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Abstract. In this paper, a time varying optimal control algorithm (�-method) is proposed
to control building responses against environmental earthquake excitations. The proposed
method is presented through de�ning a rational relation between the state variables of
a structure with active and passive control systems with identical mechanisms. This
procedure results in a time varying gain matrix with adaptable ability to external excitation,
in order to decrease the extra need for maximum and/or total control force. Performance
of the proposed method is examined by applying it to an eight-story shear type building
subjected to various ground accelerations. Numerical results indicate that the proposed
algorithm in some cases reduces the power consumption demand signi�cantly, without
any reduction in control system performance, in comparison with the classical closed loop
optimal control method, and, in the worst case, acts in a similar way.
© 2014 Sharif University of Technology. All rights reserved.

1. Introduction

Construction of tall buildings with enough strength
against extraordinary loads, such as strong earthquakes
and severe typhoons, besides their ability to deal with
the resultant large deformations, has been the main
concern of civil engineers for many years. Such struc-
tures inherently have high 
exibility and low damping,
so, it is important to suppress their responses not only
for safety, but also for serviceability. Intensive research
e�orts have been devoted to balance these two e�ects,
via the possibility of employing new protective systems
in civil engineering. These include passive, semi-active,
active, and hybrid control systems. Among them, ac-
tive control systems are more attractive than the others
because of their ability to apply instant control forces,
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depending on the extent of the external disturbances
and/or the state of the structural responses during
vibrations. Active control has been studied extensively
in engineering. Orlando and Goncalves [1] showed
that the geometric nonlinearity of a pendulum absorber
on the response of a tower can cause dynamic jumps
and instability. In order to improve the e�ectiveness
of the device, they implemented an active system
based on position and velocity feedback. Mahato and
Maiti [2] employed displacement and velocity feedback
controllers to reduce the response of the composite
laminate under hygrothermal conditions. Shisheie et
al. [3] proposed a LQR approach to optimally tune the
gains of a PI controller of �rst order, plus time-delay
systems. Sandoval et al. [4] evaluated the e�ectiveness
of various alternative control devices (active, passive
and semi-active) implemented as the link between two
coupled buildings. Fitzgerald et al. [5] implemented
active tuned mass dampers for the mitigation of
in-plane vibrations in rotating wind turbine blades.
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Venanzi et al. [6] proposed a method based on the
genetic algorithm for optimized control of tall buildings
with active mass dampers subjected to wind-induced
vibrations.

Any active control system is included in an al-
gorithm, which analyzes inputs and computes appro-
priate control forces for imposition on the building.
Until now, many active structural control algorithms
have been proposed, each including many advantages
and a few disadvantages. They are included as linear
quadratic algorithms, pole placement, instantaneous
optimal control, independent modal space control, and
so on. The Linear Quadratic Regulator (LQR) is the
most famous, which has been widely implemented in
all �elds of science, because of its simple procedure and
ease of implementation on actual large scale systems.
Among its three di�erent branches: closed loop, open
loop or closed-open loop algorithms, the classical closed
loop control is the only feasible algorithm in structural
control applications [7]. However, di�culty in solving
the Riccati matrix equation backward in time causes
the excitation term to be ignored in order to acquire
the desired control gains. Therefore, the classical closed
loop control is approximately optimal and does not
satisfy the optimality conditions entirely. To overcome
this shortcoming, di�erent algorithms have been pro-
posed. Bahar et al. [8] proposed a new instantaneous
control algorithm using the Wilson-� method. Despite
a suitable performance, however, the proposed algo-
rithm, like other algorithms in this class, is sensitive to
changes in time increment. Basu and Nagarajaiah [9]
proposed a wavelet-based adaptive linear quadratic
regulator formulation for the optimal control problem.
Although no prior information on the excitation is
required, stability criteria are not considered at all.
Basu and Nagarajaiah [10] presented a method for
the control of time varying systems based on wavelet
transformation. By performing numerical examples,
they showed that in cases where the conventional LQR
failed to control the vibration response, the proposed
controller e�ectively suppresses the instabilities in the
linear time varying systems.

