step, each particle of CM is compared
with other particles of CM. In other words, the
Euclidean distance between the objective vectors
of all the particles in the CM is calculated, and,
if this value is smaller than a positive prede�ned
value, one of them is eliminated. Using this
approach, a crowding region cannot be generated
in the objective space.

5. Multi-criteria decision making

The aim of solving multi-objective optimization prob-
lems is to help a Decision Maker (DM) �nd a Pareto
solution that copes with his preferences. One of the
fundamental questions in MOPs resolution is related to
interaction between the problem solver and the decision
maker. Indeed, the Pareto optimal solutions cannot be
ranked globally. The role of the decision maker is to
specify some extra information to select his favorite
solution.

Many di�erent approaches can be used for the
decision making process [17]. A simple method for
the multi-criteria decision making problem, so-called
the multi-criteria tournament decision making method
(MTDM), is described in [18]. This method provides
the ranking of alternatives from best to worst, ac-
cording to the preferences of a human decision maker.
It has another positive aspect, involving few input
parameters, just the importance weight of each crite-
rion. This method introduces a function, R, capable of
re
ecting the DM global interests. In order to �nd this
function, �rst, each possible solution is compared to the
others, considering only the ith-criterion. The pairwise
comparisons are performed through the tournament
function, Ti(a;A), which counts the ratio of times
alternative a wins the tournament against each other
b solution from A. Hence, considering that a is a non-
dominated point in the objective space, Ti(a;A) can be
stated as:

Ti(a;A) =
X

8b2A;a6=b
ti(a; b)

(jAj � 1)
; (15)

where:

ti(a; b) =

(
1 if fi(b)� fi(a) > 0
0 otherwise

(16)

The tournament function, Ti(a;A), assigns a score to
each solution in the Pareto front. The assigned score
works as a performance measure, which provides a
distinct ordering of the elements of A for each criterion.
In order to generate the global ranking, taking into
account all criteria and their respective weights, wi
(priority factors), the scores are aggregated into the
global ranking function, R. The weighted geometric
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mean, which is utilized by many di�erent researchers,
is considered the aggregation function in this study, as
follows:

R(a) = (�n
i=1Ti(a;A)wi)

1
n ; (17)

where n is the number of objective functions. The
priority weights must be speci�ed by the DM in
accordance with the following conditions:

wi > 0 and
nX
i=1

wi = 1: (18)

The ranking index, R(a), gives an idea of how much
each alternative is preferred to the others. In other
words: if R(a) > R(b), then, a is preferred to b, and
when R(a) = R(b), then a is indi�erent to b.

6. Numerical examples

In this section, some numerical results are presented
in order to show the performance of the pure CSS
algorithm in multi-objective optimization problems.
The algorithms are coded in MATLAB and, in order to
handle the constraints, a penalty approach is utilized.
When the constraints are in the range of allowable
limits, the penalty is zero. Otherwise, the amount
of penalty is obtained by dividing the violation of
allowable limit by the limit itself. For the examples
presented in this paper, the CSS algorithm parameters
are set as follows: ka = 2, kv = 2, the number of agents
is taken as 100, the maximum number of iterations is
set to 100, a = 1, �T = 1 and kt = 0:5. The algorithm
is run with an archive size of 100. In this paper,
a real coded NSGA-II is utilized with a population
size of 100, a crossover probability of 0.9 (pc = 0:9),
tournament selection, a mutation rate of 1=u (where u
is the number of decision variables), and distribution
indexes for crossover and mutation operators are taken
as �c = 20 and �m = 20, respectively (as recommended
in [8]). MOPSO used a population of 100 particles, an
archive size of 100 particles, a mutation rate of 0.5, and
30 divisions for the adaptive grid [11]. Also, s-MOPSO
is run with a population of 100 particles, an archive size
of 100 particles, and a mutation probability of 0.05 [16].
The parameters considered for CSS-MOPSO consist of
C1 = 1, C2 = 2, R = 15, rld = 0:01, rud = 0:05,
mutation probability = 0.1, archive size of 100 and
a population of 50 particles [12]. For all examples
presented in this paper, the number of �tness function
evaluations (structural analysis) in the multi-objective
optimization phase is restricted to 30,000.

