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Abstract 

Using the concept of strain energy change, due to damage at the element level, a 

new structural damage detection method is developed. The proposed method employs 

either static or dynamic response of a structure and simultaneously localizes and 

quantifies multiple damages. It requires only the stiffness and mass matrices of the 

baseline structure and a few measured responses of the current structure to find the 

exact location and severity of damage. A numerical example was used to investigate the 

behavior of the algorithm. It is shown that those mode shapes and static loadings which 

yield a uniform distribution of strain energy in elements predict the location and 

magnitude of damage with more accuracy. Some higher mode shapes which might 

induce significant levels of strain energy in some elements are not always reliable. 

Finally, it is shown that in order to obtain reliable results, the number of equations 

(mode shapes or static loadings) must be greater than the number of predicted damaged 

elements. 

Keywords: Damage Detection, Strain Energy, Static Response, Dynamic Response. 

∗ Corresponding author: E-mail: banan@shirazu.ac.ir.  Fax: (+98) 711-647-3161 

+ Currently, Assistant Professor, Department of Civil Engineering, Science and Research 
branch, Islamic Azad University, Fars, Iran. ashkan.sha@gmail.com. 

 

 1 

                                                 



INTRODUCTION 

Structural systems are susceptible and vulnerable to unrecoverable damages due 

to unexpected loadings such as sever earthquakes or other natural disasters. Besides, 

these systems and more specifically infrastructures including life lines and bridges 

might lose their strength during their service life due to some other causes. Some of 

these parameters which harm the health of a structure are lack of repair, inappropriate 

maintenance, and not following the most recent design codes. Concerning the safety and 

functionality of structures, Structural Damage Detection (SDD) and Structural Health 

Monitoring (SHM) has become an attractive and essential field of research in Civil 

Engineering. 

Any change in the properties of the baseline structure is known as a structural 

damage. Basically, there are two categories of damages; linear and nonlinear. If an 

originally linear-elastic structure preserves its linear-elastic behavior after damage 

occurs, it bears a linear damage. A nonlinear damage is developed when an initially 

linear-elastic structure shows a nonlinear behavior. Cracks, fatigue, corrosion and 

broken welds and/or nuts could be some sources of damages. 

There are many different linear and nonlinear damage detection procedures. These 

methods cover a wide range of techniques from visual inspection to very sophisticated 

nondestructive damage detection (NDD) methods. The NDD techniques classified as 

local and global methods. Local methods such as x-ray inspection, eddy current 

scanning, acoustic emission, magnet field, thermal field and ultrasonic methods require 

that the vicinity of the damage be known a priori and the structural components be 

readily accessible. The global methods are based on the measured response of the 

structures which could be either static or dynamic response. 
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In general, the global methods may yield model-based algorithms or non-model-

based algorithms. Model-based algorithms need a finite element model of the damaged 

structure for the process of damage detection. Non-model-based algorithms identify the 

damage by comparing the responses of the structure before and after the damage 

occurrence. These algorithms do not explicitly use the structural parameters (stiffness, 

mass, and damping) and do not require the analytical model of the structure. 

Rytter [1] defined four levels of damage identification as follows. 

Level 1: determining the presence of a damage in the structure (damage 

detection), 

Level 2: determining the location of the damage (damage localization), 

Level 3: quantifying the severity of the damage, 

Level 4: predicting the remaining life time of the structure. 

The field of structural damage identification is a very broad field of study. 

Different methods based on different concepts and definitions of damage have already 

been developed. The concept of strain energy which is very suitable and promising for 

identification structural damages has been frequently used in literature. Stubbs et al. [2] 

are the first researchers who used the concept of strain energy to detect a structural 

damage. They presented a method based on the decrease in modal strain energy between 

two structural degrees of freedom, as defined by the curvature of the measured mode 

shapes. This method was applied to a damaged steel bridge. Their algorithm localized 

the damage by using three Eigen modes [3]. Later, Topole and Stubbs [4] investigated 

the feasibility of this method by using a limited set of modal parameters. 