Changa et al. [11] proposed an active vibra-
tion control technique for building structures using a
learning-based lattice pattern controller under earth-
quake excitations. Bagheri and Amini [12] proposed
a procedure based on the pattern search method and
the capability of wavelet analysis on uniform hazard
earthquake accelerograms to acquire a more e�cient
control scheme than the LQR.

In this paper, a time varying closed-loop algo-
rithm, based on the optimal theory, is proposed. It
is assumed that the responses of active structures are
a quotient of similar passively controlled structures, at
any control time instant. This assumption results in
a time-varying gain matrix. Since determined control

force may not always guarantee the stability of the
building, the stability of the system is achieved by
means of the Lyapunov stability criteria, which tends
to a proper weighting matrix. By selecting an eight-
story shear type building subjected to di�erent ground
accelerations, numerical examples are conducted to
investigate and evaluate the e�ciency of the proposed
procedure. The classical closed loop algorithm is used
as a testimonial algorithm. Results show that the
proposed method, in some cases, reduces signi�cantly
the need for maximum and/or total control force
consumption with a negligible drop in control system
performance, and, in the worst case, acts in a similar
manner.

2. Classical optimal linear quadratic closed
loop regulator (CLLQR)

Consider a building equipped with an active control
system excited by strong ground motion. The govern-
ing dynamic equation of motion may be written in the
following matrix form:

M �x+ C _x+Kx = �ME�xg +Du(t); (1)

where x is the n-dimensional displacement vector, and
the dots state the derivative of x with respect to
time, as the velocity and acceleration vectors; M , C
and K are the n � n mass, damping and sti�ness
matrices of the structure, respectively; E is the n � 1
in
uence vector of the ground acceleration on the
building masses; D is the n�m location matrix of the
control forces a�ecting the structure; and u(t) is the
m� 1 control force vector applied by the m actuators.

With some manipulation, the equation of motion
may be rewritten in terms of the state-space variables,
Z, as follows:

_Z = AZ(t) +Bu(t) +Hf(t); Z(t0) = Z0; (2)

in which t0 is the initial time instant, Z(t) is the vector
of state variables and A depicts the system matrix,
respectively. Vector Z(t) and matrix A are de�ned as
follows:

Z(t) = [x(t); _x(t)]T ;

A =
�

0 I
�M�1K �M�1C

�
: (3)

In addition, matrix B and vector H are given as:

B =
�

0
M�1D

�
; and H =

�
0
�E
�
: (4)

In classical linear optimal control, a performance index,
J(t), is de�ned in order to minimize building responses



R. Mirzaei and O. Bahar/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1833{1844 1835

and control forces to achieve the best structural per-
formance, which is de�ned by:

J =
Z tf

0

�
ZT (t)QZ(t) + uT (t)Ru(t)

�
dt; (5)

where Q is a 2n � 2n positive semi de�nite weighting
matrix related to structural response, R is an r � r
positive de�nite weighting matrix related to active
control force, and tf indicates the terminal time that
should be longer than the earthquake duration. To
minimize the performance index, J , subjected to the
constraint given by Eq. (2), the necessary conditions
are as follows:

_� = �AT�(t)� 2QZ(t); (6)

u(t) = �1
2
R�1BT�(t); (7)

in which, �(t) is a 2n vector representing the Lagrange
multiplier. The optimal control force vector, u(t),
the Lagrange vector, �(t), and the state vector, Z(t),
can be solved using Eqs. (2)-(6) and Eq. (7). Notice
that the control vector, u(t), in Eq. (7), is directly
related to the Lagrange vector, �(t). If the control
force is assumed to be proportional to the state vector,
Z(t), the LQR control is named an optimal closed-loop
(CCLQR) control. In this case, one has:

�(t) = P (t)Z(t); (8)

where P (t) is called the Riccati matrix and is achieved
by solving the following nonlinear matrix equation:�

_P (t)+P (t)A� 1
2
P (t)BR�1BTP (t)+ATP (T )+2Q

�
Z(t)