The results obtained by CSS is compared to the
original MOPSO [11], s-MOPSO [19], NSGA [8] and
MOCHS [20].

Example 1. A 2-bar truss design. This problem was
originally studied using the �-constraint method [21].

Figure 5. The two-bar truss problem.

Figure 6. Pareto optimal front obtained using CSS
method for two-bar truss design problem.

As shown in Figure 5, the truss has to carry a certain
load without elastic failure. Thus, in addition to the
objective of designing the truss for minimum volume,
there are additional objectives of minimizing stresses
in each of the two members, AC and BC. The two-
objective optimization problem for three variables y
(vertical distance between B and C in m), x1 (cross
sectional area of AC in m2), and x2 (cross sectional
area of BC in m2) is constructed as follows:

Minimize f1(x) = x1
p

16 + y2 + x2
p

1 + y2

Minimize f2(x) = max(�AC; �BC)

s.t.

8><>:max(�AC; �BC) � 105

1 � y � 3
x � 0

where �AC = 20
p

16+y2

yx1
and �BC = 80

p
1+y2

yx2
.

Figure 6 shows the Pareto front obtained using



A. Kaveh and M.S. Massoudi/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1845{1860 1851

Table 1. Comparison of the results for two-bar truss design problem.

Optimization
method

EM-MOPSO [22] NSGA-II [8] MOCHS [20] CSS
(present work)

Obtained extreme
values (m3, kN)

h
0:004026; 99996

i h
0:00407; 99755

i h
0:00375; 99847

i h
0:00412; 99457

i
h
0:05273; 8434:493

i h
0:05304; 8439

i h
0:0537; 7685

i h
0:08078; 8434:23

i

Figure 7. The I-beam design problem.

the CSS method. Also, the two extreme objective
values obtained by various algorithms are compared in
Table 1.

Example 2. An I-beam design. The second design
problem is taken from [21]. The problem is to �nd
the dimension of the beam shown in Figure 7. In this
design problem, the dimensions of the geometric and
strength constraints should be satis�ed, and, at the
same time, the cross-sectional area of the beam and
the static de
ection of the beam should be minimized
under a force, P . The mathematical formulation of the
problem is as follows:

Minimize cross-sectional area (cm2):

f1 = 2x2x4 + x3(x1 � 2x4);

Minimize displacement (cm2):

f2 =
PL3

48EI
;

where:

I=
1
12
�
x3(x1�2x4)3+2x2x4[4x2

4+3x1(x1�2x4)]
	
:

Find xi; i = 1; 2; 3; 4

Figure 8. Pareto optimal front obtained using the CSS
method for the I-beam design.

Subject to:

g(x) = �a �
�
My

Zy
+
Mz

Zz

�
� 0 and

8>>>>>><>>>>>>:
10 � x1 � 80

10 � x2 � 50

0:9 � x3 � 5

0:9 � x4 � 5

where:

My =
P
2
� L

2
; Mz =

Q
2
� L

2
;

Zy =
1

6x1

�
x3(x1�x4)3+2x2x4[4x2

4+3x1(x1�2x4)]
	
;

Zz =
1

6x1

�
x3

3(x1�x4)+2x3
2x4
	
;

E = 2� 104kNcm�2; �a = 16kNcm�2;

P = 600kN; Q = 50kN; and L = 200cm:

Figure 8 shows the Pareto front obtained after 100
iterations. The CSS obtained the minimal cross-
sectional area of 127.8201 units for a de
ection of
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Figure 9. The welded beam design.

0.0573, and for the minimal de
ection of 0.0059 units,
the cross-sectional area is 847.5709 units. EM-MOPSO
obtained the minimal cross-sectional area of 127.9508
units for a de
ection of 0.05368 units, and for the
minimal de
ection of 0.005961 units, the cross-sectional
area was 829.5748 units. NSGA-II obtained a min-
imal cross-sectional area of 127.2341 units with a
de
ection of 0.0654 units, and a minimal de
ection
of 0.0060 units with a cross-sectional area of 829.8684
units.