In 1996, Farrar and Jauregui [5] employed five different damage detection 

algorithms, including; the damage index method [3], the mode shape curvature method 
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[6], the flexibility change method [7], a method combining mode shape curvature and 

flexibility change [8], and the stiffness change method [9], to detect some cuts 

intentionally provided in the I-40 bridge over the Rio Grande in New Mexico. They 

concluded that in general, all methods could correctly identify the damage location for 

the most severe cut, one from the mid-web completely through the bottom flange. All 

these methods could not clearly identify the damage location when they were applied to 

three less severe damage cases. Finally, based on the detection results they concluded 

that the damage index method [3], which is based on the strain energy concept, 

performed the best. 

In 2002, Park and Kim [10] examined the feasibility of damage index method for 

large, complex structures and found that the method can successfully be applied to this 

type of structures. The authors observed that the results might be improved if data from 

several modes are simultaneously used. Their method was suitable for structures that 

behave globally in a beam-like manner (one-dimensional). Cornwell et al. [11, 12] 

extended the method for plate-like structures characterized by two-dimensional 

curvature. The method employs only a few modes and has a non-model based 

algorithm, i.e. the method only requires the mode shapes of the structure before and 

after damage and these modes do not need to be mass normalized. This feature makes it 

very advantageous when using ambient excitation. The disadvantage of this method is 

that no appropriate data is usually available for undamaged structures. Basically, the 

method is a level-two method which can only identify the location of damage but not 

quantifying the magnitude of damage. 

Another structural damage detection method based on modal strain energy change 

was presented by Shi et al. [13]. Later, in 2000 these authors improved their algorithm 
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[14]. The new algorithm is able to locate single as well as multiple damages and 

compute corresponding magnitude of the damage (a level-three method). In 2002, Shi et 

al. [15] modified their algorithm so that it could quantify the damage using fewer lower 

modes compare to their original algorithm. The improved algorithm reduces the 

truncation error in computation, avoids the finite element modeling error in higher 

modes, and improves the rate of convergence. This method has a model based 

algorithm, i.e. it requires the stiffness matrix of the structures to compute modal strain 

energy. Since the damaged elements are not known, the undamaged elemental stiffness 

matrix is used instead of the damaged one as an approximation in elemental modal 

strain energy for the damaged state. Also, it requires both damaged and undamaged 

mode shapes of the structure. 

In last decades, some researchers developed various methods to determine 

location and magnitude of damage in different structural elements and bridges using 

strain energy changes [16-21]. 

Sharifi and Banan [17] developed a structural damage detection method based on 

the change of strain energy in each element before and after damage, which requires 

only the stiffness and mass matrices of the baseline structure and a few measured mode 

shapes of the current structure to find the location and severity of damage. The method 

has model based algorithm and it is a level-three method. The method has the capability 

of simultaneously localizing and quantifying multiple damages. The authors applied 

their method which is called Energy index method to the benchmark study sponsored by 

the IASC-ASCE Task Group on Structural Health Monitoring (details of the benchmark 

problem is presented in [22]) and the method successfully detected the damages of the 

benchmark. 
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Although, there are many methods which can be used to determine the mode 

shapes of a damaged structure by using either ambient vibration or transient dynamic 

response of the structure [23], which is very useful for structural damage detection of 

complex structures such as high-rise building (damage detection from dynamic response 

of structures), but in some structures such as bridges, it is simpler and more accurate to 

measure the static response of structures subjected to some static load cases (damage 

detection from static response of structures). 

In this paper, we have extended the energy index method developed by Sharifi 

and Banan [17], which works only for modal data, to cover static cases, as well. The 

proposed method is now capable of detecting damage based on availability of either 

static or dynamic response of structures (measurements from either static tests or 

dynamic tests). Using the static test results, the algorithm requires only the stiffness 

matrix of the baseline structure and a few number of statically loading cases of the 

current structure. For a dynamic case, a few number of measured mode shapes of the 

current structure and the stiffness and mass matrices of the baseline structure are 

required. The computational aspects of the advanced energy index method are also 

investigated in this paper. 