+ P (t)Hf(t) = 0; P (tf ) = 0: (9)

There are two assumptions for Eq. (9) to be solved.
First, the external disturbance, f(t), is equal to zero
or is a white noise stochastic process. Second, the
Riccati matrix is constant over the time [7]. Although,
the second assumption is almost satis�ed, the �rst
assumption is not ful�lled in almost all situations. In
any case, Eq. (9) reduces to the following equation:

PA� 1
2
PBR�1BTP +ATP + 2Q = 0: (10)

By selecting appropriate Q and R weighting matrices,
this equation is simply solved and, according to Eq. (7),
the instant active control force is determined by the
following relation:

u(t) = �1
2
R�1BTPZ(t); (11)

in which, the constant control gain matrix is as follows:

G = �1
2
R�1BTP: (12)

This procedure is simple, straightforward and strong.
But, it seems that responses are not truly optimal
because external disturbances are neglected in solving
the matrix Riccati equation.

3. Time varying linear quadratic
regulator-closed loop (�-method)

Consider a structure enhanced by a passive control
system in order to decrease its 
oor responses, due
to environmental strong excitations such as typhoons
or strong ground earthquakes. For such a structure,
the governing equation of motion in terms of the state
variables is as follows:

_�Z(t) = A �Z(t) +Hf(t); (13)

in which �Z(t) denotes the state variables of the struc-
ture equipped with passive control systems. Moreover,
suppose this passive system is upgraded by installing
an actuator to apply active control forces to obtain
further reduction in responses. In this case, suppose,
as a policy, the responses of the actively controlled
structure, Z(t), are directly related to the responses
of the passively controlled system, �Z(t), as follows:

�Z(t) = N(t)Z(t);

_�Z(t) = _N(t)Z(t) +N(t) _Z(t); (14)

where, N(t) is a proper transform matrix. It should be
noticed that the transform matrix, N(t), is a magni�er
matrix, which relates the responses of the actively
controlled system to the similar passively controlled
system. Combining Eqs. (2)-(13) and Eq. (14) gives
the following relation:

(AN� _N �NA)Z(t)�NBu(t)+(I�N)Hf(t)=0:
(15)

Now, with regard to the constraint introduced in
Eq. (15), and the quadratic performance index, J(t),
i.e. Eq. (5), the corresponding Lagrangian, L, of
the active optimal control problem can be written as
follows:

L =
Z tf

0

��
ZT (t)QZ(t) + uT (t)Ru(t)

�
+�T(t)

�
(AN� _N�NA)Z(t)�NBu(t)+(I�N)Hf (t)

��
dt:
(16)

Consequently, the necessary conditions for optimal
control become:

2ZT (t)Q+ �T (AN � _N �NA) = 0;

�(t) = �2(AN � _N �NA)�TQZ(t); (17)



1836 R. Mirzaei and O. Bahar/Scientia Iranica, Transactions A: Civil Engineering 21 (2014) 1833{1844

2uT (t)R� �TNB = 0;

u(t) =
1
2
R�1BTNT�(t): (18)

Combining two last equations gives:

u(t) = �R�1BTNT (AN � _N �NA)�TQZ(t): (19)

Selection of a proper transform matrix, N , at any mo-
ment is a cumbersome and time consuming procedure.
Therefore, after extensive analysis, a scalar matrix is
proposed as an admissible N matrix by the following
de�nition:

N(t) =
1
�(t)

I; _N(t) =
� _�(t)
�2(t)

I; (20)

where �(t) is an admissible scalar function and I is the
identity matrix with proper dimensions. Notice that,
based on Eq. (14), the scalar function, �(t), should be
less than or equal to one, such that the condition of
Z(t) � �Z(t) is satis�ed. By inserting Eq. (20) into
Eq. (19), the following expression for the control force
is obtained:

u(t) = �R�1(t)BTQZ(t); R(t) =

 
_�(t)
�(t)

!
:R:

(21)

It is seen that this trend directly a�ects the control
force weighting matrix and, in turn, control forces
are applied to the structure, in each time instant.
Because of the appearance of �(t) in the control force
expression, the suggested control scheme is called the
�-method.