Example 3. Welded beam design. The third design
problem was studied by [22]. A beam needs to be
welded onto another beam and must carry a certain
load (Figure 9). The overhang has a length of 14
inches, and a force, F , of 6000 lb is applied at the
end of the beam. The objective of the design is to
minimize the cost of fabrication and the end de
ection.
The mathematical formulation of the two-objective
optimization problem is as follows:

Minimize

8<:f1(x) = 1:10471h2l + 0:04811tb(14 + l)

f2(x) = �(x) = 2:1952
t3b

Subject to

8>>>>>><>>>>>>:
g1(x) = 13:600� �(x) � 0

g2(x) = 30:000� �(x) � 0

g3(x) = b� h � 0

g4(x) = Pc(x)� 6000 � 0

The �rst constraint ensures that the shear stress
developed at the support location of the beam is
less than the allowable shear strength of the material
(13,600 psi). The second one ensures that the normal
stress developed at the support location of the beam
is less that the allowable yield strength of the material
(30,000 psi). The third ensures that the thickness of the
beam is not less than weld thickness, from a practical
standpoint. The fourth one ensures that the allowable
buckling load of the beam (along the t direction) is

Figure 10. Pareto optimal front obtained using the CSS
method for the welded beam design.

greater than the applied load, F . The stress and
buckling terms are as follows:

�(x) =

s
(� 0)2 + (� 00)2 +

l� 0� 00p
0:25(l2 + (h+ t)2)

;

� 0 =
6; 000p

2hl
;

� 00 =
6; 000(14 + 0:5l)

p
0:25(l2 + (h+ t)2)

2f0:707hl( l212 + 0:25(h+ t)2)g ;

�(x) =
504; 000
t2b

;

Pc(x) = 64; 746:022 (1� 0:0282346t) tb3:

Figure 10 shows the optimized non-dominated solu-
tions obtained using the CSS algorithm. EM-MOPSO
found the minimal cost solution as 2.382 units with a
de
ection of 0.0157 inches, and the minimal de
ection
as 0.000439 with a cost of 36.4836 units. For NSGA-
II, the minimal cost was 3.443 units for a de
ection of
0.0101 units, and the minimal de
ection was 0.004 with
a cost of 36.9121 units. For the CSS, the minimal cost
is 2.5112 units for a de
ection of 0.000439 units, and
the minimal de
ection is 0.0108 with a cost of 47.3722
units.

Example 4. A 25-bar truss structures. Another
famous 25-bar truss is considered, as shown in Fig-
ure 11 [12]. Again, the problem is to �nd the cross-
sectional area of members, such that the total struc-
tural weight and the displacement in the Y -direction
at node 1 are minimized concurrently. The structure
includes 25 members, which are divided into eight
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Figure 11. A 25-bar space truss structures and its
member grouping.

groups, as follows: (1) A1, (2) A2�A5, (3) A6�A9, (4)
A10�A11, (5) A12�A13, (6) A14�A17, (7) A18�A21
and (8) A22 �A25.

The applied load to this structure is:

FX(1) = 4:45( kN); FY (1) = �44:5( kN);

FZ(1) = �44:5( kN); FY (2) = �44:5( kN);

FZ(2) = �44:5( kN); FX(3) = 2; 25( kN);

FX(6) = 2:67( kN):

The upper and lower bounds for the cross sections
of each truss element are 64.45 mm2 (0.1 in2) and
2191.47 mm2 (3.4 in2), respectively. The modulus of
elasticity is taken as E = 68:97 kN/mm2 (1� 104 ksi)
and the weight density as � = 2:714E � 8 kN/mm2

(0.1 lb/in2). Constraints on the truss limit the princi-
pal stress, �j , in each element to a maximum allowable
stress value of �j = �0:27584 kN/mm2 (�40 ksi).

The Pareto front obtained by the CSS algorithm
is shown in Figure 12. Also, the two extreme objective
values obtained in 10 runs of algorithms are shown in
Table 2.

In this example, after �nding the Pareto front,
the next step is to ask DMs to notify their preferences
by considering all the information integrated in the
Pareto front. Many di�erent scenarios are possible for

Figure 12. The Pareto front of 25-bar truss structure and
the best solutions according to three di�erent scenarios.

Table 2. Comparison of the extreme values obtained by
di�erent methods for two-bar truss design problem.