THEORY AND FORMULATION DEVELOPMENT 

The total stored strain energy, U, in an undamaged structure with n elements due 

to a virtual deformation is equal to the sum of the element strain energies, eu , which is 

Uu
n

e
e =∑

=1

 

Suppose an element of the structure is damage. If the damaged structure is 

subjected to the same virtual deformation which was induced on the undamaged 

(1) 
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structures, then the strain energy of the damaged element, eu~ , and thereby the total 

stored strain energy in the damaged structure, U~ , are reduced. The reduction of the 

element strain energy is as follows 

]1,0[;
~~ ∈=

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In this relation eδ  is defined as the energy index of the eth element which varies 

between zero and one. If the eth element is undamaged then eδ  is zero, and eδ  is equal 

to one if the eth element is completely lost. 

The decreased strain energy in the damaged structure is the sum of the eu∆  of each 

element which is 

∑
=
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e
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Substituting Eqn. (2) into Eqn. (3) yields 

UUu
n

e
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−=∑
=

δ  

Now, let us assume the structure is subjected to m different virtual deformations. 

It supplies a system of m different equations like Eqn. (4) as follows 

miUUu ii

n

e
eie ,,1for~

1
=−=∑

=

δ  

Solving this system of equations eδ  is found for each element, and then the location and 

damage severity of the damaged elements are determined. Depending on the number of 

virtual deformations, the above system of equations may be determined ( nm = ), over 

determined ( nm > ), or underdetermined ( nm < ). 

(3) 

(4) 

(5) 

(2) 
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To solve over determined and under determined system of equations, the Non-

Negative Least Square (NNLS) method proposed by Lawson and Hanson [24] is used. 

This method minimizes the objective function RδS −e  subjected to constraints 0≥eδ . 

The performance of other methods such as Least Square, Moor-Penrose Pseudo Inverse 

and Singular Value Decomposition are also investigated. But comparing results leads to 

employing the NNLS method. 

Static Response 
For an elastic system subjected to conservative static forces, the work done by the 

external forces on the system is stored as strain energy in the system. The term 

“conservative forces” refers to those forces whose potential energy depends only on the 

final values of deflections, not the specific paths to reach these final values.  

If we assume that the virtual deformation is the same as the deformation of the 

damaged structure due to a certain static loading, the stored strain energy in the 

damaged structure (U~ ) is equal to the work down by the external forces on the damaged 

structure (W~ ) which is 

WU ~~ =  

In the finite element form, by denoting the displacement vector of the structure 

and displacement vector of the eth element for damaged structure as Q~  and eq~ , 

respectively, we will have 

ee
T
eeu qkq ~~

2
1

=  , QKQ ~~
2
1 TU =  , ∑

=

==
L

j
jjQPWU

1

~
2
1~~  

where ek  and K are the eth element stiffness and the global stiffness matrices of the 

undamaged structure, respectively. iQ~  is the generalized displacement of the damaged 

(6) 

(7) 
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structure and iP  is the generalized external force acting in the direction of iQ~ . The word 

generalized is used here to emphasize that the displacement can be either transitional or 

rotational and that the forces can be concentrated forces and/or moments. Substituting 

Eqns. (7) into Eqn. (4), one can get 

∑∑
==

−=
L

j
jj

T
n

e
eee

T
e QPδ

11

~~~~~ QKQqkq  

In this equation the only unknown is eδ . If the damaged structure is subjected to m 

different static load cases, we will have m different equations like Eqn. (8), as follows 

miQPδ
L

i
ijiji

T
i

n

e
eiee

T
ie ,,1for~~~~~

11
=−= ∑∑

==

QKQqkq  

In compact matrix form, Eqn. (9) has the following form 

rδS =e  , iee
T
ieies qkq ~~=  , ∑

=

−=
L

j
ijiji

T
ii QPr

1

~~~ QKQ  

where ies , the members of the system matrix S, is the element strain energy of the eth 

element due to the deformation of the ith static loading of the damaged structure and ir , 

the elements of the residual vector r, is the difference between the total strain energies 

of the undamaged structure and the damaged structure due to the deformation of the i th 

static loading of the damaged structure. 