4. Stability criteria

In structural control, stability is an important issue,
which must be carefully attended to. For linear time-
invariant systems, the stability of a control system may
be ensured by considering the location of the roots
(eigenvalues) of the closed loop characteristic equation
of the system matrix. These characteristic values
are a�ected directly by the properties of the selected
weighting matrices, as well as other properties of the
building, such as mass, sti�ness and damping char-
acteristics. Since, in the �-method, the R weighting
matrix is time dependent, selection of a proper stable
Q weighting matrix needs more attention. In such
situations, a convenient way to get a su�cient stability
margin and obtain proper performance is utilizing the
second law of the Lyapunov stability theorem. Based
on this theorem, a system is stable if a scalar Lyapunov
function, V (Z) > 0 for Z 6= 0, V (Z) = 0 for Z = 0,
and V (Z) ! 1 as Z ! 1, exists, such that its �rst
derivative, with respect to time, is negative de�nite for

all Z, i.e. _V < 0. To get a proper stability margin,
we may consider a positive de�nite matrix, Q(t), such
that the following de�nition is also a positive de�nite
function:

V (t) = Z(t)TQ(t)Z(t) > 0; (22)

in which V (t) is a possible Lyapunov function. By
taking the �rst derivative of the Lyapunov function and
considering Eqs. (2) and (21), the following expression
is obtained:

_V =Z(t)T
�

_Q(t) +Q(t)A+ATQ(t)

�Q(t)BR(t)�1BTQ(t)
�
Z(t): (23)

Based on the Lyapunov stability theorem, the weight-
ing matrix, Q(t), will be a stable weighting matrix
if the bracket in Eq. (23), which is very similar to a
Riccati matrix equation, is a negative de�nite matrix.
As a su�cient condition, we may assume that the
sum of all terms of the bracket in Eq. (23) is equal
to a negative de�nite matrix, say -I0, where I0 is an
arbitrary positive de�nite matrix. Using this de�nition,
we get:

_Q(t) +Q(t)A+ATQ(t)�Q(t)BR(t)�1BTQ(t)

+ I0 = 0: (24)

Now, if Eq. (24) is solved, for a de�ned I0 matrix and
a proper selected R(t) weighting matrix, the stable Q
weighting matrix will be achieved. Extensive e�orts
show that the exact solution of Eq. (24) is computation-
ally expensive, because it takes a long time to solve the
equation in each time step. To overcome this di�culty,
by ignoring the derivative term of the Q weighting
matrix, the approximate solution of Eq. (24) is here
proposed. Performing such simpli�cation, Eq. (24)
becomes as follows:

Q(t)A+ATQ(t)�Q(t)BR(t)�1BTQ(t) + I0 = 0:
(25)

This simpli�cation assumption will be examined in the
following sections.

5. Evaluation criteria

To assess the e�ciency of the control algorithms,
researchers have employed various indices, such as
maximum displacement, velocity, acceleration of the
stories, drift ratios of the adjacent 
oors and maximum
base shear of the structures. Mirzaei and Bahar [13]
have shown that, in general, performances of the
family of optimal algorithms are so similar that their
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Table 1. Performance indices.

J1 = max jDistsjcon
max jDistsjuncon

J2 = max jVeltsjcon
max jVeltsjuncon

J3 = max jAcctsjcon
max jAcctsjuncon

J4 = max jVbjcon
max jVbjuncon

Top story peak dis. Top story peak vel. Top story peak acc. Peak base shear

J5 = RMS(max jDisjcon)
RMS(max jDisjuncon) J6 = RMS(max jVeljcon)

RMS(max jVeljuncon) J7 = RMS(max jAccjcon)
RMS(max jAccjuncon) J8 = RMS(max jDrijcon)

RMS(max jDrijuncon)

RMS of stories peak dis. RMS of stories peak vel. RMS of stories peak acc. RMS of stories peak drift
J9 = max jC:fjcon�i

max jC:f jcon�j J10 = avejC:fjcon�i
avejC:fjcon�j E.I =

P8
i=1

Ji
8

Peak control force Average control force E�ciency index

Table 2. Characteristics of the strong ground motion acceleration records.