Optimization method Obtained extreme values
(mm, kN)

CSS-MOPSO [12]

h
5:8437; 4:8111

i
h
62:9807; 0:3440

i
s-MOPSO [19]

h
5:8437; 4:8917

i
h
62:7832; 0:3239

i
MOPSO [11]

h
5:8791; 4:4836

i
h
60:3942; 0:3642

i
NSGA-II [8]

h
5:8437; 4:8297

i
h
64:5579; 0:3141

i
CSS (present work)

h
5:8697; 4:7989

i
h
63:6643; 0:2176

i
a considered problem. For example, these scenarios can
be as follows:

Scenatio A. The �rst criterion (objective) is more
important: e.g. (w1; w2) = (0:6; 0:4)

Scenario B. The �rst criterion (objective) is as im-
portant as the second criterion: e.g.
(w1; w2) = (0:5; 0:5).
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Table 3. Best selected solutions for two-bar truss design problem.

Algorithm
Scenario A Scenario B Scenario C

f1 (kN) f2 (mm)
Ri

f1 (kN) f2 (mm)
Ri

f1 (kN) f2 (mm)
Ri

w1 = 0:6 w2 = 0:4 w1 = 0:5 w2 = 0:5 w1 = 0:4 w2 = 0:6
CSS

(present work)
0.558 20.2810 1.5325 0.823 13.4183 1.8229 1.159 9.6868 2.0355

CSS-
MOPSO [12]

1.189 16.7307 1.8504 1.548 12.7422 2.0962 2.036 9.6144 2.2732

Scenario C. The second criterion (objective) is more
important: e.g. (w1; w2) = (0:4; 0:6).

The selected solutions corresponding to each con-
sidered scenario are indicated in Figure 11, and in
Table 3, the best solutions for di�erent scenarios are
presented and compared to those of Ref. [12]. By
calculating the index Ri =

p
fw1

1 � fw2
2 for the results

obtained by CSS and Kaveh and Laknejadi [12], the
e�ciency of the proposed algorithm is clari�ed.

Example 5. A 56-bar truss structure. This example
is a 56-bar space truss studied in [23], with members
categorized in three groups, as shown in Figure 13.
Joint 1 is loaded with 4 kN (899.24 lb) in the Y -
direction and 30 kN (6744.267 lb) in the Z-direction,
while the remaining free nodes are loaded with 4 kN
(899.24 lb) in the Y -direction and 10 kN (2248.09 lb)
in the Z-direction.

The vertical displacements of joints 4, 5, 6, 12, 13
and 14 are restricted to 40 mm (0.158 in), while the
displacement of joint 8 in the Y -direction is limited to
20 mm (0.079 in). The modulus of elasticity and the
minimum and maximum member-cross sectional areas
are taken as 210 kN/mm2 (3.05�104 ksi), 200 mm2

(0.31 in2) and 2000 mm2 (3.1 in2), respectively. The
total structural volume, F1(x), and the displacement
at node 1, F2(x), have to be minimized simultaneously.
Objective functions are:

Min

8<:F1(x) =
P56
i=1Aili

F2(x) =
p
�2
1X + �2

1Y + �2
1Z

(19)

The two extreme objective values, obtained in 10 runs
of various algorithms and the proposed method, are
compared in Table 4. In addition, the Pareto front
obtained via the CSS algorithm is shown in Figure 14.

The process of decision making and �nding the
best solution is performed identical to the previous
example. In this example, in order to show the wide
range of possible solutions, �ve di�erent scenarios are
considered. The results are aggregated in Table 5. The
selected solutions corresponding to each considered
scenario are provided in Figure 14.

Figure 13. A 56-bar space truss structure.

Example 6. A 272-bar transmission tower. The
�fth test example is the transmission tower, depicted in
Figure 15, together with its geometric characteristics.
This example is generated by the authors of this paper.
The nodal coordinates and end nodes of each member
are provided in Tables 6 and 7, respectively. The design
variables considered are the cross-sectional area of the
members, divided into twenty eight groups, as shown
in Table 8.

Joints 1, 2, 11, 20 and 29 are loaded with 20 kN in
theX- and Y -directions and�40 kN in the Z-direction,
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while the remaining free nodes are loaded with 5 kN in
the X- and Y -directions. The vertical displacement
of joints 2, 11, 20 and 29 is restricted to 20 mm,
while the displacements in the X- and Y -directions
are limited to 100 mm. The modulus of elasticity and
the minimum and maximum member-cross sectional
areas are taken as 2 � 108 kN/m2 (3:05 � 104 ksi),
1000 mm2 and 16000 mm2, respectively. The principal
stress, �j , in each element is restricted to the maximum
allowable stress, �j = � 275000 kN/m2. The total
structural volume, F1(x), and the displacement at
node 1, F2(x), have to be minimized simultaneously.