Dynamic Response 
In dynamic tests, the dynamic properties of structure such as natural frequencies 

and mode shapes are obtained via vibration measurements. Now, let us assume that the 

virtual deformation is the same as one of the mode shapes of the damaged structure. In 

the finite element form, we will have 

ee
T
eeu ϕϕ ~~

2
1 k=  , ΦKΦ ~~

2
1 TU =  , ΦMΦΦKΦ ~~~~

2
1~~~

2
1~ 2 TTU ω==  

(8) 

(9) 

(10) 

(11) 
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whereΦ~  andω~  are the mode shape and circular natural frequency of the damaged 

structure, respectively;  M~  and  K~  are the mass and stiffness matrices of the damaged 

structure, respectively, and eϕ
~  is the displacement vector imposed on the eth element 

due to the mode shape Φ~ . It is reasonable to assume that the mass of the structure does 

not change due to damage, i.e. MM =~ . By substituting Eqns. (11) into Eqn. (4), one 

can get 

ΦMΦΦKΦk ~~~~~~~ 2

1

TT
n

e
eee

T
e ωδϕϕ −=∑

=

 

The only unknown in Eqn. (12) is eδ . Using the other mode shapes of the damaged 

structure, a system of equations like Eqn. (12) is obtained. If m mode shapes of the 

damaged structure are available, we will have the following system of equations 

mii
T
iii

T
i

n

e
eiee

T
ie ,1,for~~~~~~~ 2

1
=−=∑

=

ΦMΦΦKΦk ωδϕϕ  

If the mode shapes are normalized with respect to the mass matrix, we will have 

miii
T
i

n

e
eiee

T
ie ,1,for~~~~~ 2

1
=−=∑

=

ωδϕϕ ΦKΦk  

This equation can be written in the compact matrix form as follows 

rδS =e  , iee
T
ieies ϕϕ ~~ k=  , 2~~~

ii
T
iir ω−= ΦKΦ  

where ies , the members of the system matrix S, is the element strain energy of the eth 

element due to the ith mode shape and ir , the elements of the residual vector r, is the 

difference between the total strain energies of the undamaged structure and the damaged 

structure due to the ith mode. 

(12) 

(13) 

(14) 

(15) 
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SIMULATION STUDY AND COMPUTATIONAL ASPECTS 

Using the developed formulation a finite element program named StruDD is 

developed. To investigate the behavior of the proposed method a two-span continues 

plane truss shown in Fig.1 is studied in a simulation environment. This truss is the same 

truss that Yeo et al. [25] used to study the performance of their algorithm. The cross-

sectional properties are given in Fig.1. All members have the same Young's modulus of 

219994.798
cm

KN  and mass density, ρ , equal to 4
208-7.827E

cm
SKN ⋅ . The finite element 

model of the truss structure consists of 55 elements with 44 degrees of freedom. 

Different damage scenarios are simulated for this truss, which are summarized in 

Table1. For each case, damage is simulated by reduction in the sectional area of a truss 

member. The same truss structure is used to simulate required measurements for both 

static and dynamic tests. 

Static Response 
For the simulation of static tests, five load cases are selected as shown in Fig.2. 

The levels of elemental strain energies in the undamaged truss due to load case 1 are 

shown in Fig.3. As one can observe, the levels of strain energies in vertical and diagonal 

elements are very small compare to the strain energies in the top and bottom elements. 

Fig.4 presents the damage identification results for damage case 1. For this scenario of 

damage, all five load cases are used to identify the damage. In this case, different 

methods are used to solve Energy Equation System. As it is shown, the Non-Negative 

Least Square (NNLS) method provides the best solution. It can be seen that damage in 

member 22 is successfully located and quantified by using NNLS. The severity of 

damage in member 22 is predicted as 29.94% and all undamaged members are 

identified as undamaged. 