Predominant
period (sec)

PGA (g)
Strong ground

motion duration
(sec)

Duration (sec) Earthquake

0.56 0.34 24.42 54 El-centro

0.34 0.82 0.36 48 Hyogo ken-Nanbu (Kobe)

0.36 0.171 31.90 50 Landers

0.38 0.357 4.47 30 Park�eld

di�erences are negligible. Hence, in this paper, in order
to have proper evaluation criteria for comparing the
e�ciency of the control algorithms, other parameters
are introduced. In this regard, two categories of criteria
are tabulated in Table 1: (1) indices, J1 to J8, and,
also, E:I: index, which are related to the normalized
reduction occurred in the structural responses, and (2)
normalized indices, J9 and J10, which are related to the
amount of the control force consumptions of di�erent
control systems.

Indices, J1 through J3, represent the criteria for
the maximum displacement, velocity, and acceleration
responses of the top story, which are normalized to their
corresponding uncontrolled values, i.e. the structure
without any active or passive control systems. The
performance index, J4, represents the normalized maxi-
mum base shear of the controlled building, with respect
to the uncontrolled case. Indices, J5 though J8, show
the Root Mean Square (RMS) of the maximum story
responses, such as displacement, velocity, acceleration
and story drifts, with respect to the corresponding
response quantity in the uncontrolled case. Finally,
indices, J9 and J10, represent the maximum and
average amount of required control forces, with respect
to the reference algorithm, which is a classical closed-
loop optimal control algorithm. Meanwhile, an addi-
tional parameter, called the e�ciency index (E:I:), is
de�ned as the average of indices J1 thought J8. All
these indices help to give an overall insight into the
performances of the various control systems.

6. Numerical example

A numerical example is carried out to evaluate the
performance of the proposed method. Both conven-

tional LQR (CCLQR) and the proposed �-method
are used, separately, to control the extra seismic
responses of an eight-story shear type building during
di�erent earthquake excitations. The properties of
the building structure are as follows: mass, sti�ness
and damping parameter of the 
oors are identical
and their values are, respectively, equal to 345.5 tons,
3:404 � 105 kN/m, and 2937 tons-sec/m. The active
control system includes an Active Mass Damper/Driver
(AMD) system, which is installed on the roof. Its
characteristics include a mass of about 29.63 tons, with
a tuned frequency of about 98% of the �rst vibration
frequency of the building, and the damping about
25 tons-sec/m. In addition, the passive control system
includes a Tuned Mass Damper (TMD) with similar
dynamic speci�cations on the roof of the building.
Dynamics of the control systems are included in the
dynamic equation of motion of the whole building.
Hence, the interaction e�ects of the building and the
control systems are considered.

The performance of the active controlled build-
ing is considered during four di�erent strong ground
motions, which include the El Centro earthquake, the
Hyogo ken-Nanbu (Kobe) earthquake, the Landers
earthquake, and the Park�eld earthquake. Speci�ca-
tions of the acceleration records of these earthquakes
are brie
y tabulated in Table 2.

6.1. Selection of proper scalar function �(t)
Mathematically, no restriction governs the selection of
�(t), unless its absolute value should be less than or
equal to one, such that the condition of Z(t) � �Z(t)
is satis�ed. An exponential function can be a good
candidate for this criterion, therefore, the general form
is proposed as follows:
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�(t) = �e�g(t); (26)

in which the g(t) will be determined considering other
requirements. In this regard, the term, _�

� , in Eq. (21),
is equal to _g(t). This term, multiplied by R, constructs
R(t), which directly a�ects the magnitude of control
forces. Since control forces applied during strong
ground excitations are a function of earthquake time
history, a suitable option for _g(t) may be as follows:

_g(t) =
1 + e�f(t)

a+ e�f(t) ; f(t) =
�Z t

0

���� �xgg ���� dt�n ; (27)

where f(t) is an ascending function in the time do-
main. With such selection, R(t) varies approximately
uniform between two extent values, Ra and 2R

a+1 , during
the control time interval. For distinct values of a,
analysis shows that the mentioned form does not tend
to high e�ciency, the reason being that earthquake
acceleration varies randomly and a uniform variation
cannot account for this phenomenon. To eliminate
this shortcoming, the term

�
a� � 1

n

� _f(t)
�

is added to

the dominator as the coe�cient of e�f(t). Then, �(t)
becomes:

�(t) = �e
R t
0

(
1+e�f(t)

a+(a�( 1
n ) _f(t))e�f(t)

)
dt
;

f(t) =
�Z t

0

���� �xgg ���� dt�n ; a 2 R+: (28)

Using the El Centro earthquake excitation and imple-
menting a trial and error procedure, appropriate values
for variables a and n, in Eq. (28), are assigned equal
to 8 and 1.5, respectively. The values were computed
such that the responses of the controlled structures
would decrease to the greatest possible extent. Using
these values, variations of ( _�=�), which directly a�ect
the instant values of control forces through Eq. (21),
have been drawn during di�erent ground accelerations
in Figures 1-4.

In Figures 1 and 2, it is interesting that about
28 and 12 seconds after the starting control action,

Figure 1. Variation of ( _�=�) for El Centro ground
excitation.

the need for inserting a control force is signi�cantly
decreased, while, for instance, in Figure 4, by increasing
control time duration, the need for active control forces
is slightly increased. Generally, it is seen that using
�xed values for a and n, which are tuned for the best
performance during the El Centro earthquake, leads
to a proper performance during the other earthquakes.
Also, variations of ( _�=�) are always less than unit
value, meaning that the need for control forces during
control time duration decreases.

6.2. Weighting matrices
In the control literature, a variety of Q and R weighting
matrices, which are, respectively, pertinent to the
state variables and control force, has been suggested.

Figure 2. Variation of ( _�=�) for Hyogo ken-Nanbu
ground excitation.

Figure 3. Variation of ( _�=�) for Landers ground
excitation.

Figure 4. Variation of ( _�=�) for Parl�eld ground
excitation.
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Commonly, Q and R matrices are determined in an
o�ine manner, based on structural properties and
known probable ground earthquakes. This perhaps
causes a de�ciency in the control system during
other unpredicted ground earthquakes. The proposed
method is approximately 
exible, because only the I0
matrix should be chosen. Although the R matrix is
also a prede�ned value, its magnitude is continuously
modi�ed via the �(t) function during each control time
instant. In addition, since the Q matrix depends
on I0 and R(t) matrices, it is not necessary to be
known beforehand. Hence, in the proposed method,
the Q matrix is determined using the online solving of
Eq. (24) or Eq. (25).

Mirzaei and Bahar [13] have shown that the sta-
bility of the structures employing any optimal control
method is guaranteed; in these structures, by using
a positive semi de�nite weighting matrix, the matrix
Riccati equation is solved.

In this study, the following arrangement of the Q
weighting matrix, which is known as a proper matrix
for the classical optimal algorithm, is also used for the
positive de�nite matrix, I0:

Q = I0 = 104
�
K 0
0 M

�
; (29)

where K and M are the matrices, with dimensionless
numerical values corresponding to the sti�ness and
mass matrices of the controlled building, omitting
the sti�ness and mass values of the active mass
damper/driver. The weighting matrix related to the
control force, R, is assigned equal to 1.00 for all
algorithms. Notice that matrix R is a scalar quantity,
because only one AMD is installed at roof level.