Table 4. Comparison of the extreme values obtained by
di�erent methods for the 56-bar truss.

Optimization method Obtained extreme values
(mm, mm3)

CSS-MOPSO [12]

h
2:2148; 402923368:6

i
h
7:5495; 120812690:1

i

s-MOPSO [19]

h
2:2137; 402417631:6

i
h
7:4721; 120151168:8

i

MOPSO [11]

h
2:2154; 403070300:4

i
h
7:0825; 123191518:1

i

NSGA-II [8]

h
2:2137; 402403612:4

i
h
7:4883; 119960278:7

i

CSS (present work)

h
1:1061; 478422670:1

i
h
10:4342; 50644453:1

i

Objective functions are:

Min

8><>:F1(x) =
P272
i=1Aili

F2(x) =
p
�2
1X + �2

1Y + �2
1Z

(20)

The Pareto front obtained via the CSS algorithm is
shown in Figure 16. The process of decision making
and �nding the best solution is performed completely
similar to those of previous examples. In this example,
in order to show the wide range of possible solutions,
nine di�erent scenarios are considered. The results
are aggregated in Table 9. The selected solutions
corresponding to each considered scenario are provided
in Figure 16.

Figure 14. The Pareto front of 56-bar space truss
structure and the best solutions according to �ve di�erent
scenarios.

Table 5. Di�erent possible scenarios for the 56-bar truss with corresponding solutions.

Scenario Importance
of criteria

Possible
priority
weights

Selected solution by MTDM (mm, mm3)

CSS-MOPSO [12] CSS (present work)

f1 (mm) f2 (mm3) Ri f1 (mm) f2 (mm3) Ri

A c1 >> c2
h
0:9; 0:1

i
6.1144 134900811.2 5.7592 8.3478 63593336.6 6.3808

B c1 > c2
h
0:7; 0:3

i
4.4740 166100766.2 28.8934 5.2836 100114327.7 28.3857

C c1 � c2
h
0:5; 0:5

i
3.2959 208951138.7 161.9961 3.2022 165628602.5 151.7560

D c1 < c2
h
0:3; 0:7

i
2.5679 267415709.3 1025.5389 1.8809 281480915.0 996.4649

E c1 << c2
h
0:1; 0:9

i
2.2709 353607163.4 7322.2470 1.3168 401089550.8 7541.0982
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Figure 15. A 272-bar transmission tower.

Table 6. Nodal coordinates of the transmission tower.

Node X
(m)

Y
(m)

Z
(m)

Node X
(m)

Y
(m)

Z
(m)

Node X
(m)

Y
(m)

Z
(m)

Node X
(m)

Y
(m)

Z
(m)

Node X
(m)

Y
(m)

Z
(m)