 11 



When we used load case 5 alone and NNLS method, the severity of damage in 

member 22 is successfully predicted as 30% and all undamaged members are identified 

as undamaged. But when only load case 1 is used, damage in member 22 is not 

detected, and the undamaged member 3 is identified as damaged member with very low 

damage severity, i.e. 1.79%. By speculating in Fig.3 and comparing the stored strain 

energy in element 3 with other elements due to load case 1, we can notice why the 

member 3 is identified as potential damaged member when only load case 1 is singly 

used. The level of developed strain energy in element 22 is very small in load case 1, 

and it causes that the energy index method be incapable to identify member 22 as a 

damaged member. But in load case 5, the stored strain energy in member 22 is relatively 

adequate for the algorithm. It is also observed that damage in member 22 is not 

detectable when either load case 2 or 3 is singly used, because in these load cases the 

stored strain energy in member 22 is very small. But for load case 4, which the level of 

developed strain energy in member 22 is relatively high, the severity of damage in this 

member is successfully predicted as 30% and all undamaged members are identified as 

undamaged. 

For damage case 2, it is also observed that the NNLS method yields the best 

solution. The severity of damages in member 22 and 4 are successfully predicted as 

30% and 40%, respectively and all undamaged members are identified as undamaged. 

When each load case 1 through 5 is singly used, we have only one equation and the 

algorithm can only identify one element as the damaged member. When load case 1 or 2 

is used, the algorithm identifies member 4 as the damaged member. For load case 4 and 

5, member 22 is identified as the damaged member. For load case 3 the algorithm falls 

into error. Fig.5 presents the damage identification results for the scenarios that two 
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load cases are simultaneously used, i.e. load cases 1 and 5, and load cases 2 and 4. It can 

be seen that the algorithm performs well. It correctly identified the actual damaged 

member. 

In damage case 3, by simultaneously using NNLS and all 5 load cases, all 

damaged members are successfully identified along with their exact damage severities. 

The damage detection and assessment results are illustrated in Fig.6 for the case that 

different combinations of load cases are used to identify damage. As one can notice, if 

only one load case is used the damage identification algorithm could identify one 

element as the damaged member. When two load cases are used the algorithm can 

identify two members as damaged members, if there exist any, and so forth. For 

example when three load cases 2, 3 and 4 are used, all three damaged member are 

correctly identified as damaged members, but when all five load cases are used, the 

algorithm does not identify any addition member as damaged member. In general, to get 

a reliable result the minimum number of required deformed shapes due to different load 

cases must be equal to the number of damaged elements. Those elements of the 

structure with high level of stored strain energies when subjected to damage can be 

easily detected. The loading case that develops the highest level of strain energy in the 

damaged element is the best load case to detect the damage of that element. But since 

the locations of damaged elements are unknown, one can not simply use this 

conclusion. An applicable suggestion might be using those load cases which develop 

almost a uniform level of strain energy in all elements. 

Damage case 4 can be regarded as a very light damage. In this case, the algorithm 

fails to identify damage in member 16. The results of the damage identification process 

for element 16 when damage severity in this element increases, are shown in Fig.7. One 
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can observed that the algorithm could not identify damage in member 16 with damage 

severity less than 20%. When damage severity in this element increases more than 20%, 

the element is successfully identified with its exact actual damage severity. 

Dynamic Response 
It is assumed that the natural frequencies and mode shapes of the first four modes 

of the structure are available as measured data. The levels of elemental strain energies in 

the undamaged truss due to first mode shape are shown in Fig.8. Any damage induced 

in diagonal and vertical members can be detected with more difficultly than detecting 

damages in top and bottom members. Because the strain energies developed in top and 

bottom elements are significantly larger than energy levels in other members. Fig.9 

presents the elemental strain energies due to the first three mode shapes. It is observed 

that, higher mode shapes (e.g. mode shape 3) induce higher levels of strain energy in 

some elements, which may mislead the algorithm. Distribution of the strain energy due 

to the lower mode shapes (mode shapes 1 and 2) is relatively smooth. It means the 

lower mode shapes contain much more reliable information compare to information 

content of mode shape 3. 