The proposed �-method has great potential for
use as an online procedure during the occurrence of
earthquake excitations. Hence, in order to accelerate
determination of the instantaneous Q matrix in each
time instant, changes of some elements of Q(t) acquired
from exact solution, Eq. (24), and from approximate
solution, Eq. (25), are compared together in Fig-
ures 5-8, during El Centro and Landers earthquakes.
Results show that, although the elements of the Q
matrix are rapidly changed with time, its estimation
is good enough, especially its determination, which
is much faster than the exact solution. The Figures
obviously show that the approximate solution can
accurately determine the values of the Q matrix. So,
the major contribution of the approximate solution
is acquired, which will be ease of implementation of
the proposed time varying scheme, while accuracy is
preserved. Naturally, this encourages one to take
advantage of these bene�ts, and, therefore, the ap-
proximate solution will be utilized in the numerical
investigations.

Figure 5. Variation of Q1;1 element for exact and
approximate solutions; El Centro earthquake.

Figure 6. Variation of Q1;18 element for exact and
approximate solutions; El Centro earthquake.

Figure 7. Variation of Q1;1 element for exact and
approximate solutions; Landers earthquake.

Figure 8. Variation of Q1;18 element for exact and
approximate solutions; Landers earthquake.
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Figure 9. Stability diagram of the controlled building
during El Centro earthquake.

Figure 10. Stability diagram of the controlled building
during Hyogo ken-Nanbu earthquake.

6.3. Investigation of stability
Satisfaction of the stability criteria is the most im-
portant problem in active structural control problems.
Since the new proposed method results in a time-
varying gain matrix, the stability diagram of the whole
controlled building may be changed during each time
instant. To prevent the occurrence of instability
of the structure, stability diagrams of the building
during di�erent ground earthquakes are presented in
Figures 9-12. The results are compared with the
stability diagram of the building when it is passively
controlled.

Stability diagrams show that the controlled build-
ing is stable in all cases. But, the stability margin
of the controlled building during the control time for
di�erent earthquakes may signi�cantly alter (Figures 9-
12). For instance, by increasing control time, the
stability margin of the controlled building during El

Figure 11. Stability diagram of the controlled building
during Landers earthquake.

Figure 12. Stability diagram of the controlled building
during Parl�eld earthquake.

Centro and Hyogo ken-Nanbu (Kobe) earthquakes has
a tendency towards the stability margin of the passive
control system. It means that the active control
system, after passing the strong part of the earthquake,
performs like an equivalent passive system. This may
signi�cantly decrease required control forces. On the
other hand, during Landers or Park�eld earthquakes,
the performance of the control system does not change.
In other words, the control system actively works all the
time, expecting no reduction observed in the control
forces.

6.4. Results and discussion
Responses of a controlled building using the new �-
method under four di�erent earthquakes, El Centro,
Hyogo ken-Nanbu (Kobe), Landers and Park�eld, are
determined and depicted in Figures 13-16. Results
include the maximum displacement, velocity, and ac-
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Figure 13. The maximum responses of the building 
oors due to El Centro earthquake.

Figure 14. The maximum responses of the building 
oors due to Hyogo ken-Nanbu earthquake.

Figure 15. The maximum responses of the building 
oors due to Landers earthquake.

Figure 16. The maximum responses of the building 
oors due to Parl�eld earthquake.
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Table 3. Performance indices for building, subjected to El Centro, Hyogo ken-Nanbu (Kobe), Landers and Park�eld
earthquakes.

El Cento Kobe Landers Park�eld
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J1 0.79 0.35 0.36 0.94 0.50 0.53 0.78 0.34 0.35 0.89 0.35 0.38
J2 0.84 0.59 0.61 0.96 0.60 0.63 0.78 0.44 0.45 0.95 0.60 0.62
J3 0.81 0.46 0.53 0.96 0.55 0.63 0.97 0.65 0.74 0.93 0.50 0.55
J4 0.83 0.37 0.38 0.94 0.51 0.55 0.74 0.34 0.35 0.85 0.47 0.48
J5 0.79 0.35 0.37 0.94 0.51 0.54 0.77 0.33 0.35 0.88 0.40 0.41
J6 0.83 0.63 0.66 0.96 0.61 0.64 0.85 0.51 0.52 0.92 0.62 0.62
J7 0.84 0.57 0.59 0.95 0.73 0.76 0.89 0.66 0.68 0.95 0.64 0.66
J8 0.80 0.37 0.38 0.94 0.54 0.56 0.78 0.37 0.38 0.89 0.48 0.49
E.I - 0.46 0.49 - 0.57 0.61 - 0.45 0.48 - 0.51 0.53
J9 - 1 0.93 - 1 1.03 - 1 0.92 - 1 0.90
J10 - 1 0.72 - 1 0.62 - 1 0.99 - 1 1.06