1 0 0 20 14 -0.5 -0.5 17 27 1.5 -0.5 15 40 0.5 -0.5 12 53 1.25 1.25 6

2 -3 0 17.5 15 -0.5 0.5 17 28 1.5 0.5 15 41 0.5 0.5 12 54 -1.5 -1.5 4

3 -1.5 -0.5 18 16 0.5 -0.5 17 29 3 0 14.5 42 -0.75 -0.75 10 55 -1.5 1.5 4

4 -1.5 0.5 18 17 0.5 0.5 17 30 -1.5 -0.5 14 43 -0.75 0.75 10 56 1.5 -1.5 4

5 -0.5 -0.5 18 18 1.5 -0.5 17 31 -1.5 0.5 14 44 0.75 -0.75 10 57 1.5 1.5 4

6 -0.5 0.5 18 19 1.5 0.5 17 32 -0.5 -0.5 14 45 0.75 0.75 10 58 -1.75 -1.75 2

7 0.5 -0.5 18 20 -3 0 14.5 33 -0.5 0.5 14 46 -1 -1 8 59 -1.75 1.75 2

8 0.5 0.5 18 21 -1.5 -0.5 15 34 0.5 -0.5 14 47 -1 1 8 60 1.75 -1.75 2

9 1.5 -0.5 18 22 -1.5 0.5 15 35 0.5 0.5 14 48 1 -1 8 61 1.75 1.75 2

10 1.5 0.5 18 23 -0.5 -0.5 15 36 1.5 -0.5 14 49 1 1 8 62 -2 -2 0

11 3 0 17.5 24 -0.5 0.5 15 37 1.5 0.5 14 50 -1.25 -1.25 6 63 -2 2 0

12 -1.5 -0.5 17 25 0.5 -0.5 15 38 -0.5 -0.5 12 51 -1.25 1.25 6 64 2 -2 0

13 -1.5 0.5 17 26 0.5 0.5 15 39 -0.5 0.5 12 52 1.25 -1.25 6 65 2 2 0

7. Conclusions

Optimization problems encountered in practice are
seldom mono-objective. In general, there are many
con
icting objectives to handle. An e�cient procedure
for solving multi-objective optimization problems using

the Charged System Search algorithm is presented
in this study. The algorithm is also applied to six
engineering design problems to demonstrate its appli-
cability in practical problems. The results obtained
amply demonstrate that the presented approach is
e�cient in converging to the true Pareto fronts and



A. Kaveh and M.S. Massoudi/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1845{1860 1857

Table 7. End nodes of the members of 272-bar transmission tower.
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p
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E
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M
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b
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S
tart