The results are summarized and shown in Fig.10 through Fig.13. For the damage 

case1, different methods are used to solve damage equations system. As one can notice, 

NNLS method gives the best solutions.  When there is only one damaged element in 

structure (damage case1 and 4), only the first mode shape is sufficient to identify 

damage. Usually the first mode shape provides enough data to detect only damaged 

element, even with small magnitude (damage case4). But when the number of damaged 

elements is more than one, more mode shapes should be used to detect all damages. 
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For dynamic cases like the static ones the number of required mode shapes 

depends on the number and locations of damaged elements. The minimal number of 

required mode shapes must be equal to the number of damaged elements. But since 

some of the higher mode shapes develop higher levels of the strain energy in some 

elements, these mode shapes are not reliable. Thus, more mode shapes must be used to 

achieve the reliable results. By speculating in Fig.9 and comparing the stored strain 

energies due to different mode shapes in elements 4 and 46 together, one can easily 

understand the importance of this observation and fact. To support this conclusion, the 

damage case 3 is examined with different numbers of mode shapes and the results are 

summarized in Table 2. 

Conclusion 

A new global damage detection method based on strain energy change concept 

was developed. The method is referred as Energy Index Method. It is a model based and 

a level-three method, i.e. it not only flags damage but gives location and severity of 

damage. One of the advantages of the method is that the multiple damages can be 

simultaneously localized and quantified. Another feature of the method is that it can be 

used for both static and modal response of a structure (static tests and dynamic tests). 

The algorithm requires only the stiffness and mass matrices of the baseline structure and 

measured response of the current structure. 

A numerical simulation study was employed to examine the capabilities of the 

algorithm in damage identification. It has been shown that the Non-Negative Least 

square is the best method to solve derived energy equations. Although the number of 

equations is much less than the number of unknowns, no methodology error was seen.  

Also it is demonstrated that, energy index method requires only a few number of mode 
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shapes (in dynamic tests) or static loading cases (in static tests) to obtain reliable results. 

From a practical point of view, this is important because during a field test the number 

of measured mode shapes or static responses is limited. 

From simulation study, it has been found that the strain energy distribution is very 

important. Those elements of the structure with high level of stored strain energies can 

be detected easier when subjected to damage. The mode shape or static loading that 

develops the highest level of strain energy in the damaged element is the best one for 

detecting the location and the magnitude of damage. But in reality the locations of 

damaged elements are unknown so one can not use this idea. Mode shapes and static 

loadings which develop almost a uniform distribution of strain energy in elements could 

be more suitable and desirable. Some higher mode shapes which might induce 

significant levels of strain energy in some elements are not always reliable. 

Finally, it is shown that in order to obtain reliable results, the number of equations 

(mode shapes or static loadings) must be greater than the number of predicted damaged 

elements. It means that when the number of predicted damages is less than the number 

of equations, the results are reliable; otherwise more equations must be used to achieve 

a reasonable prediction. 
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Figure Captions 

Fig. 1. Cross-sectional properties and the layout of bridge truss. 

Fig. 2. Damaged members and load cases of bridge truss. 

Fig. 3. Elemental strain energies of undamaged bridge truss due to load case 1. 

Fig. 4. Predicted damages for case1 using the all load cases simultaneously. 

Fig. 5. Predicted damages for case2, when two load cases are used simultaneously. 

Fig. 6. Predicted damages for case3 using the different combination of load cases. 

Fig. 7. Predicted damage for element 16 with different damage severity from static 

response. 

Fig. 8. Elemental strain energies of the undamaged structure due to the first mode 

shape. 
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Fig. 9. Elemental strain energies of the undamaged structure due to the first three mode 

shapes. 

Fig. 10. Predicted damages for case1 using the first mode shape. 

Fig. 11. Predicted damages for case2 using the first four mode shapes. 

Fig. 12. Predicted damages for case3 using the first four mode shapes. 

Fig. 13. Predicted damages for case4 using the first mode shape. 

 

Table Captions 

Table 1. Simulated damage for bridge truss structure. 

Table 2. Predicted damages for case3 using different number of mode shapes. 
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Fig. 1. Cross-sectional properties and the layout of bridge truss. 