Figure 17. Active control force during El Centro
earthquake.

celeration responses of the 
oors obtained from three
cases: without control action, and with passive and
active control systems. For the active control system,
two algorithms are also used that are the conventional
LQR (CCLQR) and the proposed time varying scheme,
�-method.

The corresponding control force time histories
for all cases are compared in Figures 17-20 for all
earthquakes. Moreover, in order to provide more
realistic insight into the performance of both methods,
calculated indices are tabulated in Table 3.

Comparing results apparently show that all the
controlled responses obtained by the use of two dif-
ferent control algorithms are very similar during var-
ious earthquake excitations. There is only a small
di�erence between the acceleration responses of the
above 
oors. For instance, the maximum di�erence at
roof level during the El Centro earthquake is about
7% in which the �-method presents slightly greater
values, with respect to CCLQR. It is interesting that

Figure 18. Active control force during Hyogo ken-Nanbu
(Kobe) earthquake.

Figure 19. Active control force during Landers
earthquake.

based on the results tabulated in Table 3, the need
for peak and average control force requirements for
this case are reduced by 7% and 28%, respectively
(Figure 17). This indicates that the total energy
demands for the proposed new control scheme are
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Figure 20. Active control force during Parl�eld
earthquake.

signi�cantly decreased. Considering the results for the
Hyogo ken-Nanbu (Kobe) earthquake, it shows that,
although the peak control force is increased about 3%,
the reduction in the average control force is almost
38% (Figure 18). For the two other earthquakes, i.e.
Landers and Park�eld, the required maximum control
forces are decreased about 10%, while the other results
are almost similar.

It is mentioned that in some cases, like Hyogoken-
Nanbu (Kobe) or Park�eld earthquakes, it seems that
the passive control system is not working correctly to
alleviate the extra responses of the building. This
is because the passive control system is not designed
separately, but the same mechanism of the designed
active control system, without inserting control force
to the building, is used as a passive system. It is
clear that by better tuning the characteristics of the
passive system against these mentioned earthquakes,
better results will be obtained.

Brie
y, the results show that the proposed time
varying controller has the inherent capability and 
exi-
bility to account for the variability in the nature of the
response, using a prede�ned scalar function related to
the variations of ground acceleration. The performance
of the proposed controller is better, in terms of reducing
the need for energy power, in some cases, compared to
the classical LQR controller. And, in the worst case, it
approximately needs a similar amount of energy, as in
the case of an LQR controller. Moreover, the proposed
method, in some cases, may alleviate the need for
maximum control force consumption, with a negligible
drop in reduced controlled responses, in comparison
with the CCLQR scheme.

7. Conclusions

In this paper, a new active control method, named the
�-method, through de�ning a rational relation between
the state variables of a structure with two active and
passive control systems with identical mechanisms, is
proposed. Using a scalar function, which is de�ned

as an external excitation dependent function, the �-
method presents a time varying adaptive control gain.
Using the Lyaponuv stability criteria, proper weighting
matrices for ensuring the entire stability of the whole
building are guaranteed. Using the new proposed
method, the performance of an actively controlled
eight-story shear type building, in comparison to the
classical optimal control method, shows that: (1)
the performance of the new method with negligible
di�erences is very similar to that of the classical
method, and (2) in some cases, without decreasing
performance, maximum and/or average control forces
are much decreased. Overall, in spite of signi�cant
power saving, in some cases, a slight drop occurs in
performance, which may be observed as the inherent

exibility of the proposed method to reduce energy
demand. This makes it an attractive time varying
control method for seismic vibration control of struc-
tures.
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