p
oint

E
n
d

p
oint

M
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b
er

S
tart

p
oint

E
n
d

p
oint

1 1 5 35 10 19 69 34 32 103 4 15 137 9 19 171 38 42 205 47 48 239 57 56

2 1 6 36 8 17 70 35 37 104 6 13 138 10 18 172 40 44 206 46 49 240 56 54

3 1 7 37 6 15 71 37 36 105 21 24 139 21 31 173 41 45 207 46 50 241 54 57

4 1 8 38 4 13 72 36 34 106 22 23 140 22 30 174 39 43 208 48 52 242 55 56

5 2 3 39 12 13 73 21 30 107 24 25 14 1 23 33 175 38 43 209 49 53 243 54 58

6 2 4 40 13 15 74 23 32 108 23 26 14 2 32 24 176 39 42 210 47 51 244 56 60

7 2 12 41 15 14 75 25 34 109 26 27 1 43 25 35 177 40 45 211 46 52 245 57 61

8 2 13 42 14 12 76 27 36 110 25 28 1 44 26 34 178 41 44 212 48 50 246 55 59

9 11 9 43 15 17 77 28 37 111 31 32 1 45 27 37 179 38 44 213 49 51 247 54 60

10 11 10 44 17 16 78 26 35 112 30 33 1 46 28 36 180 40 42 214 47 53 248 56 58

11 11 18 45 16 14 79 24 33 113 33 34 1 47 14 23 181 41 43 215 46 51 249 57 59

12 11 19 46 17 19 80 22 31 114 32 35 1 48 16 25 182 39 45 216 47 50 250 55 61

13 20 21 47 19 18 81 4 5 115 35 36 1 49 17 26 183 42 43 217 48 53 251 54 59

14 20 22 48 18 16 82 3 6 116 34 37 1 50 15 24 184 43 45 218 49 52 252 55 58

15 20 30 49 38 39 83 6 7 117 21 32 1 51 32 38 185 45 44 219 50 51 253 56 61

16 20 31 50 39 41 84 5 8 118 30 23 15 2 34 40 186 42 44 220 51 53 254 57 60

17 29 27 51 41 40 85 8 9 119 23 34 1 53 35 41 187 43 44 221 53 52 255 58 59

18 29 28 52 40 38 86 7 10 120 32 25 1 54 33 39 188 42 45 222 52 50 256 59 61

19 29 36 53 21 22 87 12 15 121 25 36 1 55 14 25 189 42 46 223 51 52 257 61 60

20 29 37 54 22 24 88 13 14 122 34 27 1 56 16 23 190 44 48 224 50 53 258 60 58

21 3 4 55 24 23 89 15 16 123 28 35 157 17 24 191 4 5 49 225 50 54 259 59 60

22 4 6 56 23 21 90 14 17 124 26 37 158 15 26 192 4 3 47 226 52 56 260 58 61

23 6 5 57 24 26 91 17 18 125 26 33 159 14 24 193 4 2 48 227 53 57 261 58 62

24 5 3 58 26 25 92 16 19 126 24 35 160 15 23 194 4 4 46 228 51 55 262 60 64

25 6 8 59 25 23 93 3 14 127 24 31 161 16 26 195 45 47 229 50 56 263 61 65

26 8 7 60 26 28 94 5 12 128 22 33 162 17 25 196 43 49 230 52 54 264 59 63

27 7 5 61 28 27 95 5 16 129 39 40 163 32 40 197 42 47 231 53 55 265 58 64

28 8 10 62 27 25 96 7 14 130 38 41 164 38 34 198 4 3 46 232 51 57 266 60 62

29 10 9 63 30 31 97 7 18 131 3 13 165 35 39 199 44 49 233 50 55 267 61 63

30 9 7 64 31 33 98 9 16 132 12 4 166 33 41 200 45 48 234 51 54 268 59 65

31 3 12 65 33 32 99 10 17 133 5 15 167 32 39 201 4 6 47 235 52 57 269 58 63

32 5 14 66 32 30 100 8 19 134 14 6 168 33 38 202 4 7 49 236 53 56 270 59 62

33 7 16 67 33 35 101 8 15 135 7 17 169 34 41 203 4 9 48 237 54 55 271 60 65

34 9 18 68 35 34 102 6 17 136 8 16 170 35 40 204 4 8 46 238 55 57 272 61 64
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Table 8. Member grouping of the 272-bar transmission tower.

Group
number

Members Group
number

Members Group
number

Members Group
number

Members

1
�
M1�M4

�
8

�
M175�M182

�
15

�
M207�M210

�
22

�
M241�M242

�
2

�
M5�M20

�
9

�
M183�M186

�
16

�
M211�M218

�
23

�
M243�M246

�
3

�
M21�M80

�
10

�
M187�M188

�
17

�
M219�M222

�
24

�
M247�M254

�
4

�
M81� 146M

�
11

�
M189�M192

�
18

�
M223�M224

�
25

�
M255�M258

�
5

�
M147�M154

�
12

�
M193�M200

�
19

�
M225�M228

�
26

�
M259�M260

�
6

�
M155�M170

�
13

�
M201�M204

�
20

�
M229�M236

�
27

�
M261�M264

�
7

�
M171�M174

�
14

�
M205�M206

�
21

�
M237�M240

�
28

�
M265�M272

�
Table 9. Di�erent possible scenarios for the transmission tower with corresponding solutions.

Scenario Possible priority
weights

Selected solutions by
MTDM (m, m3)

Ri =
p
fw1

1 � fw2
2

A
�
0:9; 0:1

� �
0:4571; 0:1102

�
0.6296

B
�
0:8; 0:2

� �
0:4793; 0:0947

�
0.5887

C
�
0:7; 0:3

� �
0:5067; 0:0763

�
0.5359

D
�
0:6; 0:4

� �
0:5646; 0:0606

�
0.4809

E
�
0:5; 0:5

� �
0:8278; 0:0504

�
0.4520

F
�
0:4; 0:6

� �
1:4683; 0:0439

�
0.4228

G
�
0:3; 0:7

� �
2:1702; 0:0398

�
0.3633

H
�
0:2; 0:8

� �
3:0858; 0:0384

�
0.3039

I
�
0:1; 0:9

� �
4:0674; 0:0377

�
0.2453

Figure 16. The Pareto front of transmission tower and
the best solutions according to nine di�erent scenarios.

Figure 17. Comparison between best solutions according
to �ve di�erent scenarios obtained by the present work
and CSS-MOPSO for Example 5.

in �nding a diverse set of solutions along the Pareto
front. Considering Tables 1, 2 and 4, it is obvious
that the Pareto front obtained by the present method is
more diverse than other methods. After computing the
Pareto front, the engineers involved in making design
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decisions, express their preferences about di�erent
criteria (objectives or other independent criteria). By
aggregating di�erent ideas, the �nal solution is selected
by an algorithm called MTDM. Comparison of the
best solutions, corresponding to �ve di�erent scenarios
obtained by the present work and CSS-MOPSO, is
shown in Figure 17 for Example 5.
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