 

 

Fig. 2. Damaged members and load cases of bridge truss. 

 

 

Fig. 3. Elemental strain energies of undamaged bridge truss due to load case 1. 

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Elements

El
em

en
ta

 S
tr

ai
n 

En
er

gy
 (%

)

Top Elements Bottom Elements

Vertical Elements Diagonal Elements

0

2

4

6

8

10

12

14

El
em

en
ta

l S
tr

ai
n 

En
er

gy
 (%

)

1 5 10 15 20 25 30 35 40 45 50 55
Elements

Top 
Element

Bottom 
Element

Vertical 
Element

Diagonal Element

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Elements

El
em

en
ta

 S
tr

ai
n 

En
er

gy
 (%

)

Top Elements Bottom Elements

Vertical Elements Diagonal Elements

0

2

4

6

8

10

12

14

El
em

en
ta

l S
tr

ai
n 

En
er

gy
 (%

)

0

2

4

6

8

10

12

14

El
em

en
ta

l S
tr

ai
n 

En
er

gy
 (%

)

1 5 10 15 20 25 30 35 40 45 50 55
Elements

1 5 10 15 20 25 30 35 40 45 50 55
Elements

Top 
Element

Bottom 
Element

Vertical 
Element

Diagonal Element

1 

2 3 4 5 6 7 8 9 10 11 

12 

13 14 15 16 17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 33 34 35 36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

Load Case 1 

Load Case 2 

Load Case 3 

Load Case 4 

Load Case 5 p q 
p q 

p q 

p q 

p q KN
KN

136
80

=
=

q
p

 

)( 2cm

Area Member )( 2cm

Area 
Member 

200 Vertical 250 Top 
220 Diagonal 300 Bottom 

4
2SKN08-7.827E cm

⋅=ρ  ;  219994.798 cm
KNE =  

12@10 m 

1 

2 3 4 5 6 7 8 9 10 11 

12 

13 14 15 16 17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 33 34 35 36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 
12.

 

 21 



 

Fig. 4. Predicted damages for case1 using the all load cases simultaneously. 

 

 

Fig. 5. Predicted damages for case2, when two load cases are used simultaneously. 
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Fig. 6. Predicted damages for case3 using the different combination of load cases. 

 

 

Fig. 7. Predicted damage for element 16 with different 
damage severity from static response. 
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Fig. 8. Elemental strain energies of the undamaged structure 
due to the first mode shape. 

 

 

Fig. 9. Elemental strain energies of the undamaged structure 
due to the first three mode shapes. 
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Fig. 10. Predicted damages for case1 using the first mode shape. 

 

Fig. 11. Predicted damages for case2 using the first four mode shapes. 

 

Fig. 12. Predicted damages for case3 using the first four mode shapes. 
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Fig. 13. Predicted damages for case4 using the first mode shape. 
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Table 1. Simulated damage for bridge truss structure. 

Case Damage scenarios 
Damaged Members Damage 

Severity (%) Elements Area ( 2cm )  
1 Single damaged member 22E  210 30 

2 Two damaged members 
different damage severity 

22E  

4E  
210 
150 

30 
40 

3 Three damaged members 
different damage severity 

22E  

4E  

46E  

210 
150 
110 

30 
40 
50 

4 Single light damaged member 16E  285 5 
 

 

Table 2. Predicted damages for case3 using different number of mode shapes. 

Simulated 
damages 

Number of Mode 
Shapes Predicted Damages 

40.04 =δ  
50.046 =δ
30.022 =δ  

1=m  78.022 =δ  
2=m  70.022 =δ  , 49.046 =δ  

3=m  48.046 =δ  , 68.022 =δ  , 11.018 =δ  

4=m  50.046 =δ  , 30.022 =δ  , 40.04 =δ  

5=m  
05.018 =δ  , 08.06 =δ  , 27.04 =δ  
13.047 =δ  , 43.046 =δ  , 40.022 =δ  

6=m  50.046 =δ  , 30.022 =δ  , 40.04 =δ  

7=m  50.046 =δ  , 30.022 =δ  , 40.04 =δ  
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